आरएनजी (बीजगणित): Difference between revisions

From Vigyanwiki
No edit summary
 
(23 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{short description|Algebraic ring without a multiplicative identity}}
{{short description|Algebraic ring without a multiplicative identity}}
{{Algebraic structures |Ring}}
{{Algebraic structures |Ring}}
गणित में, और अधिक विशेष रूप से [[सार बीजगणित]] में, एक आरएनजी (या गैर-इकाई वलय या [[छद्म अंगूठी|छद्म वलय]]) एक [[बीजगणितीय संरचना]] है जो एक [[अंगूठी (गणित)|वलय (गणित)]] के समान गुणों को संतुष्ट करती है, लेकिन एक [[गुणक पहचान]] के अस्तित्व को ग्रहण किए बिना। ''आरएनजी'' शब्द का मतलब यह सुझाव देना है कि यह i के बिना एक वलय है, यानी पहचान तत्व की आवश्यकता के बिना।{{sfn|Jacobson|1989}}{{rp|155-156}}
गणित में, और अधिक विशेष रूप से [[सार बीजगणित]] में, आरएनजी (या गैर-इकाई वलय या [[छद्म अंगूठी|कृत्रिम वलय]]) एक [[बीजगणितीय संरचना]] है जो [[गुणक पहचान|गुणनात्मक समरूपता]] के अस्तित्व को ग्रहण किए बिना [[अंगूठी (गणित)|वलय]] के समान गुणों को संतुष्ट करती है। ''कृत्रिम वलय'' शब्द का अर्थ ये संकेत देना है कि यह i, यानी [[गुणक पहचान|समरूप]] तत्व की आवश्यकता के बिना एक वलय है।{{sfn|Jacobson|1989}}{{rp|155-156}}


समुदाय में इस बात पर कोई आम सहमति नहीं है कि गुणक पहचान का अस्तित्व [[रिंग स्वयंसिद्ध|वलय स्वयंसिद्धो]] में से एक होना चाहिए (देखें {{slink|Ring (mathematics)|History}}). शब्द rng इस अस्पष्टता को कम करने के लिए गढ़ा गया था जब लोग गुणक पहचान के स्वयंसिद्ध के बिना एक वलय को स्पष्ट रूप से संदर्भित करना चाहते हैं।
समुदाय में इस बात पर कोई सामान्य सहमति नहीं है कि [[गुणक पहचान|गुणनात्मक समरूपता]] का अस्तित्व [[रिंग स्वयंसिद्ध|वलय सिद्धांतो]] में से एक होना चाहिए। कृत्रिम वलय शब्द का निर्माण इस अस्पष्टता को कम करने के लिए किया गया था जब लोग [[गुणक पहचान|गुणनात्मक समरूपता]] के सिद्धांत के बिना एक वलय को स्पष्ट रूप से संदर्भित करना चाहते थे।


[[गणितीय विश्लेषण]] में विचार किए जाने वाले कार्यों के बीजगणित एकात्मक नहीं हैं, उदाहरण के लिए अनंत पर शून्य से कम होने वाले कार्यों का बीजगणित, विशेष रूप से कुछ (गैर-[[ कॉम्पैक्ट जगह ]]) स्थान पर [[कॉम्पैक्ट समर्थन]] वाले।
बीजगणित में विचार किए जाने वाले [[गणितीय विश्लेषण]] कार्य एकात्मक नहीं हैं, उदाहरण के लिए अनंत पर शून्य से घटते कार्यों का बीजगणित, विशेष रूप से कुछ स्थान पर संक्षिप्त समर्थन के साथ।


== परिभाषा ==
== परिभाषा ==


औपचारिक रूप से, एक आरएनजी दो [[द्विआधारी संचालन]] के साथ एक [[सेट (गणित)]] ''आर'' है {{nowrap|(+, ·)}} को जोड़ और गुणा कहते हैं
fऔपचारिक रूप से, एक कृत्रिम वलय दो [[द्विआधारी संचालन]] {{nowrap|(+, ·)}} के साथ एक [[सेट (गणित)|समुच्चय (गणित)]] ''R'' है जिसे जोड़ और गुणा कहा जाता हैं।
* (''R'', +) एक [[एबेलियन समूह]] है,
* (''R'', +) एक [[एबेलियन समूह|एबेलियन]] [[सेट (गणित)|समुच्चय]] है,
* (''R'', ·) एक अर्धसमूह है,
* (''R'', ·) एक उपसमुच्चय है,
* योग पर गुणन वितरण नियम।
* योग पर गुणन वितरण नियम।


एक 'rng समाकारिता' एक फलन है {{nowrap|''f'': ''R'' → ''S''}} एक आरएनजी से दूसरे में ऐसा कि
'कृत्रिम वलय समरूपता' एक फलन {{nowrap|''f'': ''R'' → ''S''}} है जो एक कृत्रिम वलय से दूसरे कृत्रिम वलय में ऐसे है जैसे कि
*''f''(''x'' + ''y'') = ''f''(''x'') + ''f''(''y)''
*''f''(''x'' + ''y'') = ''f''(''x'') + ''f''(''y)''
*''f''(''x'' · ''y'') = ''f''(''x'') · ''f''(''y'')
*''f''(''x'' · ''y'') = ''f''(''x'') · ''f''(''y'')
** ''f''(''x'' · ''y'') = ''f''(''x'') · ''f''(''y'')
R में सभी x और y के लिए।
R में सभी x और y के लिए।


यदि R और S वलय हैं, तो एक वलय समाकारिता है {{nowrap|''R'' → ''S''}} एक rng समरूपता के समान है {{nowrap|''R'' → ''S''}} जो 1 से 1 को आलेखन करता है।
यदि R और S वलय हैं, तो वलय समाकारिता {{nowrap|''R'' → ''S''}} एक कृत्रिम वलय समरूपता {{nowrap|''R'' → ''S''}} के समान है जो 1 से 1 को आलेखन करता है।


== उदाहरण ==
== उदाहरण ==


सभी वलय वलय हैं. एक वलय का एक सरल उदाहरण जो कि वलय नहीं है, पूर्णांकों के साधारण जोड़ और गुणन के साथ [[सम संख्या]] द्वारा दिया जाता है। एक अन्य उदाहरण सभी 3-बाय-3 वास्तविक [[मैट्रिक्स (गणित)]] के सेट द्वारा दिया गया है जिसकी निचली पंक्ति शून्य है। ये दोनों उदाहरण सामान्य तथ्य के उदाहरण हैं कि प्रत्येक (एक या दो तरफा) आदर्श (वलय थ्योरी) एक वलय है।
सामान्यतया सभी वलय कृत्रिम वलय हैं। कृत्रिम वलय का एक सरल उदाहरण, पूर्णांकों के सामान्य जोड़ और गुणन के साथ [[सम संख्या]] द्वारा दिया जाता है, जो कि वलय नहीं है। एक अन्य उदाहरण सभी 3*3 वास्तविक [[मैट्रिक्स (गणित)]] के समुच्चय द्वारा दिया गया है जिसके नीचे की पंक्ति शून्य है। ये दोनों उदाहरण सामान्य तथ्य के उदाहरण हैं कि प्रत्येक (एक या दो तरफा) गुणावली एक कृत्रिम वलय है।


रंग अक्सर [[कार्यात्मक विश्लेषण]] में स्वाभाविक रूप से प्रकट होते हैं जब अनंत-[[आयाम (रैखिक बीजगणित)|आकार (रैखिक बीजगणित)]] वेक्टर रिक्त स्थान पर [[रैखिक ऑपरेटर]]ों पर विचार किया जाता है। उदाहरण के लिए किसी अनंत-आकारी सदिश समष्टि V को लें और सभी रैखिक संकारकों के समुच्चय पर विचार करें {{nowrap|''f'' : ''V'' → ''V''}} परिमित [[रैंक (रैखिक बीजगणित)]] के साथ (यानी {{nowrap|dim ''f''(''V'') < ∞}}). ऑपरेटरों के जोड़ और कार्यात्मक संरचना के साथ, यह एक आरएनजी है, लेकिन वलय नहीं है। एक अन्य उदाहरण सभी वास्तविक [[अनुक्रम]]ों का आरएनजी है जो घटक-वार संचालन के साथ अनुक्रम 0 की सीमा है।
कृत्रिम वलय अधिकतर [[कार्यात्मक विश्लेषण]] में जब अनंत-[[आयाम (रैखिक बीजगणित)|आकारीय]] सदिश स्थान पर [[रैखिक ऑपरेटर|रैखिक संचालको]] पर विचार किया जाता है तब स्वाभाविक रूप से प्रतीत होते हैं । उदाहरण के लिए किसी अनंत-[[आयाम (रैखिक बीजगणित)|आकारीय]] सदिश स्थान V को लें और सभी रैखिक [[रैखिक ऑपरेटर|संचालको]] के समुच्चय {{nowrap|''f'' : ''V'' → ''V''}} के साथ परिमित [[रैंक (रैखिक बीजगणित)|पंक्ति]] (यानी {{nowrap|dim ''f''(''V'') < ∞}}) पर विचार करें। संचालको के जोड़ और कार्यात्मक संरचना के साथ, यह एक कृत्रिम वलय है, लेकिन वलय नहीं है। एक अन्य उदाहरण सभी वास्तविक [[अनुक्रम|अनुक्रमों]] का कृत्रिम वलय है जो अंशबद्ध संचालको के साथ 0 में परिवर्तित हो जाते हैं।


साथ ही, वितरण के सिद्धांत में होने वाले कई [[परीक्षण समारोह]] रिक्त स्थान में फ़ंक्शन होते हैं।
साथ ही, वितरण के सिद्धांत में होने वाले [[परीक्षण समारोह|परीक्षण क्रियाएं]] रिक्त स्थान में अनंतता पर शून्य तक घटने वाले [[परीक्षण समारोह|क्रियाएं]] होते है, जैसे [[श्वार्ट्ज अंतरिक्ष|श्वार्ट्ज स्थान]]। इस प्रकार, [[परीक्षण समारोह|क्रियाएं]] हर जगह एक के बराबर है, जो ऐसी जगहों में सम्मिलित नहीं हो सकता है इसलिए बिंदुवार जोड़ और गुणन के लिए एकमात्र संभावित समरूप तत्व कृत्रिम वलय हो सकता है। विशेष रूप से, कुछ [[टोपोलॉजिकल स्पेस|स्थलाकृति स्थान]] पर परिभाषित सीमित स्थान के साथ वास्तविक-मान [[निरंतर कार्य|निरंतर क्रिया]], बिंदुवार जोड़ और गुणा के साथ, एक कृत्रिम वलय बनाते हैं; यह एक वलय नहीं है जब तक कि अंतर्निहित स्थान संक्षिप्त स्थान न हो।
 
अनंत पर शून्य से घटते हुए, जैसे उदा। [[श्वार्ट्ज अंतरिक्ष]]। इस प्रकार, फ़ंक्शन हर जगह एक के बराबर है, जो बिंदुवार गुणन के लिए एकमात्र संभावित पहचान तत्व होगा, ऐसी जगहों में मौजूद नहीं हो सकता है, जो इसलिए rngs (बिंदुवार जोड़ और गुणा के लिए) हैं। विशेष रूप से, कुछ [[टोपोलॉजिकल स्पेस]] पर परिभाषित कॉम्पैक्ट स्पेस सपोर्ट (गणित) के साथ वास्तविक-मूल्यवान [[निरंतर कार्य]], बिंदुवार जोड़ और गुणा के साथ, एक आरएनजी बनाते हैं; यह एक वलय नहीं है जब तक कि अंतर्निहित स्थान कॉम्पैक्ट स्पेस न हो।


=== उदाहरण: सम पूर्णांक ===
=== उदाहरण: सम पूर्णांक ===


सम पूर्णांकों का समुच्चय 2Z जोड़ और गुणन के तहत बंद है और इसकी एक योगात्मक पहचान है, 0, इसलिए यह एक rng है, लेकिन इसकी गुणक पहचान नहीं है, इसलिए यह वलय नहीं है।
सम पूर्णांकों का समुच्चय 2Z जोड़ और गुणन के अंतर्गत बंद है और इसकी एक योगात्मक समरूप 0 है, इसलिए यह एक कृत्रिम वलय है, लेकिन इसका गुणक समरूप नहीं है, इसलिए यह वलय नहीं है।


2Z में, केवल गुणक [[Idempotence]] 0 है, केवल [[nilpotent]] 0 है, और सामान्यीकृत व्युत्क्रम वाला एकमात्र तत्व 0 है।
2Z में, केवल गुणक [[Idempotence|निःशक्त]] 0 है, एकमात्र [[nilpotent|नगण्य]] 0 है, और सामान्यीकृत व्युत्क्रम वाला एकमात्र तत्व 0 है।


=== उदाहरण: परिमित पंचांग अनुक्रम ===
=== उदाहरण: परिमित पंचसंख्यक अनुक्रम ===
प्रत्यक्ष योग <math display="inline">\mathcal T = \bigoplus_{i=1}^\infty \mathbf{Z}/5 \mathbf{Z}</math> समन्वय-वार जोड़ और गुणन से सुसज्जित निम्नलिखित गुणों वाला एक आरएनजी है:
प्रत्यक्ष योग <math display="inline">\mathcal T = \bigoplus_{i=1}^\infty \mathbf{Z}/5 \mathbf{Z}</math> समन्वयबद्ध जोड़ और गुणन से सुसज्जित निम्नलिखित गुणों वाला एक कृत्रिम वलय है:
* इसके उदासीन तत्व बिना किसी ऊपरी सीमा के एक जाली बनाते हैं।
* इसके [[Idempotence|निःशक्त]] तत्व बिना किसी ऊपरी सीमा के एक जाली बनाते हैं।
* प्रत्येक तत्व x का एक सामान्यीकृत व्युत्क्रम होता है, अर्थात् एक तत्व y ऐसा होता है {{nowrap|1=''xyx'' = ''x''}} और {{nowrap|1=''yxy'' = ''y''}}.
* प्रत्येक तत्व x का एक सामान्यीकृत व्युत्क्रम होता है, अर्थात् एक तत्व y ऐसा होता है जैसे की {{nowrap|1=''xyx'' = ''x''}} और {{nowrap|1=''yxy'' = ''y''}}.
* के हर परिमित उपसमुच्चय के लिए <math>\mathcal T</math>, में एक बेवकूफ मौजूद है <math>\mathcal T</math> जो पूरे उपसमुच्चय के लिए एक पहचान के रूप में कार्य करता है: हर स्थिति में एक के साथ अनुक्रम जहां उपसमुच्चय में एक अनुक्रम में उस स्थिति में एक गैर-शून्य तत्व होता है, और हर दूसरी स्थिति में शून्य होता है।
* प्रत्येक परिमित उपसमुच्चय <math>\mathcal T</math> के लिए, <math>\mathcal T</math> में एक [[Idempotence|निःशक्त]] सम्मिलित होता है जो पूरे उपसमुच्चय के लिए एक समरूप के रूप में कार्य करता है: प्रत्येक स्थिति में एक के साथ जहां अनुक्रम के उपसमुच्चय में एक स्थिति में उस अनुक्रम में एक गैर-शून्य तत्व होता है, और प्रत्येक दूसरी स्थिति में शून्य होता है।


== गुण ==
== गुण ==


{{bulletedlist
{{bulletedlist
|Ideals, [[quotient ring]]s, and [[module (algebra)|modules]] can be defined for rngs in the same manner as for rings. 
|गुणावलियों, भागफल के वलय और प्रतिरूपण के वलय के समान ही कृत्रिम वलय के लिए परिभाषित किया जा सकता है।|हालाँकि, वलय के बजाय कृत्रिम वलय के साथ कार्य करना कुछ संबंधित परिभाषाओं को जटिल बनाता है। उदाहरण के लिए, एक वलय R में, एक तत्व f द्वारा उत्पन्न बांयी गुणावली ( f ) , जिसे f युक्त सबसे छोटे बाएँ गुणावली के रूप में परिभाषित किया गया है , केवल Rf है , लेकिन यदि R केवल एक कृत्रिम वलय है, तो Rf में f नहीं हो सकता है, इसलिए इसके बजाय
|Working with rngs instead of rings complicates some related definitions, however.  For example, in a ring ''R'', the left ideal (''f'') generated by an element ''f'', defined as the smallest left ideal containing ''f'', is simply ''Rf'', but if ''R'' is only a rng, then ''Rf'' might not contain ''f'', so instead
 
<math display="block">(f) = Rf + \mathbf{Z} f = \{ af+nf : a \in R ~\text{and}~ n\in \mathbf{Z} \},</math>
 
where ''nf'' must be interpreted using repeated addition/subtraction since ''n'' need not represent an element of ''R''.  Similarly, the left ideal generated by elements ''f''{{sub|1}}, ..., ''f''{{sub|''m''}} of a rng ''R'' is
 
<math display="block">(f_1,\ldots,f_m) = \{ a_1 f_1 + \cdots + a_m f_m + n_1 f_1 + \cdots n_m f_m : a_i \in R \;\mathrm{and}\; n_i\in \mathbf{Z} \},</math>  
<nowiki> (f)=Rf+ Zf = {af + nf : a R and n Z} </nowiki>
a formula that goes back to [[Emmy Noether]].<ref>{{harvtxt|Noether|1921}}, p.&nbsp;30, §1.2.</ref>  Similar complications arise in the definition of [[submodule]] generated by a set of elements of a module.
 
|Some theorems for rings are false for rngs.  For example, in a ring, every proper ideal is contained in a [[maximal ideal]], so a nonzero ring always has at least one maximal ideal.  Both these statements fail for rngs.
जहां nf को बार-बार जोड़ने/घटाने का उपयोग करके व्याख्या की जानी चाहिए क्योंकि n को R के तत्व का प्रतिनिधित्व करने की आवश्यकता नहीं है। इसी प्रकार, एक कृत्रिम वलय R के तत्वों f 1 , ..., f m द्वारा उत्पन्न बांयी गुणावली है
|A rng homomorphism {{nowrap|''f'' : ''R'' ''S''}} maps any [[idempotent element (ring theory)|idempotent element]] to an idempotent element.
 
|If {{nowrap|''f'' : ''R'' ''S''}} is a rng homomorphism from a ring to a rng, and the image of ''f'' contains a non-zero-divisor of ''S'', then ''S'' is a ring, and ''f'' is a ring homomorphism.
 
}}
 
<nowiki>(f1,....fm) = {a1 f1 + ...+ amfm + n1f1...nmfm : ai ∈ R and ni ∈ Z},</nowiki>
 
 
एक सूत्र जो एमी नोथेर तक जाता है। प्रतिरूपण के तत्वों के एक समुच्चय द्वारा उत्पन्न उपप्रतिरूपण की परिभाषा में इसी तरह की जटिलताएँ उत्पन्न होती हैं ।|वलय के लिए कुछ सिद्धांत कृत्रिम वलय के लिए असत्य हैं। उदाहरण के लिए, एक वलय में, प्रत्येक उचित गुणावली अधिकतम गुणावली में समाहित होता है , इसलिए एक वलय में हमेशा कम से कम एक अधिकतम गुणावली होता है। ये दोनों कथन कृत्रिम वलय के लिए विफल हैं।|एक कृत्रिम वलय समरूपता f : R → S किसी भी निःशक्त तत्व को एक निःशक्त तत्व में आलेख करता है।|यदि f : R → S वलय से वलय तक एक कृत्रिम वलय समरूपता है, और f की छवि में S का गैर-शून्य-भाजक है, तो S एक वलय है, और f एक वलय समरूपता है।}}


== एक पहचान तत्व (दोरोह विस्तार) के साथ ==
== एक समरूप  तत्व (दोरोह विस्तार) के साथ ==


प्रत्येक वलय R को एक पहचान तत्व से जोड़कर एक वलय R^ तक बढ़ाया जा सकता है। ऐसा करने का एक सामान्य तरीका यह है कि औपचारिक रूप से एक पहचान तत्व 1 को जोड़ा जाए और R^ में 1 के अभिन्न रैखिक संयोजनों और R के तत्वों को इस आधार के साथ शामिल किया जाए कि इसके गैर-अभिन्न अभिन्न गुणकों में से कोई भी संयोग नहीं करता है या R में समाहित नहीं है। , R^ के अवयव रूप के हैं
प्रत्येक वलय R को एक समरूप तत्व से जोड़कर वलय R^ तक बढ़ाया जा सकता है। ऐसा करने का एक सामान्य तरीका यह है कि औपचारिक रूप से एक समरूप तत्व 1 को जोड़ा जाए और R^ में 1 के अभिन्न रैखिक संयोजनों और R के तत्वों को इस आधार के साथ सम्मिलित किया जाए कि इसके गैर-अभिन्न गुणकों में से कोई भी संयोग नहीं करता है और R में समाहित नहीं है। इसलिए R^ के तत्त्व के रूप में हैं;
:''n'' · 1 + ''r''
:''n'' · 1 + ''r''
जहाँ n एक [[पूर्णांक]] है और {{nowrap|''r'' ∈ ''R''}}. गुणन को रैखिकता द्वारा परिभाषित किया गया है:
जहाँ n एक [[पूर्णांक]] है और {{nowrap|''r'' ∈ ''R''}} गुणन को रैखिकता द्वारा परिभाषित किया गया है:
:(''n''<sub>1</sub> + ''r''<sub>1</sub>) · (''n''<sub>2</sub> + ''r''<sub>2</sub>) = ''n''<sub>1</sub>''n''<sub>2</sub> + ''n''<sub>1</sub>''r''<sub>2</sub> + ''n''<sub>2</sub>''r''<sub>1</sub> + ''r''<sub>1</sub>''r''<sub>2</sub>.
:(''n''<sub>1</sub> + ''r''<sub>1</sub>) · (''n''<sub>2</sub> + ''r''<sub>2</sub>) = ''n''<sub>1</sub>''n''<sub>2</sub> + ''n''<sub>1</sub>''r''<sub>2</sub> + ''n''<sub>2</sub>''r''<sub>1</sub> + ''r''<sub>1</sub>''r''<sub>2</sub>.


अधिक औपचारिक रूप से, हम R^ को [[कार्तीय गुणन]]फल के रूप में ले सकते हैं {{nowrap|'''Z''' × ''R''}} और जोड़ और गुणा को परिभाषित करें
अधिक औपचारिक रूप से, हम R^ को कार्टेसियन [[कार्तीय गुणन|गुणन]]फल {{nowrap|'''Z''' × ''R''}} के रूप में ले सकते हैं और जोड़ और गुणा को परिभाषित करें
:(''n''<sub>1</sub> + ''r''<sub>1</sub>) · (''n''<sub>2</sub> + ''r''<sub>2</sub>) = ''n''<sub>1</sub>''n''<sub>2</sub> + ''n''<sub>1</sub>''r''<sub>2</sub> + ''n''<sub>2</sub>''r''<sub>1</sub> + ''r''<sub>1</sub>''r''<sub>2</sub>.
:(''n''<sub>1</sub> + ''r''<sub>1</sub>) · (''n''<sub>2</sub> + ''r''<sub>2</sub>) = ''n''<sub>1</sub>''n''<sub>2</sub> + ''n''<sub>1</sub>''r''<sub>2</sub> + ''n''<sub>2</sub>''r''<sub>1</sub> + ''r''<sub>1</sub>''r''<sub>2</sub>.
:(''n''<sub>1</sub>, ''r''<sub>1</sub>) · (''n''<sub>2</sub>, ''r''<sub>2</sub>) = (''n''<sub>1</sub>''n''<sub>2</sub>, ''n''<sub>1</sub>''r''<sub>2</sub> + ''n''<sub>2</sub>''r''<sub>1</sub> + ''r''<sub>1</sub>''r''<sub>2</sub>).
:(''n''<sub>1</sub>, ''r''<sub>1</sub>) · (''n''<sub>2</sub>, ''r''<sub>2</sub>) = (''n''<sub>1</sub>''n''<sub>2</sub>, ''n''<sub>1</sub>''r''<sub>2</sub> + ''n''<sub>2</sub>''r''<sub>1</sub> + ''r''<sub>1</sub>''r''<sub>2</sub>).
तब R^ की गुणात्मक तत्समक है {{nowrap|(1, 0)}}. एक प्राकृतिक आरएनजी समरूपता है {{nowrap|''j'' : ''R'' → ''R''^}} द्वारा परिभाषित {{nowrap|1=''j''(''r'') = (0, ''r'')}}. इस मानचित्र में निम्नलिखित [[सार्वभौमिक संपत्ति]] है:
तब R^ की गुणात्मक समरूपता {{nowrap|(1, 0)}} है। एक प्राकृतिक कृत्रिम वलय समरूपता {{nowrap|''j'' : ''R'' → ''R''^}} द्वारा परिभाषित {{nowrap|1=''j''(''r'') = (0, ''r'')}} है इस आलेखन में निम्नलिखित [[सार्वभौमिक संपत्ति|सार्वभौमिक गुण]] है।
: किसी भी वलय एस और किसी भी वलय समरूपता को देखते हुए {{nowrap|''f'' : ''R'' → ''S''}}, एक अद्वितीय वलय समरूपता मौजूद है {{nowrap|''g'' : ''R''^ → ''S''}} ऐसा है कि {{nowrap|1=''f'' = ''gj''}}.
मानचित्र जी द्वारा परिभाषित किया जा सकता है {{nowrap|1=''g''(''n'', ''r'') = ''n'' · 1<sub>''S''</sub> + ''f''(''r'')}}.


एक प्राकृतिक [[विशेषण]] वलय समरूपता है {{nowrap|''R''^ → '''Z'''}} जो भेजता है {{nowrap|(''n'', ''r'')}} से एन। इस समरूपता का कर्नेल (वलय थ्योरी) आर ^ में आर की छवि है। चूँकि j एकात्मक है, हम देखते हैं कि R एक (दो तरफा) आदर्श (वलय थ्योरी) के रूप में R^ में भागफल वलय R^/R आइसोमॉर्फिक से 'Z' के रूप में सन्निहित है। यह इस प्रकार है कि
किसी भी वलय ''S'' और किसी भी कृत्रिम वलय समरूपता {{nowrap|''f'' : ''R'' → ''S''}} को देखते हुए एक अद्वितीय वलय समरूपता {{nowrap|''g'' : ''R''^ → ''S''}} सम्मिलित है इस प्रकार {{nowrap|1=''f'' = ''gj''}}
: हर वलय किसी न किसी वलय में एक आदर्श है, और वलय का हर आदर्श एक वलय है।


ध्यान दें कि j कभी भी विशेषण नहीं है। इसलिए, भले ही R में पहले से ही एक पहचान तत्व हो, वलय R^ एक अलग पहचान के साथ एक बड़ा होगा। वलय R^ को अक्सर अमेरिकी गणितज्ञ जो ली दोरोह के नाम पर R का 'दोरोह एक्सटेंशन' कहा जाता है, जिन्होंने इसे सबसे पहले बनाया था।
आलेखन ''g'' द्वारा {{nowrap|1=''g''(''n'', ''r'') = ''n'' · 1<sub>''S''</sub> + ''f''(''r'')}} परिभाषित किया जा सकता है।


एक पहचान तत्व को एक आरएनजी से जोड़ने की प्रक्रिया को [[श्रेणी सिद्धांत]] की भाषा में तैयार किया जा सकता है। यदि हम सभी वलय और वलय होमोमोर्फिज्म की श्रेणी को 'वलय' से और सभी वलय और वलय होमोमोर्फिज्म की श्रेणी को 'Rng' से निरूपित करते हैं, तो 'वलय' 'Rng' की एक (नॉनफुल) [[उपश्रेणी]] है। ऊपर दिए गए R^ का निर्माण समावेशन फ़नकार के लिए एक बाएँ आसन्न को उत्पन्न करता है {{nowrap|''I'' : '''Ring''' '''Rng'''}}. ध्यान दें कि वलय, Rng की परावर्तक उपश्रेणी नहीं है क्योंकि समावेशन फ़ंक्टर पूर्ण नहीं है।
एक प्राकृतिक [[विशेषण]] वलय समरूपता {{nowrap|''R''^ → '''Z'''}} है जो ''n से'' {{nowrap|(''n'', ''r'')}} भेजता है। इस समरूपता का कर्नेल (वलय थ्योरी) R में R^ की छवि है। चूँकि j एकात्मक है, हम देखते हैं कि R एक (दो तरफा) गुणावली के रूप में R^ में भागफल वलय R^/R 'Z' से समरूपता के रूप में सन्निहित है। यह इस प्रकार है कि
: प्रत्येक वलय किसी न किसी वलय में एक गुणावली है, और वलय की प्रत्येक गुणावली एक वलय है।


== पहचान होने से कमजोर गुण ==
ध्यान दें कि j कभी भी विशेषण नहीं है। इसलिए, भले ही R में पहले से ही एक समरूप तत्व हो, वलय R^ एक अलग समरूपता के साथ बड़ा होता है। वलय R^ को अक्सर अमेरिकी गणितज्ञ जो ली दोरोह के नाम पर R का 'दोरोह विस्तार' कहा जाता है, जिन्होंने इसे सबसे पहले बनाया था।


साहित्य में ऐसे कई गुण माने गए हैं जो पहचान तत्व होने से कमजोर हैं, लेकिन इतने सामान्य नहीं हैं।
एक समरूप तत्व को एक कृत्रिम वलय से जोड़ने की प्रक्रिया को [[श्रेणी सिद्धांत]] की भाषा में तैयार किया जा सकता है। यदि हम सभी वलय और वलय समरूपता की श्रेणी को 'वलय' से और सभी कृत्रिम वलय और कृत्रिम वलय समरूपता की श्रेणी को 'कृत्रिम वलय' से निरूपित करते हैं, तो 'वलय' 'कृत्रिम वलय' की एक (नॉनफुल) [[उपश्रेणी]] है। ऊपर दिए गए R^ का निर्माण समावेशन क्रिया के लिए एक बाएँ आसन्न को उत्पन्न {{nowrap|''I'' : '''Ring''' → '''Rng'''}} करता है। ध्यान दें कि वलय, कृत्रिम वलय की परावर्तक उपश्रेणी नहीं है क्योंकि समावेशन क्रिया पूर्ण नहीं है।
उदाहरण के लिए:


* पर्याप्त स्थिरता के साथ वलय: एक rng R को पर्याप्त स्थिरता के साथ एक वलय कहा जाता है जब ऑर्थोगोनल द्वारा दिए गए R का एक सबसेट E मौजूद होता है (यानी {{nowrap|1=''ef'' = 0}} सभी के लिए {{nowrap|''e'' ≠ ''f''}} ई में) स्थिरताs (यानी। {{nowrap|1=''e''<sup>2</sup> = ''e''}} सभी के लिए ई में ई) ऐसा है कि {{nowrap|1=''R'' = {{big|⊕}}<sub>''e''∈''E''</sub> ''eR'' = {{big|⊕}}<sub>''e''∈''E''</sub> ''Re''}}.
== समरूप  होने से कमजोर गुण ==
* स्थानीय इकाइयों के साथ वलय: प्रत्येक परिमित सेट आर के मामले में एक वलय आर को स्थानीय इकाइयों के साथ एक वलय कहा जाता है<sub>1</sub>, आर<sub>2</sub>, ..., आर<sub>t</sub>आर में हम ई को आर में पा सकते हैं जैसे कि {{nowrap|1=''e''<sup>2</sup> = ''e''}} और {{nowrap|1=''er<sub>i</sub>'' = ''r<sub>i</sub>'' = ''r<sub>i</sub>e''}} हर मैं के लिए।
* s-unital वलय: प्रत्येक परिमित समुच्चय r के मामले में एक rng R को s-unital कहा जाता है<sub>1</sub>, आर<sub>2</sub>, ..., आर<sub>t</sub>R में हम R में s ऐसे खोज सकते हैं कि {{nowrap|1=''sr<sub>i</sub>'' = ''r<sub>i</sub>'' = ''r<sub>i</sub>s''}} हर मैं के लिए।
* दृढ़ वलय: एक rng R को दृढ़ कहा जाता है यदि विहित समाकारिता {{nowrap|''R'' ⊗<sub>''R''</sub> ''R'' → ''R''}} द्वारा दिए गए {{nowrap|''r'' ⊗ ''s'' ↦ ''rs''}} एक समरूपता है।
* इम्पोटेंट वलय्स: एक वलय आर को इम्पोटेंट (या एक आईएनजी) कहा जाता है यदि {{nowrap|1=''R''<sup>2</sup> = ''R''}}, अर्थात, R के प्रत्येक अवयव r के लिए हम अवयव r खोज सकते हैं<sub>i</sub>और एस<sub>i</sub>आर में ऐसा है कि <math display="inline">r = \sum_i r_i s_i</math>.


यह जाँचना कठिन नहीं है कि ये गुण पहचान तत्व होने की तुलना में कमजोर हैं और पिछले वाले की तुलना में कमजोर हैं।
साहित्य में ऐसे कई गुण माने गए हैं जो समरूप तत्व होने से कमजोर हैं, लेकिन इतने सामान्य नहीं हैं। उदाहरण के लिए:


* वलय पर्याप्त बेवकूफों के साथ वलय होती हैं, जिनका उपयोग किया जाता है {{nowrap|1=''E'' = {1}.}} एक वलय जिसमें पर्याप्त स्थिरताs हैं जिनकी कोई पहचान नहीं है, उदाहरण के लिए एक फ़ील्ड पर अनंत मेट्रिसेस की वलय है, जिसमें गैर-शून्य प्रविष्टियों की एक सीमित संख्या है। वे मेट्रिसेस जिनके मुख्य विकर्ण में सिर्फ 1 से अधिक एक तत्व है और 0 अन्यथा ऑर्थोगोनल स्थिरता हैं।
* पर्याप्त स्थिरता के साथ वलय: एक कृत्रिम वलय R को पर्याप्त स्थिरता के साथ एक वलय कहा जाता है जब समकोण द्वारा दिए गए R का एक उपसमुच्चय E (यानी {{nowrap|1=''ef'' = 0}} सभी के लिए E में {{nowrap|''e'' ''f''}} ) स्थिरता( यानी {{nowrap|1=''e''<sup>2</sup> = ''e''}} सभी के लिए ''E'' में e) के साथ सम्मिलित होता है। इस तरह {{nowrap|1=''R'' = {{big|⊕}}<sub>''e''∈''E''</sub> ''eR'' = {{big|⊕}}<sub>''e''∈''E''</sub> ''Re''}}.
* पर्याप्त स्थिरता के साथ वलय स्थानीय इकाइयों के साथ वलय् हैं जो परिभाषा को पूरा करने के लिए ऑर्थोगोनल स्थिरताs के परिमित रकम लेते हैं।
* स्थानीय इकाइयों के साथ वलय: प्रत्येक ''R में'' परिमित समुच्चय ''r''<sub>1</sub>, ''r''<sub>2</sub>, ..., ''r<sub>t</sub>'' की स्थितियों में एक कृत्रिम वलय ''R'' को स्थानीय इकाइयों के साथ एक वलय कहा जाता हैं। हम ''e'' को ''R''  में प्रत्येक ''i''  के लिए {{nowrap|1=''e''<sup>2</sup> = ''e''}} और {{nowrap|1=''er<sub>i</sub>'' = ''r<sub>i</sub>'' = ''r<sub>i</sub>e''}} में प्राप्त कर सकते है।
* स्थानीय इकाइयों के साथ वलय विशेष रूप से एस-यूनिटल हैं; एस-यूनिटल वलय्स फर्म हैं और फर्म वलय्स इम्पोटेंट हैं।
* s-अंकीय वलय: एक कृत्रिम वलय R को s-अंकीय कहा जाता है यदि प्रत्येक परिमित समुच्चय ''r''<sub>1</sub>, ''r''<sub>2</sub>, ..., ''r<sub>t</sub>'' i, ...  r की स्थितियों में हम s को R में प्रत्येक ''i''  के लिए {{nowrap|1=''sr<sub>i</sub>'' = ''r<sub>i</sub>'' = ''r<sub>i</sub>s''}}  में प्राप्त कर सकते है।
* दृढ़ वलय: एक कृत्रिम वलय R को दृढ़ कहा जाता है यदि विहित समाकारिता {{nowrap|''R'' ⊗<sub>''R''</sub> ''R'' → ''R''}} द्वारा दिए गए {{nowrap|''r'' ⊗ ''s'' ↦ ''rs''}} एक समरूपता है।
* स्थिर वलय: एक वलय R को स्थिर (या एक आईकृत्रिम वलय) कहा जाता है यदि {{nowrap|1=''R''<sup>2</sup> = ''R''}}, अर्थात, R के प्रत्येक तत्व r के लिए तत्व R में ''r<sub>i</sub>''  और ''s<sub>i</sub>''  <math display="inline">r = \sum_i r_i s_i</math>में प्राप्त कर सकते है।


== वर्ग शून्य का रंग ==
यह जाँचना कठिन नहीं है कि ये गुण समरूप तत्व होने की तुलना और पिछले वाले की तुलना में कमजोर हैं।


वर्ग शून्य का एक रंग 'R'' ऐसा है कि {{nowrap|1=''xy'' = 0}} R में सभी x और y के लिए।<ref>See Bourbaki, p.&nbsp;102, where it is called a pseudo-ring of square zero.  Some other authors use the term "zero ring" to refer to any rng of square zero; see e.g. {{harvtxt|Szele|1949}} and {{harvtxt|Kreinovich|1995}}.</ref>
* वलय पर्याप्त स्थिरता के साथ वलय होती हैं, जिनका उपयोग {{nowrap|1=''E'' = {1<nowiki>}</nowiki>}} में किया जाता है। एक वलय जिसमें पर्याप्त स्थिरता हैं जिनका कोई समरूप नहीं है, उदाहरण के लिए एक क्षेत्र पर अनंत मेट्रिसेस की वलय है, जिसमें गैर-शून्य प्रविष्टियों की एक सीमित संख्या है। वे मेट्रिसेस जिनके मुख्य विकर्ण में सिर्फ 1 पर एक से अधिक तत्व है और अन्यथा 0 समकोण स्थिरता हैं।
* पर्याप्त स्थिरता के साथ वलय स्थानीय इकाइयों के साथ वलय् हैं जो परिभाषा को पूरा करने के लिए समकोण स्थिरता के परिमित मान लेते हैं।
* स्थानीय इकाइयों के साथ वलय विशेष रूप से एस-अंकीय हैं; एस-अंकीय वलय दृढ़ हैं और दृढ़ वलय स्थिर हैं।


गुणन को परिभाषित करके किसी भी एबेलियन समूह को वर्ग शून्य का एक वलय बनाया जा सकता है ताकि {{nowrap|1=''xy'' = 0}} सभी x और y के लिए;<ref>Bourbaki, p.&nbsp;102.</ref> इस प्रकार प्रत्येक एबेलियन समूह किसी न किसी rng का योज्य समूह है।
== वर्ग शून्य का रंग ==


गुणात्मक पहचान के साथ वर्ग शून्य का एकमात्र वलय शून्य वलय {0} है।<ref>Bourbaki, p.&nbsp;102.</ref>
कृत्रिम वलय 'R वर्ग शून्य का एक कृत्रिम वलय है जिसमे R मे सभी x और y के लिए{{nowrap|1=''xy'' = 0}<ref>See Bourbaki, p.&nbsp;102, where it is called a pseudo-ring of square zero.  Some other authors use the term "zero ring" to refer to any rng of square zero; see e.g. {{harvtxt|Szele|1949}} and {{harvtxt|Kreinovich|1995}}.</ref>


वर्ग शून्य के एक आरएनजी का कोई योगात्मक [[उपसमूह]] एक आदर्श (वलय थ्योरी) है। इस प्रकार वर्ग शून्य का एक वलय साधारण वलय है यदि और केवल यदि इसका योगात्मक समूह एक साधारण एबेलियन समूह है, अर्थात, प्रधान क्रम का [[चक्रीय समूह]]।<ref>Zariski and Samuel, p.&nbsp;133.</ref>
गुणन को परिभाषित करके किसी भी एबेलियन समूह को वर्ग शून्य का एक वलय बनाया जा सकता है ताकि सभी x और y के लिए {{nowrap|1=''xy'' = 0}};<ref>Bourbaki, p.&nbsp;102.</ref> इस प्रकार प्रत्येक एबेलियन समूह किसी न किसी कृत्रिम वलय का योज्य समूह है।


गुणात्मक समरूप के साथ वर्ग शून्य का एकमात्र वलय शून्य वलय {0} है।<ref>Bourbaki, p.&nbsp;102.</ref>


वर्ग शून्य के एक कृत्रिम वलय का कोई योगात्मक [[उपसमूह]] गुणावली (वलय थ्योरी) है। इस प्रकार वर्ग शून्य का एक वलय साधारण वलय है यदि और केवल यदि इसका योगात्मक समूह एक साधारण एबेलियन समूह है, उदाहरण, प्रधान क्रम का [[चक्रीय समूह]]।<ref>Zariski and Samuel, p.&nbsp;133.</ref>


== यूनिटल होमोमोर्फिज्म ==
'''<big><br />यूनिटल होमोमोर्फिज्म</big>'''


दो इकाई बीजगणित A और B दिए गए हैं, एक बीजगणित [[समरूपता]]
बीजगणित में दो इकाई A और B दिए गए हैं, एक बीजगणित [[समरूपता]]


: एफ : बी
:''f'' : ''A'' ''B''


'एकात्मक' है यदि यह A के पहचान तत्व को B के पहचान तत्व से आलेखन करता है।
'एकात्मक' है यदि यह A के समरूप तत्व को B के समरूप तत्व से आलेखन करता है।


यदि [[क्षेत्र (गणित)]] K पर साहचर्य बीजगणित A एकात्मक नहीं है, तो एक पहचान तत्व को निम्नानुसार जोड़ा जा सकता है: {{nowrap|''A'' × ''K''}} अंतर्निहित K-वेक्टर स्थान के रूप में और गुणन को ∗ द्वारा परिभाषित करें
यदि [[क्षेत्र (गणित)]] K पर साहचर्य बीजगणित A एकात्मक नहीं है, तो एक समरूप तत्व को निम्नानुसार जोड़ा जा सकता है: {{nowrap|''A'' × ''K''}} अंतर्निहित K- सदिश स्थान के रूप में लें और गुणन को ∗ द्वारा परिभाषित करें


:(x, r) ∗ (y, s) = (xy + sx + ry, rs)
:(x, r) ∗ (y, s) = (xy + sx + ry, rs)


x, y in A और r, s in K के लिए। फिर ∗ पहचान तत्व के साथ एक साहचर्य संक्रिया है {{nowrap|(0, 1)}}. पुराना बीजगणित A नए में निहित है, और वास्तव में {{nowrap|1=''A'' × ''K''}} सार्वभौम निर्माण के अर्थ में A युक्त सबसे सामान्य इकाई बीजगणित है।
A में x, y और K में r, s के लिए। फिर ∗ समरूप तत्व के साथ एक साहचर्य संक्रिया {{nowrap|(0, 1)}} है। पुराना बीजगणित A नए में निहित है, और वास्तव में {{nowrap|1=''A'' × ''K''}} सार्वभौम निर्माण के अर्थ में A युक्त सबसे सामान्य इकाई बीजगणित है।


== यह भी देखें ==
== यह भी देखें ==
* [[मोटी हो जाओ]]
* [[उपवलय|मोटी हो जाओ]]


==टिप्पणियाँ==
==टिप्पणियाँ==
Line 231: Line 231:
}}
}}


{{DEFAULTSORT:Rng (Algebra)}}[[Category: रिंग थ्योरी]] [[Category: बीजगणितीय संरचनाएं]] [[Category: अल्जेब्रास]]
{{DEFAULTSORT:Rng (Algebra)}}  


[[he:חוג (מבנה אלגברי)#איבר יחידה]]
[[he:חוג (מבנה אלגברי)#איבר יחידה]]


 
[[Category:CS1 maint|Rng (Algebra)]]
 
[[Category:Created On 23/05/2023|Rng (Algebra)]]
[[Category: Machine Translated Page]]
[[Category:Lua-based templates|Rng (Algebra)]]
[[Category:Created On 23/05/2023]]
[[Category:Machine Translated Page|Rng (Algebra)]]
[[Category:Pages with script errors|Rng (Algebra)]]
[[Category:Templates Translated in Hindi|Rng (Algebra)]]
[[Category:Templates Vigyan Ready|Rng (Algebra)]]
[[Category:Templates that add a tracking category|Rng (Algebra)]]
[[Category:Templates that generate short descriptions|Rng (Algebra)]]
[[Category:Templates using TemplateData|Rng (Algebra)]]
[[Category:अल्जेब्रास|Rng (Algebra)]]
[[Category:बीजगणितीय संरचनाएं|Rng (Algebra)]]
[[Category:रिंग थ्योरी|Rng (Algebra)]]

Latest revision as of 14:25, 6 June 2023

गणित में, और अधिक विशेष रूप से सार बीजगणित में, आरएनजी (या गैर-इकाई वलय या कृत्रिम वलय) एक बीजगणितीय संरचना है जो गुणनात्मक समरूपता के अस्तित्व को ग्रहण किए बिना वलय के समान गुणों को संतुष्ट करती है। कृत्रिम वलय शब्द का अर्थ ये संकेत देना है कि यह i, यानी समरूप तत्व की आवश्यकता के बिना एक वलय है।[1]: 155–156 

समुदाय में इस बात पर कोई सामान्य सहमति नहीं है कि गुणनात्मक समरूपता का अस्तित्व वलय सिद्धांतो में से एक होना चाहिए। कृत्रिम वलय शब्द का निर्माण इस अस्पष्टता को कम करने के लिए किया गया था जब लोग गुणनात्मक समरूपता के सिद्धांत के बिना एक वलय को स्पष्ट रूप से संदर्भित करना चाहते थे।

बीजगणित में विचार किए जाने वाले गणितीय विश्लेषण कार्य एकात्मक नहीं हैं, उदाहरण के लिए अनंत पर शून्य से घटते कार्यों का बीजगणित, विशेष रूप से कुछ स्थान पर संक्षिप्त समर्थन के साथ।

परिभाषा

fऔपचारिक रूप से, एक कृत्रिम वलय दो द्विआधारी संचालन (+, ·) के साथ एक समुच्चय (गणित) R है जिसे जोड़ और गुणा कहा जाता हैं।

'कृत्रिम वलय समरूपता' एक फलन f: RS है जो एक कृत्रिम वलय से दूसरे कृत्रिम वलय में ऐसे है जैसे कि

  • f(x + y) = f(x) + f(y)
  • f(x · y) = f(x) · f(y)

R में सभी x और y के लिए।

यदि R और S वलय हैं, तो वलय समाकारिता RS एक कृत्रिम वलय समरूपता RS के समान है जो 1 से 1 को आलेखन करता है।

उदाहरण

सामान्यतया सभी वलय कृत्रिम वलय हैं। कृत्रिम वलय का एक सरल उदाहरण, पूर्णांकों के सामान्य जोड़ और गुणन के साथ सम संख्या द्वारा दिया जाता है, जो कि वलय नहीं है। एक अन्य उदाहरण सभी 3*3 वास्तविक मैट्रिक्स (गणित) के समुच्चय द्वारा दिया गया है जिसके नीचे की पंक्ति शून्य है। ये दोनों उदाहरण सामान्य तथ्य के उदाहरण हैं कि प्रत्येक (एक या दो तरफा) गुणावली एक कृत्रिम वलय है।

कृत्रिम वलय अधिकतर कार्यात्मक विश्लेषण में जब अनंत-आकारीय सदिश स्थान पर रैखिक संचालको पर विचार किया जाता है तब स्वाभाविक रूप से प्रतीत होते हैं । उदाहरण के लिए किसी अनंत-आकारीय सदिश स्थान V को लें और सभी रैखिक संचालको के समुच्चय f : VV के साथ परिमित पंक्ति (यानी dim f(V) < ∞) पर विचार करें। संचालको के जोड़ और कार्यात्मक संरचना के साथ, यह एक कृत्रिम वलय है, लेकिन वलय नहीं है। एक अन्य उदाहरण सभी वास्तविक अनुक्रमों का कृत्रिम वलय है जो अंशबद्ध संचालको के साथ 0 में परिवर्तित हो जाते हैं।

साथ ही, वितरण के सिद्धांत में होने वाले परीक्षण क्रियाएं रिक्त स्थान में अनंतता पर शून्य तक घटने वाले क्रियाएं होते है, जैसे श्वार्ट्ज स्थान। इस प्रकार, क्रियाएं हर जगह एक के बराबर है, जो ऐसी जगहों में सम्मिलित नहीं हो सकता है इसलिए बिंदुवार जोड़ और गुणन के लिए एकमात्र संभावित समरूप तत्व कृत्रिम वलय हो सकता है। विशेष रूप से, कुछ स्थलाकृति स्थान पर परिभाषित सीमित स्थान के साथ वास्तविक-मान निरंतर क्रिया, बिंदुवार जोड़ और गुणा के साथ, एक कृत्रिम वलय बनाते हैं; यह एक वलय नहीं है जब तक कि अंतर्निहित स्थान संक्षिप्त स्थान न हो।

उदाहरण: सम पूर्णांक

सम पूर्णांकों का समुच्चय 2Z जोड़ और गुणन के अंतर्गत बंद है और इसकी एक योगात्मक समरूप 0 है, इसलिए यह एक कृत्रिम वलय है, लेकिन इसका गुणक समरूप नहीं है, इसलिए यह वलय नहीं है।

2Z में, केवल गुणक निःशक्त 0 है, एकमात्र नगण्य 0 है, और सामान्यीकृत व्युत्क्रम वाला एकमात्र तत्व 0 है।

उदाहरण: परिमित पंचसंख्यक अनुक्रम

प्रत्यक्ष योग समन्वयबद्ध जोड़ और गुणन से सुसज्जित निम्नलिखित गुणों वाला एक कृत्रिम वलय है:

  • इसके निःशक्त तत्व बिना किसी ऊपरी सीमा के एक जाली बनाते हैं।
  • प्रत्येक तत्व x का एक सामान्यीकृत व्युत्क्रम होता है, अर्थात् एक तत्व y ऐसा होता है जैसे की xyx = x और yxy = y.
  • प्रत्येक परिमित उपसमुच्चय के लिए, में एक निःशक्त सम्मिलित होता है जो पूरे उपसमुच्चय के लिए एक समरूप के रूप में कार्य करता है: प्रत्येक स्थिति में एक के साथ जहां अनुक्रम के उपसमुच्चय में एक स्थिति में उस अनुक्रम में एक गैर-शून्य तत्व होता है, और प्रत्येक दूसरी स्थिति में शून्य होता है।

गुण

  • गुणावलियों, भागफल के वलय और प्रतिरूपण के वलय के समान ही कृत्रिम वलय के लिए परिभाषित किया जा सकता है।
  • हालाँकि, वलय के बजाय कृत्रिम वलय के साथ कार्य करना कुछ संबंधित परिभाषाओं को जटिल बनाता है। उदाहरण के लिए, एक वलय R में, एक तत्व f द्वारा उत्पन्न बांयी गुणावली ( f ) , जिसे f युक्त सबसे छोटे बाएँ गुणावली के रूप में परिभाषित किया गया है , केवल Rf है , लेकिन यदि R केवल एक कृत्रिम वलय है, तो Rf में f नहीं हो सकता है, इसलिए इसके बजाय


    (f)=Rf+ Zf = {af + nf : a ∈ R and n ∈ Z}

    जहां nf को बार-बार जोड़ने/घटाने का उपयोग करके व्याख्या की जानी चाहिए क्योंकि n को R के तत्व का प्रतिनिधित्व करने की आवश्यकता नहीं है। इसी प्रकार, एक कृत्रिम वलय R के तत्वों f 1 , ..., f m द्वारा उत्पन्न बांयी गुणावली है


    (f1,....fm) = {a1 f1 + ...+ amfm + n1f1...nmfm : ai ∈ R and ni ∈ Z},


    एक सूत्र जो एमी नोथेर तक जाता है। प्रतिरूपण के तत्वों के एक समुच्चय द्वारा उत्पन्न उपप्रतिरूपण की परिभाषा में इसी तरह की जटिलताएँ उत्पन्न होती हैं ।
  • वलय के लिए कुछ सिद्धांत कृत्रिम वलय के लिए असत्य हैं। उदाहरण के लिए, एक वलय में, प्रत्येक उचित गुणावली अधिकतम गुणावली में समाहित होता है , इसलिए एक वलय में हमेशा कम से कम एक अधिकतम गुणावली होता है। ये दोनों कथन कृत्रिम वलय के लिए विफल हैं।
  • एक कृत्रिम वलय समरूपता f  : R → S किसी भी निःशक्त तत्व को एक निःशक्त तत्व में आलेख करता है।
  • यदि f  : R → S वलय से वलय तक एक कृत्रिम वलय समरूपता है, और f की छवि में S का गैर-शून्य-भाजक है, तो S एक वलय है, और f एक वलय समरूपता है।

एक समरूप तत्व (दोरोह विस्तार) के साथ

प्रत्येक वलय R को एक समरूप तत्व से जोड़कर वलय R^ तक बढ़ाया जा सकता है। ऐसा करने का एक सामान्य तरीका यह है कि औपचारिक रूप से एक समरूप तत्व 1 को जोड़ा जाए और R^ में 1 के अभिन्न रैखिक संयोजनों और R के तत्वों को इस आधार के साथ सम्मिलित किया जाए कि इसके गैर-अभिन्न गुणकों में से कोई भी संयोग नहीं करता है और R में समाहित नहीं है। इसलिए R^ के तत्त्व के रूप में हैं;

n · 1 + r

जहाँ n एक पूर्णांक है और rR गुणन को रैखिकता द्वारा परिभाषित किया गया है:

(n1 + r1) · (n2 + r2) = n1n2 + n1r2 + n2r1 + r1r2.

अधिक औपचारिक रूप से, हम R^ को कार्टेसियन गुणनफल Z × R के रूप में ले सकते हैं और जोड़ और गुणा को परिभाषित करें

(n1 + r1) · (n2 + r2) = n1n2 + n1r2 + n2r1 + r1r2.
(n1, r1) · (n2, r2) = (n1n2, n1r2 + n2r1 + r1r2).

तब R^ की गुणात्मक समरूपता (1, 0) है। एक प्राकृतिक कृत्रिम वलय समरूपता j : RR^ द्वारा परिभाषित j(r) = (0, r) है इस आलेखन में निम्नलिखित सार्वभौमिक गुण है।

किसी भी वलय S और किसी भी कृत्रिम वलय समरूपता f : RS को देखते हुए एक अद्वितीय वलय समरूपता g : R^ → S सम्मिलित है इस प्रकार f = gj

आलेखन g द्वारा g(n, r) = n · 1S + f(r) परिभाषित किया जा सकता है।

एक प्राकृतिक विशेषण वलय समरूपता R^ → Z है जो n से (n, r) भेजता है। इस समरूपता का कर्नेल (वलय थ्योरी) R में R^ की छवि है। चूँकि j एकात्मक है, हम देखते हैं कि R एक (दो तरफा) गुणावली के रूप में R^ में भागफल वलय R^/R 'Z' से समरूपता के रूप में सन्निहित है। यह इस प्रकार है कि

प्रत्येक वलय किसी न किसी वलय में एक गुणावली है, और वलय की प्रत्येक गुणावली एक वलय है।

ध्यान दें कि j कभी भी विशेषण नहीं है। इसलिए, भले ही R में पहले से ही एक समरूप तत्व हो, वलय R^ एक अलग समरूपता के साथ बड़ा होता है। वलय R^ को अक्सर अमेरिकी गणितज्ञ जो ली दोरोह के नाम पर R का 'दोरोह विस्तार' कहा जाता है, जिन्होंने इसे सबसे पहले बनाया था।

एक समरूप तत्व को एक कृत्रिम वलय से जोड़ने की प्रक्रिया को श्रेणी सिद्धांत की भाषा में तैयार किया जा सकता है। यदि हम सभी वलय और वलय समरूपता की श्रेणी को 'वलय' से और सभी कृत्रिम वलय और कृत्रिम वलय समरूपता की श्रेणी को 'कृत्रिम वलय' से निरूपित करते हैं, तो 'वलय' 'कृत्रिम वलय' की एक (नॉनफुल) उपश्रेणी है। ऊपर दिए गए R^ का निर्माण समावेशन क्रिया के लिए एक बाएँ आसन्न को उत्पन्न I : RingRng करता है। ध्यान दें कि वलय, कृत्रिम वलय की परावर्तक उपश्रेणी नहीं है क्योंकि समावेशन क्रिया पूर्ण नहीं है।

समरूप होने से कमजोर गुण

साहित्य में ऐसे कई गुण माने गए हैं जो समरूप तत्व होने से कमजोर हैं, लेकिन इतने सामान्य नहीं हैं। उदाहरण के लिए:

  • पर्याप्त स्थिरता के साथ वलय: एक कृत्रिम वलय R को पर्याप्त स्थिरता के साथ एक वलय कहा जाता है जब समकोण द्वारा दिए गए R का एक उपसमुच्चय E (यानी ef = 0 सभी के लिए E में ef ) स्थिरता( यानी e2 = e सभी के लिए E में e) के साथ सम्मिलित होता है। इस तरह R = eE eR = eE Re.
  • स्थानीय इकाइयों के साथ वलय: प्रत्येक R में परिमित समुच्चय r1, r2, ..., rt की स्थितियों में एक कृत्रिम वलय R को स्थानीय इकाइयों के साथ एक वलय कहा जाता हैं। हम e को R में प्रत्येक i के लिए e2 = e और eri = ri = rie में प्राप्त कर सकते है।
  • s-अंकीय वलय: एक कृत्रिम वलय R को s-अंकीय कहा जाता है यदि प्रत्येक परिमित समुच्चय r1, r2, ..., rt i, ... r की स्थितियों में हम s को R में प्रत्येक i के लिए sri = ri = ris में प्राप्त कर सकते है।
  • दृढ़ वलय: एक कृत्रिम वलय R को दृढ़ कहा जाता है यदि विहित समाकारिता RR RR द्वारा दिए गए rsrs एक समरूपता है।
  • स्थिर वलय: एक वलय R को स्थिर (या एक आईकृत्रिम वलय) कहा जाता है यदि R2 = R, अर्थात, R के प्रत्येक तत्व r के लिए तत्व R में ri और si में प्राप्त कर सकते है।

यह जाँचना कठिन नहीं है कि ये गुण समरूप तत्व होने की तुलना और पिछले वाले की तुलना में कमजोर हैं।

  • वलय पर्याप्त स्थिरता के साथ वलय होती हैं, जिनका उपयोग E = {1} में किया जाता है। एक वलय जिसमें पर्याप्त स्थिरता हैं जिनका कोई समरूप नहीं है, उदाहरण के लिए एक क्षेत्र पर अनंत मेट्रिसेस की वलय है, जिसमें गैर-शून्य प्रविष्टियों की एक सीमित संख्या है। वे मेट्रिसेस जिनके मुख्य विकर्ण में सिर्फ 1 पर एक से अधिक तत्व है और अन्यथा 0 समकोण स्थिरता हैं।
  • पर्याप्त स्थिरता के साथ वलय स्थानीय इकाइयों के साथ वलय् हैं जो परिभाषा को पूरा करने के लिए समकोण स्थिरता के परिमित मान लेते हैं।
  • स्थानीय इकाइयों के साथ वलय विशेष रूप से एस-अंकीय हैं; एस-अंकीय वलय दृढ़ हैं और दृढ़ वलय स्थिर हैं।

वर्ग शून्य का रंग

कृत्रिम वलय 'R वर्ग शून्य का एक कृत्रिम वलय है जिसमे R मे सभी x और y के लिएxy = 0 [2]

गुणन को परिभाषित करके किसी भी एबेलियन समूह को वर्ग शून्य का एक वलय बनाया जा सकता है ताकि सभी x और y के लिए xy = 0;[3] इस प्रकार प्रत्येक एबेलियन समूह किसी न किसी कृत्रिम वलय का योज्य समूह है।

गुणात्मक समरूप के साथ वर्ग शून्य का एकमात्र वलय शून्य वलय {0} है।[4]

वर्ग शून्य के एक कृत्रिम वलय का कोई योगात्मक उपसमूह गुणावली (वलय थ्योरी) है। इस प्रकार वर्ग शून्य का एक वलय साधारण वलय है यदि और केवल यदि इसका योगात्मक समूह एक साधारण एबेलियन समूह है, उदाहरण, प्रधान क्रम का चक्रीय समूह[5]


यूनिटल होमोमोर्फिज्म

बीजगणित में दो इकाई A और B दिए गए हैं, एक बीजगणित समरूपता

f : AB

'एकात्मक' है यदि यह A के समरूप तत्व को B के समरूप तत्व से आलेखन करता है।

यदि क्षेत्र (गणित) K पर साहचर्य बीजगणित A एकात्मक नहीं है, तो एक समरूप तत्व को निम्नानुसार जोड़ा जा सकता है: A × K अंतर्निहित K- सदिश स्थान के रूप में लें और गुणन को ∗ द्वारा परिभाषित करें

(x, r) ∗ (y, s) = (xy + sx + ry, rs)

A में x, y और K में r, s के लिए। फिर ∗ समरूप तत्व के साथ एक साहचर्य संक्रिया (0, 1) है। पुराना बीजगणित A नए में निहित है, और वास्तव में A × K सार्वभौम निर्माण के अर्थ में A युक्त सबसे सामान्य इकाई बीजगणित है।

यह भी देखें

टिप्पणियाँ

  1. Jacobson 1989.
  2. See Bourbaki, p. 102, where it is called a pseudo-ring of square zero. Some other authors use the term "zero ring" to refer to any rng of square zero; see e.g. Szele (1949) and Kreinovich (1995).
  3. Bourbaki, p. 102.
  4. Bourbaki, p. 102.
  5. Zariski and Samuel, p. 133.


संदर्भ

  • Bourbaki, N. (1998). Algebra I, Chapters 1–3. Springer.
  • Dummit, David S.; Foote, Richard M. (2003). Abstract Algebra (3rd ed.). Wiley. ISBN 978-0-471-43334-7.
  • Dorroh, J. L. (1932). "Concerning Adjunctions to Algebras". Bull. Amer. Math. Soc. 38 (2): 85–88. doi:10.1090/S0002-9904-1932-05333-2.
  • Jacobson, Nathan (1989). Basic algebra (2nd ed.). New York: W.H. Freeman. ISBN 0-7167-1480-9.
  • Kreinovich, V. (1995). "If a polynomial identity guarantees that every partial order on a ring can be extended, then this identity is true only for a zero-ring". Algebra Universalis. 33 (2): 237–242. doi:10.1007/BF01190935. MR 1318988. S2CID 122388143.
  • Herstein, I. N. (1996). Abstract Algebra (3rd ed.). Wiley. ISBN 978-0-471-36879-3.
  • McCrimmon, Kevin (2004). A taste of Jordan algebras. Springer. ISBN 978-0-387-95447-9.
  • Noether, Emmy (1921). "Idealtheorie in Ringbereichen" [Ideal theory in rings]. Mathematische Annalen (in German). 83 (1–2): 24–66. doi:10.1007/BF01464225. S2CID 121594471.{{cite journal}}: CS1 maint: unrecognized language (link)
  • Szele, Tibor (1949). "Zur Theorie der Zeroringe". Mathematische Annalen. 121: 242–246. doi:10.1007/bf01329628. MR 0033822. S2CID 122196446.
  • Zariski, Oscar; Samuel, Pierre (1958). Commutative Algebra. Vol. 1. Van Nostrand.