स्टैक (गणित): Difference between revisions
m (Sugatha moved page ढेर (गणित) to स्टैक (गणित) without leaving a redirect) |
No edit summary |
||
Line 2: | Line 2: | ||
गणित में स्टैक या 2-शेफ सामान्यतौर पर एक [[शीफ (गणित)]] है जो संग्रह के बजाय श्रेणियों में मान लेता है। स्टैक्स का उपयोग [[ वंश सिद्धांत | वंश सिद्धांत]] के कुछ मुख्य निर्माणों को औपचारिक रूप देने के लिए किया जाता है और जब [[ ठीक मोडुली स्पेस | उत्कृष्ट मोडुली स्पेस]] स्थित नहीं होते हैं तो उत्कृष्ट मोडुली स्टैक का निर्माण किया जाता है। | गणित में स्टैक या 2-शेफ सामान्यतौर पर एक [[शीफ (गणित)]] है जो संग्रह के बजाय श्रेणियों में मान लेता है। स्टैक्स का उपयोग [[ वंश सिद्धांत | वंश सिद्धांत]] के कुछ मुख्य निर्माणों को औपचारिक रूप देने के लिए किया जाता है और जब [[ ठीक मोडुली स्पेस | उत्कृष्ट मोडुली स्पेस]] स्थित नहीं होते हैं तो उत्कृष्ट मोडुली स्टैक का निर्माण किया जाता है। | ||
वंश [[वंश सिद्धांत|सिद्धांत]] का संबंध उन स्थितियों के सामान्यीकरण से है जहां समरूपता, संयोज्य ज्यामितीय वस्तुएं (जैसे [[टोपोलॉजिकल स्पेस|संस्थानिक स्पेस]] पर | वंश [[वंश सिद्धांत|सिद्धांत]] का संबंध उन स्थितियों के सामान्यीकरण से है जहां समरूपता, संयोज्य ज्यामितीय वस्तुएं (जैसे [[टोपोलॉजिकल स्पेस|संस्थानिक स्पेस]] पर [[वेक्टर बंडल|सदिश बंडल]]) को [[टोपोलॉजिकल स्पेस|संस्थानिक]] आधार के प्रतिबंध के भीतर एक साथ चिपकाया जा सकता है, ज्यादातर सामान्य संग्रह-अप में प्रतिबंधों को [[पुलबैक (श्रेणी सिद्धांत)]] से बदल दिया जाता है तंतुमय श्रेणी तब इस तरह के ग्लूइंग की संभावना पर चर्चा करने के लिए एक अच्छा फ्रेम बनाती है। स्टैक का सहज अर्थ यह है कि यह एक [[रेशेदार श्रेणी|तंतुमय श्रेणी]] है जैसे कि सभी संभावित ग्लूइंग काम करते हैं। ग्लूइंग्स के विनिर्देशन के लिए आवरण की परिभाषा की आवश्यकता होती है जिसके संबंध में ग्लूइंग्स पर विचार किया जा सकता है यह पता चला है कि इन आवरणों का वर्णन करने के लिए सामान्य भाषा [[ग्रोथेंडिक टोपोलॉजी|ग्रोथेंडिक सांस्थिति]] है, इस प्रकार स्टैक को औपचारिक रूप से अन्य ''आधार'' श्रेणी पर एक तंतु श्रेणी के रूप में दिया जाता है, जहां आधार ग्रोथेंडिक सांस्थिति होती है जहां तंतु श्रेणी कुछ स्वयंसिद्धों को संतुष्ट करती है जो ग्रोथेंडिक सांस्थिति के संबंध में ग्लूइंग के अस्तित्व और विशिष्टता को सुनिश्चित करती है। | ||
== सिंहावलोकन == | == सिंहावलोकन == | ||
Line 20: | Line 20: | ||
स्टैक परिभाषित किए जाने से पहले {{harvtxt|ममफोर्ड|1965}} ने गोलाकार वक्रों के मोडुली स्टैक के पिकार्ड समूह का अध्ययन किया। स्टैक को सबसे पहले {{harvs|txt|last=जिराउड|year1=1966|year2=1971}}द्वारा परिभाषित किया गया था और स्टैक शब्द {{harvtxt|डेलिग्ने एंड| ममफोर्ड|1969}} द्वारा मूल फ्रांसीसी शब्द "चैंप" के लिए "फ़ील्ड" के रूप में प्रस्तुत किया गया था। इस लेख में उन्होंने डेलिग्ने-ममफोर्ड स्टैक भी प्रस्तुत किए जिसे उन्होंने बीजगणितीय स्टैक कहा हालांकि बीजगणितीय स्टैक शब्द अब सामान्यतौर पर {{harvs|txt|author-link=Michael Artin|last=आर्टिन|year=1974}} द्वारा प्रस्तुत किए गए सामान्य आर्टिन स्टैक को संदर्भित करता है। | स्टैक परिभाषित किए जाने से पहले {{harvtxt|ममफोर्ड|1965}} ने गोलाकार वक्रों के मोडुली स्टैक के पिकार्ड समूह का अध्ययन किया। स्टैक को सबसे पहले {{harvs|txt|last=जिराउड|year1=1966|year2=1971}}द्वारा परिभाषित किया गया था और स्टैक शब्द {{harvtxt|डेलिग्ने एंड| ममफोर्ड|1969}} द्वारा मूल फ्रांसीसी शब्द "चैंप" के लिए "फ़ील्ड" के रूप में प्रस्तुत किया गया था। इस लेख में उन्होंने डेलिग्ने-ममफोर्ड स्टैक भी प्रस्तुत किए जिसे उन्होंने बीजगणितीय स्टैक कहा हालांकि बीजगणितीय स्टैक शब्द अब सामान्यतौर पर {{harvs|txt|author-link=Michael Artin|last=आर्टिन|year=1974}} द्वारा प्रस्तुत किए गए सामान्य आर्टिन स्टैक को संदर्भित करता है। | ||
समूह | समूह फलन द्वारा योजनाओं के भागफल को परिभाषित करते समय भागफल के लिए एक योजना होना और वांछनीय गुणों को संतुष्ट करना ज्यादातर असंभव होता है। उदाहरण के लिए यदि कुछ बिंदुओं में गैर-तुच्छ स्थिरिकारी हैं, तो योजनाओं के बीच [[श्रेणीबद्ध भागफल]] उपस्थित नहीं होगा लेकिन यह स्टैक के रूप में स्थित रहेगा। | ||
उसी तरह वक्र, सदिश बंडल या अन्य ज्यामितीय वस्तुओं के मॉडुलि स्पेस ज्यादातर योजनाओं के बजाय स्टैक के रूप में परिभाषित किए जाते हैं। मॉडुलि स्पेस निर्माण ज्यादातर प्रश्न में वस्तुओं का मानकीकरण करने के लिए पहले एक बड़े स्थान का निर्माण करके आगे बढ़ते हैं और उसके बाद ऑटोमोर्फिज्म वाली वस्तुओं के लिए[[भागफल ढेर|समूह क्रिया द्वारा उद्धरण देते]] है। | उसी तरह वक्र, सदिश बंडल या अन्य ज्यामितीय वस्तुओं के मॉडुलि स्पेस ज्यादातर योजनाओं के बजाय स्टैक के रूप में परिभाषित किए जाते हैं। मॉडुलि स्पेस निर्माण ज्यादातर प्रश्न में वस्तुओं का मानकीकरण करने के लिए पहले एक बड़े स्थान का निर्माण करके आगे बढ़ते हैं और उसके बाद ऑटोमोर्फिज्म वाली वस्तुओं के लिए[[भागफल ढेर|समूह क्रिया द्वारा उद्धरण देते]] है। | ||
Line 29: | Line 29: | ||
श्रेणी <math>c</math> के फ़ंक्टर वाली श्रेणी <math>C</math> को <math>C</math> के ऊपर एक तंतुयुक्त श्रेणी कहा जाता है यदि किसी आकारिकी के लिए <math>F:X\to Y</math> में <math>C</math> और कोई वस्तु <math>y</math> का <math>c</math> प्रतिबिंब के साथ <math>Y</math> एक पुलबैक है <math>f:x\to y</math> <math>y</math> द्वारा <math>F</math> इसका मतलब प्रतिबिंब के साथ एक आकृतिवाद <math>F</math> है जैसे कि कोई आकारिकी <math>g:z\to y</math> प्रतिबिंब के साथ <math>G=F\circ H</math> के रूप में गिना जा सकता है <math>g=f\circ h</math> एक अद्वितीय आकारिकी द्वारा <math>h:z\to x</math> में <math>c</math> फ़ंक्टर <math>h</math> को <math>H</math> से मानचित्र करता है। तत्व <math>x = F^*y</math> का पुलबैक <math>y</math> के साथ <math>F</math> कहा जाता है और विहित समरूपता तक अद्वितीय है। | श्रेणी <math>c</math> के फ़ंक्टर वाली श्रेणी <math>C</math> को <math>C</math> के ऊपर एक तंतुयुक्त श्रेणी कहा जाता है यदि किसी आकारिकी के लिए <math>F:X\to Y</math> में <math>C</math> और कोई वस्तु <math>y</math> का <math>c</math> प्रतिबिंब के साथ <math>Y</math> एक पुलबैक है <math>f:x\to y</math> <math>y</math> द्वारा <math>F</math> इसका मतलब प्रतिबिंब के साथ एक आकृतिवाद <math>F</math> है जैसे कि कोई आकारिकी <math>g:z\to y</math> प्रतिबिंब के साथ <math>G=F\circ H</math> के रूप में गिना जा सकता है <math>g=f\circ h</math> एक अद्वितीय आकारिकी द्वारा <math>h:z\to x</math> में <math>c</math> फ़ंक्टर <math>h</math> को <math>H</math> से मानचित्र करता है। तत्व <math>x = F^*y</math> का पुलबैक <math>y</math> के साथ <math>F</math> कहा जाता है और विहित समरूपता तक अद्वितीय है। | ||
श्रेणी c को ग्रोथेंडिक सांस्थिति के साथ श्रेणी C पर '[[ prestack | प्रीस्टैक]] ' कहा जाता है यदि इसे c पर तंतु किया जाता है और c के किसी वस्तु u के लिए प्रतिबिंब u के साथ c की वस्तु x, y ओवर श्रेणी c/u से फ़ंक्टर संग्रहित करने के लिए F:V→U से (F*x,F*y) एक शीफ है। यह स्टैकों के लिए शब्दावली के अनुरूप नहीं है: प्रीस्टैक प्रीशेव्स से अलग किए गए प्रीशेव्स के अनुरूप हैं, कुछ लेखकों को इसे प्रीस्टैक की बजाय स्टैक | श्रेणी c को ग्रोथेंडिक सांस्थिति के साथ श्रेणी C पर '[[ prestack | प्रीस्टैक]] ' कहा जाता है यदि इसे c पर तंतु किया जाता है और c के किसी वस्तु u के लिए प्रतिबिंब u के साथ c की वस्तु x, y ओवर श्रेणी c/u से फ़ंक्टर संग्रहित करने के लिए F:V→U से (F*x,F*y) एक शीफ है। यह स्टैकों के लिए शब्दावली के अनुरूप नहीं है: प्रीस्टैक प्रीशेव्स से अलग किए गए प्रीशेव्स के अनुरूप हैं, कुछ लेखकों को इसे प्रीस्टैक की बजाय स्टैक के गुणों के रूप में आवश्यकता होती है। | ||
श्रेणी c को ग्रोथेंडिक सांस्थिति के साथ श्रेणी c के ऊपर एक 'स्टैक' कहा जाता है यदि यह c पर एक प्रीस्टैक है और प्रत्येक वंश मूल डेटा प्रभावी है। एक 'वंश तिथि' में सामान्य तौर पर वर्ग V द्वारा C की वस्तु V का आवरण <sub>i होता है</sub> पर तंतु में तत्व xi और xj के प्रतिबंधों के बीच आकारिकी fji से Vij = Vi × VVj अनुकूलता की स्थिति को संतुष्ट करता है वंश तिथि को 'प्रभावी' कहा जाता है यदि तत्व xi अनिवार्य रूप से प्रतिबिंब V के साथ तत्व x के पुलबैक हैं। | श्रेणी c को ग्रोथेंडिक सांस्थिति के साथ श्रेणी c के ऊपर एक 'स्टैक' कहा जाता है यदि यह c पर एक प्रीस्टैक है और प्रत्येक वंश मूल डेटा प्रभावी है। एक 'वंश तिथि' में सामान्य तौर पर वर्ग V द्वारा C की वस्तु V का आवरण <sub>i होता है</sub> पर तंतु में तत्व xi और xj के प्रतिबंधों के बीच आकारिकी fji से Vij = Vi × VVj अनुकूलता की स्थिति को संतुष्ट करता है वंश तिथि को 'प्रभावी' कहा जाता है यदि तत्व xi अनिवार्य रूप से प्रतिबिंब V के साथ तत्व x के पुलबैक हैं। | ||
Line 44: | Line 44: | ||
विकर्ण की प्रतिनिधित्व क्षमता के पीछे की प्रेरणा निम्नलिखित है: विकर्ण आकारिकी <math>\Delta:\mathfrak{X} \to \mathfrak{X}\times\mathfrak{X}</math> अगर बीजगणितीय स्पेस के किसी भी जोड़ी के लिए <math>X,Y \to \mathfrak{X}</math> उनके तंतु उत्पाद <math>X\times_{\mathfrak{X}}Y</math> का प्रतिनिधित्व योग्य है। | विकर्ण की प्रतिनिधित्व क्षमता के पीछे की प्रेरणा निम्नलिखित है: विकर्ण आकारिकी <math>\Delta:\mathfrak{X} \to \mathfrak{X}\times\mathfrak{X}</math> अगर बीजगणितीय स्पेस के किसी भी जोड़ी के लिए <math>X,Y \to \mathfrak{X}</math> उनके तंतु उत्पाद <math>X\times_{\mathfrak{X}}Y</math> का प्रतिनिधित्व योग्य है। | ||
डेलिग्ने-ममफोर्ड स्टैक एक बीजगणितीय स्टैक ''X'' है, जैसे कि एक योजना से ''X'' तक ईटेल अनुमान | डेलिग्ने-ममफोर्ड स्टैक एक बीजगणितीय स्टैक ''X'' है, जैसे कि एक योजना से ''X'' तक ईटेल अनुमान है, सामान्यतौर पर डेलिग्ने-ममफोर्ड स्टैक को बीजगणितीय स्टैक के रूप में माना जा सकता है जिनकी वस्तुओं में कोई अतिसूक्ष्म ऑटोमोर्फिज़्म नहीं है। | ||
==== बीजगणितीय स्टैक की स्थानीय संरचना ==== | ==== बीजगणितीय स्टैक की स्थानीय संरचना ==== | ||
बीजगणितीय स्टैक की स्थापना के बाद से यह उम्मीद की गई थी कि वे | बीजगणितीय स्टैक की स्थापना के बाद से यह उम्मीद की गई थी कि वे रूप के स्थानीय भागफल स्टैक हैं <math>[\text{Spec}(A)/G]</math> जहाँ <math>G</math> एक आसान बीजगणितीय समूह है। हाल ही में यह साबित हुआ कि<ref>{{Cite journal|last1=Alper|first1=Jarod|last2=Hall|first2=Jack|last3=Rydh|first3=David|date=2020|title=A Luna étale slice theorem for algebraic stacks|jstor=10.4007/annals.2020.191.3.1|journal=Annals of Mathematics|volume=191|issue=3|pages=675–738|doi=10.4007/annals.2020.191.3.1|issn=0003-486X|hdl=10150/641331|s2cid=3225788|hdl-access=free}}</ref> एक अर्ध-पृथक बीजगणितीय स्टैक <math>\mathfrak{X}</math> बीजगणितीय रूप से संवृत क्षेत्र पर स्थानीय रूप से परिमित प्रकार <math>k</math> जिनके स्थिरिकारी एफ़िन हैं और <math>x \in \mathfrak{X}(k)</math> रैखिक रूप से आसान स्थिरिकारी समूह के साथ एक चिकना और संवृत बिंदु <math>G_x</math>है, GIT भागफल का एटेल आकारिता <math>(U,u) \to (N_x//G_x, 0)</math> उपस्थित है, जहाँ <math>N_x = (J_x/J_x^2)^\vee</math>, जैसे कि आरेख<blockquote><math>\begin{matrix} | ||
([W/G_x],w) & \to & ([N_x/G_x],0) \\ | ([W/G_x],w) & \to & ([N_x/G_x],0) \\ | ||
\downarrow & & \downarrow \\ | \downarrow & & \downarrow \\ | ||
Line 56: | Line 56: | ||
=== प्राथमिक उदाहरण === | === प्राथमिक उदाहरण === | ||
* प्रत्येक शीफ़ <math>\mathcal{F}:C^{op} \to Sets</math> श्रेणी से <math>C</math> ग्रोथेंडिक सांस्थिति के साथ | * प्रत्येक शीफ़ <math>\mathcal{F}:C^{op} \to Sets</math> श्रेणी से <math>C</math> ग्रोथेंडिक सांस्थिति के साथ विहित रूप से स्टैक में बदल दिया जा सकता है। किसी वस्तु के लिए <math>X \in \text{Ob}(C)</math> संग्रह के स्थान में <math>\mathcal{F}(X)</math> एक समूह है जिसकी वस्तुएं <math>\mathcal{F}(X)</math> के तत्व हैं और तीर पहचान रूपवाद हैं। | ||
* वस्तुतः मान लें कि <math>h</math> एक प्रतिपरिवर्ती | * वस्तुतः मान लें कि <math>h</math> एक प्रतिपरिवर्ती कारक है | ||
:<math>h: (Sch/S)^{op} \to Sets</math> | :<math>h: (Sch/S)^{op} \to Sets</math> | ||
:फ़ंक्टर ग्रोथेंडिक निम्नलिखित <math>H</math> श्रेणी निर्धारित करता है | :फ़ंक्टर ग्रोथेंडिक निम्नलिखित <math>H</math> श्रेणी निर्धारित करता है | ||
: # | : # वस्तु <math>(X\to S, x)</math> एक जोड़ी है जो योजना <math>X</math> से मिलकर <math>(Sch/S)^{op}</math> और एक तत्व <math>x \in h(X)</math> है। | ||
: # आकारिकी <math>(X\to S, x) \to (Y\to S,y)</math> एक आकारिकी से मिलकर बनता है <math>\phi:X \to Y</math> में <math>(Sch/S)</math> जैसे कि <math>h(\phi)(y) = x</math> | : # आकारिकी <math>(X\to S, x) \to (Y\to S,y)</math> एक आकारिकी से मिलकर बनता है <math>\phi:X \to Y</math> में <math>(Sch/S)</math> जैसे कि <math>h(\phi)(y) = x</math> | ||
: अन्यमनस्क कारक के माध्यम से <math>p:H \to (Sch/S)</math> श्रेणी <math>H</math> एक तंतुयुक्त श्रेणी <math>(Sch/S)</math> समाप्त हो गई है उदाहरण के लिए, अगर <math>X</math> एक योजना <math>(Sch/S)</math> हैं, तो यह प्रतिपरिवर्ती | : अन्यमनस्क कारक के माध्यम से <math>p:H \to (Sch/S)</math> श्रेणी <math>H</math> एक तंतुयुक्त श्रेणी <math>(Sch/S)</math> समाप्त हो गई है उदाहरण के लिए, अगर <math>X</math> एक योजना <math>(Sch/S)</math> हैं, तो यह प्रतिपरिवर्ती कारक <math>h = \operatorname{Hom}(-, X)</math> निर्धारित करता है और तंतुयुक्त श्रेणी X से स्टैक संबंधित हैं। स्टैक (या प्रीस्टैक) निर्माण के एक प्रकार के रूप में बनाया जा सकता है। वास्तव में, अर्ध-सघन विकर्ण वाली कोई भी योजना <math>X</math> अर्ध-सघन विकर्ण योजना से जुड़ा <math>X</math>बीजगणितीय स्टैक है। | ||
=== वस्तुओं का स्टैक === | === वस्तुओं का स्टैक === | ||
*[[ समूह ढेर | समूह स्टैक]]। | *[[ समूह ढेर | समूह स्टैक]]। | ||
*[[वेक्टर बंडलों का मोडुली स्टैक|सदिश बंडलों का मोडुली स्टैक]]: सदिश बंडलों की श्रेणी V→S संस्थानिक स्पेस S की श्रेणी पर एक स्टैक है। V→S से W→T तक आकारिकी में S से T और V से W तक निरंतर मानचित्र होते | *[[वेक्टर बंडलों का मोडुली स्टैक|सदिश बंडलों का मोडुली स्टैक]]: सदिश बंडलों की श्रेणी V→S संस्थानिक स्पेस S की श्रेणी पर एक स्टैक है। V→S से W→T तक आकारिकी में S से T और V से W तक निरंतर मानचित्र होते हैं, (तंतु पर रैखिक) ऐसा कि स्पष्ट वर्ग आवागमन करता है। स्थिति यह है कि यह एक तंतुयुक्त श्रेणी है क्योंकि कोई संस्थानिक स्पेस के निरंतर मानचित्रों पर सदिश बंडलों के पुलबैक ले सकता है और डिसेंट डेटम प्रभावी होने की स्थिति का अनुसरण करता है क्योंकि कोई सदिश बंडलों को एक साथ जोड़कर स्थान पर सदिश बंडल का निर्माण कर सकता है। | ||
* योजनाओं पर अर्ध-सुसंगत स्टैकों का स्टैक ([[ fpqc-टोपोलॉजी |fpqc-सांस्थिति]] और अशक्त सांस्थिति के संबंध में) | * योजनाओं पर अर्ध-सुसंगत स्टैकों का स्टैक ([[ fpqc-टोपोलॉजी |fpqc-सांस्थिति]] और अशक्त सांस्थिति के संबंध में) | ||
*आधारभूत योजना पर एफ़िन योजनाओं का स्टैक (फिर से fpqc सांस्थिति या अशक्त के संबंध में) | *आधारभूत योजना पर एफ़िन योजनाओं का स्टैक (फिर से fpqc सांस्थिति या अशक्त के संबंध में) | ||
Line 85: | Line 85: | ||
===== लाइन बंडलों का मोडुली स्टैक ===== | ===== लाइन बंडलों का मोडुली स्टैक ===== | ||
लाइन बंडलों का मोडुली स्टैक <math>B\mathbb{G}_m</math> हैं चूंकि प्रत्येक पंक्ति बंडल | लाइन बंडलों का मोडुली स्टैक <math>B\mathbb{G}_m</math> हैं चूंकि प्रत्येक पंक्ति बंडल विहित रूप से एक प्रमुख के लिए आइसोमोर्फिक है <math>\mathbb{G}_m</math>-बंडल। वास्तव में एक योजना लाइन बंडल <math>L</math> एक योजना <math>S</math> के ऊपर सापेक्ष विशिष्टता <math>\underline{\text{Spec}}_S(\text{Sym}_S(L^\vee)) \to S</math> एक ज्यामितीय लाइन बंडल देता है। शून्य खंड की छवि को हटाकर एक मूलधन <math>\mathbb{G}_m</math>-बंडल प्राप्त होता है। इसके विपरीत प्रतिनिधित्व से <math>id:\mathbb{G}_m \to \text{Aut}(\mathbb{A}^1)</math> संबंधित लाइन बंडल का पुनर्निर्माण किया जा सकता है। | ||
==== गेर्ब्स ==== | ==== गेर्ब्स ==== | ||
Line 100: | Line 100: | ||
*{{harvtxt|ममफोर्ड|1965}} ने गोलाकार वक्रों के मोडुली स्टैक M<sub>1,1</sub> का अध्ययन किया और दिखाया कि इसका पिकार्ड समूह क्रम 12 का चक्रीय है। [[जटिल संख्या]]ओं पर दीर्घवृत्तीय वक्रों के लिए संबंधित स्टैक [[मॉड्यूलर समूह]] की क्रिया द्वारा ऊपरी अर्ध | *{{harvtxt|ममफोर्ड|1965}} ने गोलाकार वक्रों के मोडुली स्टैक M<sub>1,1</sub> का अध्ययन किया और दिखाया कि इसका पिकार्ड समूह क्रम 12 का चक्रीय है। [[जटिल संख्या]]ओं पर दीर्घवृत्तीय वक्रों के लिए संबंधित स्टैक [[मॉड्यूलर समूह]] की क्रिया द्वारा ऊपरी अर्ध | ||
*-विमान के भागफल के समान है। | *-विमान के भागफल के समान है। | ||
*<!--* An example of a stack which is not globally a quotient stack is the disjoint union of two quotient stacks which have non-equal quotienting group <math>G</math>; e.g. consider <math>\mathbf{B}\mathbb{Z}/2 \coprod \mathbf{B}S_3</math>. What should be done with this? -->बीजगणितीय वक्रों का मापांक स्थान <math>\mathcal{M}_g</math> दिए गए [[जीनस (गणित)]] के स्मूथ वक्रों के एक सार्वभौमिक परिवार के रूप में परिभाषित किया गया है <math>g</math> एक बीजगणितीय विविधता के रूप में उपस्थित नहीं है क्योंकि विशेष रूप से गैर-सामान्य ऑटोमोर्फिज्म को स्वीकार करने वाले वक्र हैं हालांकि, एक मोडुली स्टैक <math>\mathcal{M}_g</math> है जो स्मूथ जीनस के गैर-उपस्थित फाइन मोडुली स्पेस के लिए एक अच्छा विकल्प <math>g</math> वक्र है। सामान्यतौर पर एक मोडुली स्टैक <math>\mathcal{M}_{g,n}</math> होता है जिसका <math>g</math> वक्र पर <math>n</math> चिह्नित बिंदु होते | *<!--* An example of a stack which is not globally a quotient stack is the disjoint union of two quotient stacks which have non-equal quotienting group <math>G</math>; e.g. consider <math>\mathbf{B}\mathbb{Z}/2 \coprod \mathbf{B}S_3</math>. What should be done with this? -->बीजगणितीय वक्रों का मापांक स्थान <math>\mathcal{M}_g</math> दिए गए [[जीनस (गणित)]] के स्मूथ वक्रों के एक सार्वभौमिक परिवार के रूप में परिभाषित किया गया है <math>g</math> एक बीजगणितीय विविधता के रूप में उपस्थित नहीं है क्योंकि विशेष रूप से गैर-सामान्य ऑटोमोर्फिज्म को स्वीकार करने वाले वक्र हैं हालांकि, एक मोडुली स्टैक <math>\mathcal{M}_g</math> है जो स्मूथ जीनस के गैर-उपस्थित फाइन मोडुली स्पेस के लिए एक अच्छा विकल्प <math>g</math> वक्र है। सामान्यतौर पर एक मोडुली स्टैक <math>\mathcal{M}_{g,n}</math> होता है जिसका <math>g</math> वक्र पर <math>n</math> चिह्नित बिंदु होते है, सामान्य तौर पर यह एक बीजगणितीय स्टैक है और इसके लिए डेलिग्ने-ममफोर्ड स्टैक <math>g \geq 2</math> या <math>g = 1, n \geq 1</math> या <math>g = 0, n \geq 3</math> हैं (दूसरे शब्दों में जब वक्रों के ऑटोमोर्फिज्म समूह परिमित होते हैं)। इस मोडुली स्टैक में एक पूर्णता है जिसमें स्थिर वक्रों के मोडुली स्टैक सम्मिलित हैं (दिया गया है <math>g</math> और <math>n</math>) जो स्पेक (Spec Z) पर उचित है। उदाहरण के लिए, <math>\mathcal{M}_0</math> प्रक्षेपी सामान्य का वर्गीकरण स्टैक <math>B\text{PGL}(2)</math> प्रक्षेपी सामान्य रैखिक समूह ( <math>\mathcal{M}_1</math> को परिभाषित करने में एक सूक्ष्मता है क्योंकि इसे बनाने के लिए योजनाओं के बजाय बीजगणितीय स्पेस का उपयोग करना पड़ता है।) | ||
==== [[Kontsevich अंतरिक्ष मॉड्यूल|कोंटेसेविच]] मॉडुलि स्पेस ==== | ==== [[Kontsevich अंतरिक्ष मॉड्यूल|कोंटेसेविच]] मॉडुलि स्पेस ==== | ||
Line 109: | Line 109: | ||
* [[औपचारिक समूह कानून|औपचारिक समूह]] कानूनों का मोडुली स्टैक औपचारिक समूह कानूनों को वर्गीकृत करता है। | * [[औपचारिक समूह कानून|औपचारिक समूह]] कानूनों का मोडुली स्टैक औपचारिक समूह कानूनों को वर्गीकृत करता है। | ||
* [[उद्योग-योजना|एक उद्योग-योजना]] जैसे कि अनंत प्रक्षेप्य स्थान और [[औपचारिक योजना]] एक स्टैक है।<!-- in fact, an algebraic stack? --> | * [[उद्योग-योजना|एक उद्योग-योजना]] जैसे कि अनंत प्रक्षेप्य स्थान और [[औपचारिक योजना]] एक स्टैक है।<!-- in fact, an algebraic stack? --> | ||
* [[ ज्यामितीय लैंगलैंड्स कार्यक्रम | ज्यामितीय लैंगलैंड्स | * [[ ज्यामितीय लैंगलैंड्स कार्यक्रम | ज्यामितीय लैंगलैंड्स फलन]] में [[चीज़|श्टुका]] के मोडुली स्टैक का उपयोग किया जाता है। | ||
=== ज्यामितीय स्टैक === | === ज्यामितीय स्टैक === | ||
==== भारित अनुमानित स्टैक ==== | ==== भारित अनुमानित स्टैक ==== | ||
भारित प्रक्षेपण स्थान के निर्माण में <math>\mathbb{A}^{n+1} - \{0\}</math>की भागफल विविधता <math>\mathbb{G}_m</math>- | भारित प्रक्षेपण स्थान के निर्माण में <math>\mathbb{A}^{n+1} - \{0\}</math>की भागफल विविधता <math>\mathbb{G}_m</math>-फलन द्वारा सम्मिलित हैं, विशेष रूप से फलन एक टपल भेजती है<blockquote> <math>g \cdot(x_0,\ldots, x_n) \mapsto (g^{a_0}x_0,\ldots,g^{a_n}x_n)</math></blockquote>और इस फलन का अंश भारित अनुमानित स्पेस <math>\mathbb{WP}(a_0,\ldots, a_n)</math> देता है, चूँकि इसके अतिरिक्त इसे स्टैक भागफल, भारित प्रक्षेपात्मक स्टैक के रूप में लिया जा सकता है<ref>{{cite arXiv|last1=Fantechi|first1=Barbara|last2=Mann|first2=Etienne|last3=Nironi|first3=Fabio|date=2009-09-22|title=चिकना टोरिक डीएम ढेर|class=math.AG|eprint=0708.1254}}</ref> <math>\textbf{WP}(a_0,\ldots, a_n) := [\mathbb {A}^{n}-\{0\} / \mathbb{G}_m]</math>एक लाइन बंडल में भारित बहुपद के लुप्त स्थान <math>f \in \Gamma(\textbf{WP}(a_0,\ldots, a_n),\mathcal{O}(a))</math> को लेना एक स्टैकी | ||
भारित प्रक्षेप्य विविधता देता है। | भारित प्रक्षेप्य विविधता देता है। |
Revision as of 01:36, 26 May 2023
गणित में स्टैक या 2-शेफ सामान्यतौर पर एक शीफ (गणित) है जो संग्रह के बजाय श्रेणियों में मान लेता है। स्टैक्स का उपयोग वंश सिद्धांत के कुछ मुख्य निर्माणों को औपचारिक रूप देने के लिए किया जाता है और जब उत्कृष्ट मोडुली स्पेस स्थित नहीं होते हैं तो उत्कृष्ट मोडुली स्टैक का निर्माण किया जाता है।
वंश सिद्धांत का संबंध उन स्थितियों के सामान्यीकरण से है जहां समरूपता, संयोज्य ज्यामितीय वस्तुएं (जैसे संस्थानिक स्पेस पर सदिश बंडल) को संस्थानिक आधार के प्रतिबंध के भीतर एक साथ चिपकाया जा सकता है, ज्यादातर सामान्य संग्रह-अप में प्रतिबंधों को पुलबैक (श्रेणी सिद्धांत) से बदल दिया जाता है तंतुमय श्रेणी तब इस तरह के ग्लूइंग की संभावना पर चर्चा करने के लिए एक अच्छा फ्रेम बनाती है। स्टैक का सहज अर्थ यह है कि यह एक तंतुमय श्रेणी है जैसे कि सभी संभावित ग्लूइंग काम करते हैं। ग्लूइंग्स के विनिर्देशन के लिए आवरण की परिभाषा की आवश्यकता होती है जिसके संबंध में ग्लूइंग्स पर विचार किया जा सकता है यह पता चला है कि इन आवरणों का वर्णन करने के लिए सामान्य भाषा ग्रोथेंडिक सांस्थिति है, इस प्रकार स्टैक को औपचारिक रूप से अन्य आधार श्रेणी पर एक तंतु श्रेणी के रूप में दिया जाता है, जहां आधार ग्रोथेंडिक सांस्थिति होती है जहां तंतु श्रेणी कुछ स्वयंसिद्धों को संतुष्ट करती है जो ग्रोथेंडिक सांस्थिति के संबंध में ग्लूइंग के अस्तित्व और विशिष्टता को सुनिश्चित करती है।
सिंहावलोकन
बीजगणितीय स्टैक्स (जिसे आर्टिन स्टैक्स भी कहा जाता है) डेलिग्ने-ममफोर्ड स्टैक्स की अंतर्निहित संरचना है, जो योजना (गणित) और बीजगणितीय स्पेस को सामान्यीकृत करते हैं और मोडुली स्पेस का अध्ययन करने में विशेष रूप से उपयोगी होते हैं। इसमें समावेशन हैं:
योजनाएं ⊆ बीजगणितीय स्पेस ⊆ डेलिग्ने-ममफोर्ड स्टैक ⊆ बीजगणितीय स्टैक (आर्टिन स्टैक) ⊆ स्टैक।
एडिडिन (2003) और फैंटेची (2001) स्टैक का संक्षिप्त परिचयात्मक विवरण देते हैं, गोमेज़ (2001) , ओल्सन (2007) और विस्टोली (2005) अधिक विस्तृत परिचय देते हैं और लॉमोन एंड & मोरेट-बेली (2000) अधिक उन्नत सिद्धांत का वर्णन करते है।
प्रेरणा और इतिहास
La conclusion pratique à laquelle je suis arrivé dès maintenant, c'est que chaque fois que en vertu de mes critères, une variété de modules (ou plutôt, un schéma de modules) pour la classification des variations (globales, ou infinitésimales) de certaines structures (variétés complètes non singulières, fibrés vectoriels, etc.) ne peut exister, malgré de bonnes hypothèses de platitude, propreté, et non singularité éventuellement, la raison en est seulement l'existence d'automorphismes de la structure qui empêche la technique de descente de marcher.
Grothendieck's letter to Serre, 1959 Nov 5.
स्टैक की अवधारणा का मूल ग्रोथेंडिक (1959) में प्रभावी अन्वय डेटा की परिभाषा में है। 1959 में सेरे को लिखे एक पत्र में ग्रोथेंडिक ने देखा कि अच्छे मॉडुलि स्पेस के निर्माण में एक मूलभूत बाधा ऑटोमोर्फिज़्म का अस्तित्व है। स्टैक के लिए एक प्रमुख प्रेरणा यह है कि अगर ऑटोमोर्फिज्म के अस्तित्व के कारण किसी समस्या के लिए मॉडुलि स्पेस स्थित नहीं है, तब भी मोडुली स्टैक का निर्माण संभव हो सकता है।
स्टैक परिभाषित किए जाने से पहले ममफोर्ड (1965) ने गोलाकार वक्रों के मोडुली स्टैक के पिकार्ड समूह का अध्ययन किया। स्टैक को सबसे पहले जिराउड (1966, 1971)द्वारा परिभाषित किया गया था और स्टैक शब्द डेलिग्ने एंड & ममफोर्ड (1969) द्वारा मूल फ्रांसीसी शब्द "चैंप" के लिए "फ़ील्ड" के रूप में प्रस्तुत किया गया था। इस लेख में उन्होंने डेलिग्ने-ममफोर्ड स्टैक भी प्रस्तुत किए जिसे उन्होंने बीजगणितीय स्टैक कहा हालांकि बीजगणितीय स्टैक शब्द अब सामान्यतौर पर आर्टिन (1974) द्वारा प्रस्तुत किए गए सामान्य आर्टिन स्टैक को संदर्भित करता है।
समूह फलन द्वारा योजनाओं के भागफल को परिभाषित करते समय भागफल के लिए एक योजना होना और वांछनीय गुणों को संतुष्ट करना ज्यादातर असंभव होता है। उदाहरण के लिए यदि कुछ बिंदुओं में गैर-तुच्छ स्थिरिकारी हैं, तो योजनाओं के बीच श्रेणीबद्ध भागफल उपस्थित नहीं होगा लेकिन यह स्टैक के रूप में स्थित रहेगा।
उसी तरह वक्र, सदिश बंडल या अन्य ज्यामितीय वस्तुओं के मॉडुलि स्पेस ज्यादातर योजनाओं के बजाय स्टैक के रूप में परिभाषित किए जाते हैं। मॉडुलि स्पेस निर्माण ज्यादातर प्रश्न में वस्तुओं का मानकीकरण करने के लिए पहले एक बड़े स्थान का निर्माण करके आगे बढ़ते हैं और उसके बाद ऑटोमोर्फिज्म वाली वस्तुओं के लिएसमूह क्रिया द्वारा उद्धरण देते है।
परिभाषाएँ
निराकार स्टैक
श्रेणी के फ़ंक्टर वाली श्रेणी को के ऊपर एक तंतुयुक्त श्रेणी कहा जाता है यदि किसी आकारिकी के लिए में और कोई वस्तु का प्रतिबिंब के साथ एक पुलबैक है द्वारा इसका मतलब प्रतिबिंब के साथ एक आकृतिवाद है जैसे कि कोई आकारिकी प्रतिबिंब के साथ के रूप में गिना जा सकता है एक अद्वितीय आकारिकी द्वारा में फ़ंक्टर को से मानचित्र करता है। तत्व का पुलबैक के साथ कहा जाता है और विहित समरूपता तक अद्वितीय है।
श्रेणी c को ग्रोथेंडिक सांस्थिति के साथ श्रेणी C पर ' प्रीस्टैक ' कहा जाता है यदि इसे c पर तंतु किया जाता है और c के किसी वस्तु u के लिए प्रतिबिंब u के साथ c की वस्तु x, y ओवर श्रेणी c/u से फ़ंक्टर संग्रहित करने के लिए F:V→U से (F*x,F*y) एक शीफ है। यह स्टैकों के लिए शब्दावली के अनुरूप नहीं है: प्रीस्टैक प्रीशेव्स से अलग किए गए प्रीशेव्स के अनुरूप हैं, कुछ लेखकों को इसे प्रीस्टैक की बजाय स्टैक के गुणों के रूप में आवश्यकता होती है।
श्रेणी c को ग्रोथेंडिक सांस्थिति के साथ श्रेणी c के ऊपर एक 'स्टैक' कहा जाता है यदि यह c पर एक प्रीस्टैक है और प्रत्येक वंश मूल डेटा प्रभावी है। एक 'वंश तिथि' में सामान्य तौर पर वर्ग V द्वारा C की वस्तु V का आवरण i होता है पर तंतु में तत्व xi और xj के प्रतिबंधों के बीच आकारिकी fji से Vij = Vi × VVj अनुकूलता की स्थिति को संतुष्ट करता है वंश तिथि को 'प्रभावी' कहा जाता है यदि तत्व xi अनिवार्य रूप से प्रतिबिंब V के साथ तत्व x के पुलबैक हैं।
स्टैक को 'ग्रुपॉइड्स में 'स्टैक' या (2,1)-शेफ' कहा जाता है अगर ग्रुपोइड्स में भी तंतु होता है, जिसका अर्थ है कि इसके तंतु (c की वस्तुओं का उल्टा प्रतिबिंब) ग्रुपोइड्स हैं। कुछ लेखक "स्टैक" शब्द का उपयोग ग्रुपोइड्स में स्टैक की अधिक प्रतिबंधात्मक धारणा को संदर्भित करने के लिए करते हैं।
बीजगणितीय स्टैक
बीजगणितीय स्टैक या आर्टिन स्टैक एफपीपीएफ(fppf) स्थान पर ग्रुपोइड्स X में एक स्टैक है, जैसे कि X का विकर्ण नक्शा प्रतिनिधित्व करने योग्य है और X के लिए एक योजना (स्टैक से जुड़े) से एक निर्विघ्ऩ प्रक्षेपण स्थित है।
आकारिकी Y स्टैक का एक X प्रतिनिधित्व योग्य' है यदि प्रत्येक आकारिकी S के लिए X से (स्टैक से जुड़े) X तक तंतु उत्पाद y ×XS एक बीजगणितीय स्थान (से जुड़े स्टैक) के लिए समरूप (आइसोमोर्फिक) है। स्टैक के 'तंतु उत्पाद' को सामान्य सार्वभौमिक संपत्ति का उपयोग करके परिभाषित किया गया है और उस आवश्यकता को बदलते हुए जो आरेखों को 2-यात्रा के लिए परिवर्तित करती है, अधिक जानकारी के लिए बीजगणितीय स्टैक का आकारिकी भी देखें।
विकर्ण की प्रतिनिधित्व क्षमता के पीछे की प्रेरणा निम्नलिखित है: विकर्ण आकारिकी अगर बीजगणितीय स्पेस के किसी भी जोड़ी के लिए उनके तंतु उत्पाद का प्रतिनिधित्व योग्य है।
डेलिग्ने-ममफोर्ड स्टैक एक बीजगणितीय स्टैक X है, जैसे कि एक योजना से X तक ईटेल अनुमान है, सामान्यतौर पर डेलिग्ने-ममफोर्ड स्टैक को बीजगणितीय स्टैक के रूप में माना जा सकता है जिनकी वस्तुओं में कोई अतिसूक्ष्म ऑटोमोर्फिज़्म नहीं है।
बीजगणितीय स्टैक की स्थानीय संरचना
बीजगणितीय स्टैक की स्थापना के बाद से यह उम्मीद की गई थी कि वे रूप के स्थानीय भागफल स्टैक हैं जहाँ एक आसान बीजगणितीय समूह है। हाल ही में यह साबित हुआ कि[1] एक अर्ध-पृथक बीजगणितीय स्टैक बीजगणितीय रूप से संवृत क्षेत्र पर स्थानीय रूप से परिमित प्रकार जिनके स्थिरिकारी एफ़िन हैं और रैखिक रूप से आसान स्थिरिकारी समूह के साथ एक चिकना और संवृत बिंदु है, GIT भागफल का एटेल आकारिता उपस्थित है, जहाँ , जैसे कि आरेख
कार्तीय है और एक ईटेल आकारिकी
उपस्थित है
और पर स्थिरिकारी समूहों की समरूपता को प्रेरित करना हैं।
उदाहरण
प्राथमिक उदाहरण
- प्रत्येक शीफ़ श्रेणी से ग्रोथेंडिक सांस्थिति के साथ विहित रूप से स्टैक में बदल दिया जा सकता है। किसी वस्तु के लिए संग्रह के स्थान में एक समूह है जिसकी वस्तुएं के तत्व हैं और तीर पहचान रूपवाद हैं।
- वस्तुतः मान लें कि एक प्रतिपरिवर्ती कारक है
- फ़ंक्टर ग्रोथेंडिक निम्नलिखित श्रेणी निर्धारित करता है
- # वस्तु एक जोड़ी है जो योजना से मिलकर और एक तत्व है।
- # आकारिकी एक आकारिकी से मिलकर बनता है में जैसे कि
- अन्यमनस्क कारक के माध्यम से श्रेणी एक तंतुयुक्त श्रेणी समाप्त हो गई है उदाहरण के लिए, अगर एक योजना हैं, तो यह प्रतिपरिवर्ती कारक निर्धारित करता है और तंतुयुक्त श्रेणी X से स्टैक संबंधित हैं। स्टैक (या प्रीस्टैक) निर्माण के एक प्रकार के रूप में बनाया जा सकता है। वास्तव में, अर्ध-सघन विकर्ण वाली कोई भी योजना अर्ध-सघन विकर्ण योजना से जुड़ा बीजगणितीय स्टैक है।
वस्तुओं का स्टैक
- समूह स्टैक।
- सदिश बंडलों का मोडुली स्टैक: सदिश बंडलों की श्रेणी V→S संस्थानिक स्पेस S की श्रेणी पर एक स्टैक है। V→S से W→T तक आकारिकी में S से T और V से W तक निरंतर मानचित्र होते हैं, (तंतु पर रैखिक) ऐसा कि स्पष्ट वर्ग आवागमन करता है। स्थिति यह है कि यह एक तंतुयुक्त श्रेणी है क्योंकि कोई संस्थानिक स्पेस के निरंतर मानचित्रों पर सदिश बंडलों के पुलबैक ले सकता है और डिसेंट डेटम प्रभावी होने की स्थिति का अनुसरण करता है क्योंकि कोई सदिश बंडलों को एक साथ जोड़कर स्थान पर सदिश बंडल का निर्माण कर सकता है।
- योजनाओं पर अर्ध-सुसंगत स्टैकों का स्टैक (fpqc-सांस्थिति और अशक्त सांस्थिति के संबंध में)
- आधारभूत योजना पर एफ़िन योजनाओं का स्टैक (फिर से fpqc सांस्थिति या अशक्त के संबंध में)
स्टैक के साथ निर्माण
स्टैक उद्धरण
यदि एक योजना है और पर कार्य करने वाली एक सहज समूह योजना है फिर भागफल बीजगणितीय स्टैकहै,[2] एक योजना के समूह के लिए -टॉर्स ओवर -योजना के साथ -समतुल्य नक्शे के साथ स्पष्ट रूप से एक स्पेस दिए गए के साथ -स्पेस दिया गया है, तो स्टैक पुलबैक आरेखों के समूह के लिए जहाँ एक समरूप रूपांतर है और एक प्रमुख -बंडल हैं। इस श्रेणी में आकृतिवाद केवल आरेखों के रूपात्मकता है जहाँ दाहिनी ओर के तीर बराबर हैं और बाईं ओर के तीर प्रमुख -बंडल के आकारिकी हैं।
स्टैक का वर्गीकरण
इसकी एक विशेष स्थिति जब x एक बिंदु होता है, तो एक स्मूथ एफाइन समूह योजना G का वर्गीकृत स्टैक BG देता है: इसका नाम श्रेणी के बाद से रखा गया है, जो तंतु के ऊपर है Y से अधिक तंतु श्रेणी है प्रमुख - बंडल की श्रेणी है। ध्यान दें कि को स्टैक के रूप में माना जा सकता है, प्रमुख G बंडलों का मोडुली स्टैक Y पर।
इस निर्माण से एक महत्वपूर्ण उप उदाहरण है, जो प्रमुख -बंडल का मोडुली स्टैक है चूंकि प्रमुख बंडल का डेटा श्रेणी सदिश बंडल के डेटा के बराबर है, यह श्रेणी के मोडुली स्टैक n सदिश बंडल के लिए आइसोमॉर्फिक है।
लाइन बंडलों का मोडुली स्टैक
लाइन बंडलों का मोडुली स्टैक हैं चूंकि प्रत्येक पंक्ति बंडल विहित रूप से एक प्रमुख के लिए आइसोमोर्फिक है -बंडल। वास्तव में एक योजना लाइन बंडल एक योजना के ऊपर सापेक्ष विशिष्टता एक ज्यामितीय लाइन बंडल देता है। शून्य खंड की छवि को हटाकर एक मूलधन -बंडल प्राप्त होता है। इसके विपरीत प्रतिनिधित्व से संबंधित लाइन बंडल का पुनर्निर्माण किया जा सकता है।
गेर्ब्स
गेर्बे ग्रुपोइड्स में एक स्टैक है जिसमें हमेशा एक गैर-शून्य श्रेणी होती है, उदाहरण के लिए अप्रत्यक्ष गेर्ब्स जो प्रत्येक योजना को समूह - के लिए योजना के ऊपर प्रमुख - बंडलों के ग्रुपॉयड को निर्दिष्ट करता है।
सापेक्ष युक्ति और परियोजना
यदि A योजना S पर बीजगणितीय स्टैक X में बीजगणित का एक अर्ध-सुसंगत शीफ है, तो स्टैक स्पेक (A) है जो एक क्रमविनिमेय वृत्त A के वर्णक्रम स्पेक (A) के निर्माण को सामान्य करता है। स्पेक का एक वस्तु (A) एक S-योजना T, X (T) के एक वस्तु X और x * (A) से T के समन्वय वृत्त O (T) तक बीजगणित के शेवों को रूपवाद द्वारा दिया गया है।
यदि A योजना S पर बीजगणितीय स्टैक X में ग्रेडेड बीजगणित का एक अर्ध-सुसंगत शीफ है, तो ग्रेडेड वृत्त A के प्रक्षेपात्मक योजना प्रोज (A) के निर्माण को सामान्यीकृत करने वाला एक स्टैक प्रोज (A) है।
मोडुली स्टैक
वक्रों का मोडुली
- ममफोर्ड (1965) ने गोलाकार वक्रों के मोडुली स्टैक M1,1 का अध्ययन किया और दिखाया कि इसका पिकार्ड समूह क्रम 12 का चक्रीय है। जटिल संख्याओं पर दीर्घवृत्तीय वक्रों के लिए संबंधित स्टैक मॉड्यूलर समूह की क्रिया द्वारा ऊपरी अर्ध
- -विमान के भागफल के समान है।
- बीजगणितीय वक्रों का मापांक स्थान दिए गए जीनस (गणित) के स्मूथ वक्रों के एक सार्वभौमिक परिवार के रूप में परिभाषित किया गया है एक बीजगणितीय विविधता के रूप में उपस्थित नहीं है क्योंकि विशेष रूप से गैर-सामान्य ऑटोमोर्फिज्म को स्वीकार करने वाले वक्र हैं हालांकि, एक मोडुली स्टैक है जो स्मूथ जीनस के गैर-उपस्थित फाइन मोडुली स्पेस के लिए एक अच्छा विकल्प वक्र है। सामान्यतौर पर एक मोडुली स्टैक होता है जिसका वक्र पर चिह्नित बिंदु होते है, सामान्य तौर पर यह एक बीजगणितीय स्टैक है और इसके लिए डेलिग्ने-ममफोर्ड स्टैक या या हैं (दूसरे शब्दों में जब वक्रों के ऑटोमोर्फिज्म समूह परिमित होते हैं)। इस मोडुली स्टैक में एक पूर्णता है जिसमें स्थिर वक्रों के मोडुली स्टैक सम्मिलित हैं (दिया गया है और ) जो स्पेक (Spec Z) पर उचित है। उदाहरण के लिए, प्रक्षेपी सामान्य का वर्गीकरण स्टैक प्रक्षेपी सामान्य रैखिक समूह ( को परिभाषित करने में एक सूक्ष्मता है क्योंकि इसे बनाने के लिए योजनाओं के बजाय बीजगणितीय स्पेस का उपयोग करना पड़ता है।)
कोंटेसेविच मॉडुलि स्पेस
मॉडुलि स्पेस का एक और व्यापक रूप से अध्ययन किया गया वर्ग कोंटेसेविच मोडुली स्पेस है जो एक निश्चित जीनस के घटने के बीच स्थिर मानचित्रों के स्थान को एक निश्चित स्थान पर मापता है जिसकी छवि एक निश्चित कोहोलॉजी वर्ग का प्रतिनिधित्व करती है। ये मोडुली स्पेस [3] को निरूपित करता है और प्रकृतिकृत व्यवहार कर सकता है जैसे रिड्यूसिबल स्टैक, जिसके घटक गैर-सामान्य आयाम हैं। उदाहरण के लिए,[3]मोडुली स्टैक में विवृत उपसमुच्चय द्वारा पैरामिट्रीकृत स्मूथ वक्र है, मॉडुलि स्पेस की सीमा जहां घटता रिड्यूसिबल वक्रों के लिए पतित हो सकता है, वहां एक जीनस के साथ एक पैरामीट्रिक रिड्यूसिबल घटता है घटक और एक जीनस घटक एक बिंदु 1 पर प्रतिच्छेद करते हुए 1 सबस्टैक पैरामीट्रिक रिड्यूसिबल वक्र होता हैं, बिंदु और मैप जीनस वक्र को 1 बिंदु पर भेजता है, चूंकि इस तरह के सभी जीनस वक्र द्वारा पैरामिट्रीकृत हैं और अतिरिक्त आयामी विकल्प जहां ये वक्र जीनस वक्र पर प्रतिच्छेद करते हैं, सीमा घटक का आयाम हैं।
अन्य मोडुली स्टैक
- पिकार्ड स्टैक एक पिकार्ड प्रकार का सामान्यीकरण करता है।
- औपचारिक समूह कानूनों का मोडुली स्टैक औपचारिक समूह कानूनों को वर्गीकृत करता है।
- एक उद्योग-योजना जैसे कि अनंत प्रक्षेप्य स्थान और औपचारिक योजना एक स्टैक है।
- ज्यामितीय लैंगलैंड्स फलन में श्टुका के मोडुली स्टैक का उपयोग किया जाता है।
ज्यामितीय स्टैक
भारित अनुमानित स्टैक
भारित प्रक्षेपण स्थान के निर्माण में की भागफल विविधता -फलन द्वारा सम्मिलित हैं, विशेष रूप से फलन एक टपल भेजती है
और इस फलन का अंश भारित अनुमानित स्पेस देता है, चूँकि इसके अतिरिक्त इसे स्टैक भागफल, भारित प्रक्षेपात्मक स्टैक के रूप में लिया जा सकता है[4] एक लाइन बंडल में भारित बहुपद के लुप्त स्थान को लेना एक स्टैकी
भारित प्रक्षेप्य विविधता देता है।
स्टैकी कर्व्स
स्टैकी कर्व्स या ऑर्बिकर्व्स सामान्य बिंदुओं पर आवरण के मोनोड्रोमी समूह द्वारा कर्व्स के आकारिकी के स्टैक भागफल को लेकर निर्मित किया जा सकता है। उदाहरण के लिए, एक प्रक्षेपी आकारिकी जो सामान्य रूप से एटेल होता है द्वारा डोमेन का स्टैक भागफल एक स्टैकी बिंदु के साथ जिसमें एकता की पांचवें क्रम पर -सारणी, ऐसा इसलिए है क्योंकि ये वे बिंदु हैं जहां आवरण शाखा करता है।[citation needed]
नॉन-एफ़िन स्टैक
नॉन-एफ़िन स्टैक का उदाहरण दो स्टैकी मूल के साथ अर्ध-रेखा द्वारा दिया गया है। इसे दो समावेशन के कोलिमिट के रूप में बनाया जा सकता है
बीजगणितीय स्टैक पर अर्ध-संसक्त स्टैक
बीजगणितीय स्टैक पर एक योजना के ऊपर अर्ध-संसक्त स्टैकों की श्रेणी के समान अर्ध-संसक्त स्टैकों की श्रेणी का निर्माण कर सकते हैं।
एक अर्ध-संसक्त शीफ सामान्यतौर पर वह होता है जो स्थानीय रूप से वृत्त के ऊपर एक मॉड्यूल के शीफ की तरह दिखता है। पहली समस्या यह तय करना है कि स्थानीय रूप से क्या मतलब है: इसमें ग्रोथेंडिक सांस्थिति का विकल्प सम्मिलित है और इसके लिए कई संभावित विकल्प हैं, जिनमें से सभी में कुछ समस्याएं हैं और इनमें से कोई भी पूरी तरह से संतोषजनक नहीं है। ग्रोथेंडिक सांस्थिति पर्याप्त रूप से मजबूत होनी चाहिए ताकि स्टैक इस सांस्थिति में स्थानीय रूप से बंध जाए: योजनाएं स्थानीय रूप से ज़ारिस्की सांस्थिति में बंधी हैं इसलिए यह योजनाओं के लिए एक उचित विकल्प है जैसा कि सेरे ने खोजा, बीजगणितीय स्पेस और डेलिग्ने-ममफोर्ड स्टैक स्थानीय रूप से ईटेल सांस्थिति इसलिए सामान्यतौर पर इनके लिए ईटेल सांस्थिति का उपयोग किया जाता है, जबकि बीजगणितीय स्टैक निर्विघ्ऩ सांस्थिति में स्थानीय रूप से परिशोधित होते हैं इसलिए इस स्थिति में निर्विघ्ऩ सांस्थिति का उपयोग किया जा सकता है। सामान्य बीजगणितीय स्टैक के लिए ईटेल सांस्थिति में पर्याप्त विवृत संग्रह नहीं होते हैं, उदाहरण के लिए, यदि G सुचारू रूप से जुड़ा हुआ समूह है तो वर्गीकरण स्टैक BG का एकमात्र ईटेल आवरण BG की प्रतियों के संघ हैं, जो अर्ध-संसक्त शेव्स का सही सिद्धांत देने के लिए पर्याप्त नहीं हैं।
बीजगणितीय स्टैक के लिए निर्विघ्ऩ सांस्थिति का उपयोग करने के बजाय ज्यादातर संशोधन का उपयोग किया जाता है जिसे लिस-एट सांस्थिति जाता है (लिसे-एटाले के लिए संक्षिप्त: लिस फ्रेंच शब्द निर्विघ्ऩ के लिए है) जिसमें निर्विघ्ऩ सांस्थिति के समान विवृत संग्रह हैं लेकिन निर्विघ्ऩ नक्शों के बजाय ईटेल द्वारा विवृत आवरण दिए गए हैं। यह सामान्यतौर पर अर्ध-संसक्त स्टैकों के समकक्ष श्रेणी का नेतृत्व करता है, लेकिन इसका उपयोग करना आसान है उदाहरण के लिए बीजगणितीय स्पेस पर ईटेल सांस्थिति के साथ तुलना करना आसान है। लिस-एट सांस्थिति में एक सूक्ष्म तकनीकी समस्या है: स्टैक के बीच आकारिकी सामान्य रूप से संबंधित टोपोई के बीच आकारिकी नहीं देती है। (समस्या यह है कि जब कोई एक टोपोई के ज्यामितीय आकारिकी के लिए आवश्यक रूप से आसन्न फंक्शंस f *, f * की एक जोड़ी का निर्माण कर सकता है, तो फ़ंक्टर f* सामान्य रूप से उचित नहीं है। यह समस्या प्रकाशित पत्रों और पुस्तकों में कुछ त्रुटियों के कारण कुख्यात है।[5]) इसका मतलब यह है कि स्टैक्स के आकारिकी के अंतर्गत अर्ध-संसक्त शीफ के पुलबैक का निर्माण करने के लिए कुछ अतिरिक्त प्रयास की आवश्यकता होती है।
उत्कृष्ट सांस्थिति का उपयोग करना भी संभव है। अधिकांश उचित "पर्याप्त रूप से बड़े" ग्रोथेंडिक सांस्थिति अर्ध-संसक्त स्टैकों की समतुल्य श्रेणियों का नेतृत्व करते हैं, लेकिन एक सांस्थिति जितनी बड़ी होती है उसे संभालना उतना ही कठिन होता है, इसलिए सामान्यतौर पर छोटे सांस्थिति का उपयोग करना पसंद करते हैं जब तक कि उनके पास पर्याप्त विवृत संग्रह हों। उदाहरण के लिए, बड़ी एफपीपीएफ सांस्थिति लिस-एट सांस्थिति के रूप में अनिवार्य रूप से अर्ध-संसक्त स्टैकों की एक ही श्रेणी की ओर ले जाती है, लेकिन इसमें एक सूक्ष्म समस्या है: इस सांस्थिति में अर्ध-संसक्त स्टैकों का OX मॉड्यूल में प्राकृतिक संपुटन उचित नहीं है।
अन्य प्रकार के स्टैक
अलग-अलग स्टैक और संस्थानिक स्टैक बीजगणितीय स्टैक के समान परिभाषित होते हैं, सिवाय इसके कि एफ़िन योजनाओं की अंतर्निहित श्रेणी को निर्विघ्ऩ मैनिफोल्ड्स या संस्थानिक स्पेस की श्रेणी से बदल दिया जाता है।
सामान्यतौर पर कोई भी n-शेफ या n-1 स्टैक की धारणा को परिभाषित कर सकता है, जो सामान्य तौर पर n-1 श्रेणियों में मान लेने वाला एक प्रकार का शीफ है। ऐसा करने के कई असमान तरीके हैं, 1-शेव और 2-शेव स्टैक के समान हैं, उन्हें उच्च स्टैक कहा जाता है।
एक बहुत ही समान और समान विस्तार गैर-असतत वस्तुओं पर स्टैक सिद्धांत को विकसित करना है (यानी बीजगणितीय सांस्थिति में एक स्थान वास्तव में वर्णक्रम (सांस्थिति) है)। परिणामी स्टैक वाली वस्तुओं को व्युत्पन्न स्टैक (या वर्णक्रमीय स्टैक) कहा जाता है। जैकब लुरी की निर्माणाधीन पुस्तक 'वर्णक्रम संबंधी बीजगणितीय ज्यामिति' एक सामान्यीकरण का अध्ययन करती है जिसे वह वर्णक्रम संबंधी डेलिग्ने-ममफोर्ड स्टैक कहते है, परिभाषा के अनुसार यह एक चक्राकार ∞-टोपोस है जो ईटेल-स्थानीय रूप से E ∞-वक्र का ईटेल वर्णक्रम है, यह धारणा कम से कम विशेषता शून्य में एक व्युत्पन्न योजना की सदस्यता लेती है।)
संग्रह -सैद्धांतिक समस्याएं
स्टैक के सिद्धांत की सामान्य नींव के साथ कुछ साधारण संग्रह सैद्धांतिक समस्याएं हैं क्योंकि स्टैक को ज्यादातर संग्रह की श्रेणी के लिए गुणक के रूप में परिभाषित किया जाता हैं। इस समस्या को सुलझाने के कई तरीके हैं:
- कोई भी ग्रोथेंडिक यूनिवर्स के साथ काम कर सकता है: एक स्टैक तब कुछ निश्चित ग्रोथेंडिक यूनिवर्स की कक्षाओं के बीच एक फंक्टर होता है इसलिए ये कक्षाएं और स्टैक एक बड़े ग्रोथेंडिक यूनिवर्स में संग्रहित होते हैं। इस दृष्टिकोण का दोष यह है कि किसी को पर्याप्त ग्रोथेंडिक यूनिवर्स के अस्तित्व को मान लेना चाहिए, जो अनिवार्य रूप से एक बड़ा कार्डिनल स्वयंसिद्ध है।
- स्टैक को पर्याप्त रूप से बड़ी श्रेणी के संग्रह के लिए स्टैक को फ़ंक्टर के रूप में परिभाषित किया जा सकता है और विभिन्न संग्रहों की श्रेणीयों को सावधानीपूर्वक पता कर सकते हैं जो एक उपयोग करता है। इसके साथ समस्या यह है कि इसमें कुछ अतिरिक्त अरोचक पुस्तपालक पद्धति सम्मिलित है।
- कोई संग्रह सिद्धांत से प्रतिबिंब सिद्धांतों का उपयोग कर सकता है जिसमें कहा गया है कि ZFC के स्वयंसिद्धों को किसी भी परिमित टुकड़े के संग्रह मॉडल को यह दिखाने के लिए मिल सकता है कि कोई स्वचालित रूप से ऐसे संग्रहों को ढूंढ सकता है जो सभी संग्रहों के यूनिवर्स के लिए पर्याप्त रूप से निकट सन्निकटन हैं।
- कोई समस्या को आसानी से अनदेखा किया जा सकता है, यह दृष्टिकोण कई लेखकों द्वारा दिया गया है।
यह भी देखें
- बीजगणितीय स्टैक
- स्टैक का चाउ समूह
- डेलिग्ने-ममफोर्ड स्टैक
- बीजगणितीय ज्यामिति की शब्दावली
- स्टैक का पीछा करना
- बीजगणितीय स्टैक का भागफल स्थान
- मॉड्यूलर रूपों की रिंग
- सिंपल प्रीशेफ
- स्टैक परियोजना
- टोरिक स्टैक
टिप्पणियाँ
- ↑ Alper, Jarod; Hall, Jack; Rydh, David (2020). "A Luna étale slice theorem for algebraic stacks". Annals of Mathematics. 191 (3): 675–738. doi:10.4007/annals.2020.191.3.1. hdl:10150/641331. ISSN 0003-486X. JSTOR 10.4007/annals.2020.191.3.1. S2CID 3225788.
- ↑ Heinloth, Jochen (January 29, 2009), "Lectures on the Moduli Stack of Vector Bundles on a Curve", Affine Flag Manifolds and Principal Bundles, Basel: Springer Basel (published 2010), pp. 123–153, doi:10.1007/978-3-0346-0288-4_4, ISBN 978-3-0346-0287-7
- ↑ 3.0 3.1 Massarenti, Alez. "स्थिर मानचित्रों के मोडुली, ग्रोमोव-विटन इनवेरिएंट्स, और क्वांटम कोहोलॉजी" (PDF). pp. 1–4. Archived (PDF) from the original on 2018-01-23.
- ↑ Fantechi, Barbara; Mann, Etienne; Nironi, Fabio (2009-09-22). "चिकना टोरिक डीएम ढेर". arXiv:0708.1254 [math.AG].
- ↑ See, for example, Olsson, Martin (2007). "Sheaves on Artin stacks". Journal für die reine und angewandte Mathematik. 2007 (603): 55–112. doi:10.1515/CRELLE.2007.012. MR 2312554. S2CID 15445962.
संदर्भ
शैक्षणिक
- Behrend, Kai; Conrad, Brian; Edidin, Dan; Fulton, William; Fantechi, Barbara; Göttsche, Lothar; Kresch, Andrew (2006), Algebraic stacks, archived from the original on 2008-05-05
- Goméz, Tomás (1999), Algebraic stacks, arXiv:math/9911199, Bibcode:1999math.....11199G एक व्याख्यात्मक लेख है जो उदाहरणों के साथ स्टैक की मूल बातों का वर्णन करता है।
- Edidin, Dan (2003), "What is... a Stack?" (PDF), Notices of the AMS, 50 (4): 458–459
साहित्य की मार्गदर्शिका
- https://maths-people.anu.edu.au/~alperj/papers/stacks-guide.pdf
- http://stacks.math.columbia.edu/tag/03B0
संदर्भ
- Artin, Michael (1974), "Versal deformations and algebraic stacks", Inventiones Mathematicae, 27 (3): 165–189, Bibcode:1974InMat..27..165A, doi:10.1007/BF01390174, ISSN 0020-9910, MR 0399094, S2CID 122887093
- Deligne, Pierre; Mumford, David (1969), "The irreducibility of the space of curves of given genus", Publications Mathématiques de l'IHÉS, 36 (36): 75–109, CiteSeerX 10.1.1.589.288, doi:10.1007/BF02684599, ISSN 1618-1913, MR 0262240, S2CID 16482150
- Fantechi, Barbara (2001), "Stacks for everybody" (PDF), European Congress of Mathematics Volume I, Progr. Math., vol. 201, Basel: Birkhäuser, pp. 349–359, ISBN 3-7643-6417-3, MR 1905329
- Giraud, Jean (1964), "Méthode de la descente", Société Mathématique de France. Bulletin. Supplément. Mémoire, 2: viii+150, MR 0190142
- Giraud, Jean (1966), Cohomologie non abélienne de degré 2, thesis, Paris
{{citation}}
: CS1 maint: location missing publisher (link) - Giraud, Jean (1971), Cohomologie non abélienne, Springer, ISBN 3-540-05307-7
- Gómez, Tomás L. (2001), "Algebraic stacks", Proceedings - Mathematical Sciences, 111 (1): 1–31, arXiv:math/9911199, doi:10.1007/BF02829538, MR 1818418, S2CID 373638
- Grothendieck, Alexander (1959). "Technique de descente et théorèmes d'existence en géométrie algébrique. I. Généralités. Descente par morphismes fidèlement plats". Séminaire Bourbaki. 5 (Exposé 190).
- Laumon, Gérard; Moret-Bailly, Laurent (2000), Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 39, Berlin, New York: Springer-Verlag, ISBN 978-3-540-65761-3, MR 1771927 Unfortunately this book uses the incorrect assertion that morphisms of algebraic stacks induce morphisms of lisse-étale topoi. Some of these errors were fixed by Olsson (2007).
- Laszlo, Yves; Olsson, Martin (2008), "The six operations for sheaves on Artin stacks. I. Finite coefficients", Institut des Hautes Études Scientifiques. Publications Mathématiques, 107 (1): 109–168, arXiv:math/0512097, doi:10.1007/s10240-008-0011-6, MR 2434692, S2CID 371801
- Mumford, David (1965), "Picard groups of moduli problems", in Schilling, O. F. G. (ed.), Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963), New York: Harper & Row, pp. 33–81, MR 0201443
- Olsson, Martin Christian (2007), Geraschenko, Anton (ed.), Course notes for Math 274: Stacks (PDF)
- Olsson, Martin (2016), Algebraic spaces and stacks, Colloquium Publications, vol. 62, American Mathematical Society, ISBN 978-1470427986
- Vistoli, Angelo (2005), "Grothendieck topologies, fibered categories and descent theory", Fundamental algebraic geometry, Math. Surveys Monogr., vol. 123, Providence, R.I.: Amer. Math. Soc., pp. 1–104, arXiv:math/0412512, Bibcode:2004math.....12512V, MR 2223406
अग्रिम पठन
- Morava, Jack (2012). "Theories of anything". arXiv:1202.0684 [math.CT].
बाहरी संबंध
- stack at the nLab
- descent at the nLab
- de Jong, Aise Johan, Stacks Project
- Fulton, William, What is a stack?, MSRI video lecture and notes
- Toën, Bertrand (2007), Cours de Master 2 : Champs algébriques (2006-2007)
- "Good introductory references on algebraic stacks?"