आंतरिक आयाम: Difference between revisions
(→उदाहरण) |
No edit summary |
||
(35 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
डेटा | डेटा समुच्चय के आंतरिक आयाम को डेटा के न्यूनतम प्रतिनिधित्व में आवश्यक चर की संख्या के रूप में माना जा सकता है। इसी तरह, बहुआयामी संकेतों के [[ संकेत आगे बढ़ाना |संकेत प्रसंस्करण]] में, संकेत का आंतरिक आयाम बताता है कि संकेत के ठीक सन्निकटन को उत्पन्न करने के लिए कितने चर की आवश्यकता होती है। | ||
आंतरिक आयाम का आकलन करते समय, | आंतरिक आयाम का आकलन करते समय, चूंकि, मैनीफोल्ड आयाम के आधार पर थोड़ी व्यापक परिभाषा का उपयोग अधिकांशतः किया जाता है, जहां आंतरिक आयाम में एक प्रतिनिधित्व को केवल स्थानीय रूप से उपस्थित होने की आवश्यकता होती है। इस तरह के आंतरिक आयाम आकलन विधि डेटा समुच्चय के विभिन्न भागों में विभिन्न आंतरिक आयामों के साथ डेटा समुच्चय को संभाल सकती हैं। इसे अधिकांशतः स्थानीय आंतरिक आयाम (एलआईडी) के रूप में जाना जाता है। | ||
आंतरिक आयाम का उपयोग आयाम में कमी के माध्यम से डेटा | आंतरिक आयाम का उपयोग निम्न सीमा के रूप में किया जा सकता है कि आयाम में कमी के माध्यम से डेटा समुच्चय को किस आयाम में संपीड़ित करना संभव है, लेकिन इसका उपयोग डेटा समुच्चय या संकेत की जटिलता के माप के रूप में भी किया जा सकता है। ''N'' चर के डेटा समुच्चय या संकेत के लिए, इसका आंतरिक आयाम ''M,'' ''0 ≤ M ≤ N'' को संतुष्ट करता है, चूंकि अनुमानक उच्च मान प्राप्त कर सकते हैं। | ||
== उदाहरण == | == उदाहरण == | ||
<math display="inline">f(x_1, x_2)</math> एक दो-चर फलन (या [[संकेत]]) हो जो इस रूप का | <math display="inline">f(x_1, x_2)</math> एक दो-चर फलन (या [[संकेत]]) हो जो इस रूप का हैं <math display="inline">f(x_1, x_2) = g(x_1)</math> कुछ एक-चर फलन g के लिए जो एक स्थिर फलन नहीं है। इसका अर्थ है कि f, g के अनुसार, पहले चर के साथ या पहले [[निर्देशांक (गणित)]] के साथ भिन्न होता है। दूसरी ओर, f दूसरे चर के संबंध में या दूसरे निर्देशांक के साथ स्थिर होता है। f का मान निर्धारित करने के लिए केवल एक, अर्थात् पहले चर का मान जानना आवश्यक है। इसलिए, यह एक दो चर वाला फलन है लेकिन इसका आंतरिक आयाम एक है। | ||
थोड़ा और जटिल उदाहरण | थोड़ा और जटिल उदाहरण <math display="inline">f(x_1, x_2) = g(x_1 + x_2)</math> है। f अभी भी आंतरिक एक-आयामी है, जिसे चरों में परिवर्तन करके देखा जा सकता है <math display="inline">y_1 = x_1 + x_2</math> और <math display="inline">y_2 = x_1 - x_2</math> जो देता है<math display="inline">f\left(\frac{y_1 + y_2}{2}, \frac{y_1 - y_2}{2}\right) = g\left(y_1\right)</math>. चूँकि f में भिन्नता को एकल चर ''y<sub>1</sub>'' द्वारा वर्णित किया जा सकता है, इसका आंतरिक आयाम एक है। | ||
f अभी भी आंतरिक एक-आयामी है, जिसे चरों में परिवर्तन करके देखा जा सकता है | |||
<math display="inline">y_1 = x_1 + x_2</math> और | |||
<math display="inline">y_2 = x_1 - x_2</math> | |||
जो देता है | |||
<math display="inline">f\left(\frac{y_1 + y_2}{2}, \frac{y_1 - y_2}{2}\right) = g\left(y_1\right)</math>. | |||
चूँकि f में भिन्नता को एकल चर y | |||
इस | इस स्थिति के लिए कि एफ स्थिर है, इसका आंतरिक आयाम शून्य है क्योंकि भिन्नता का वर्णन करने के लिए किसी चर की आवश्यकता नहीं है। सामान्य स्थिति के लिए, जब दो-चर फलन f का आंतरिक आयाम न तो शून्य या एक होता है, तो यह दो होता है। | ||
गणित सिद्धांत में, फलन जो आंतरिक आयाम शून्य, एक या दो के हैं, उन्हें कभी-कभी क्रमशः ''i0D'', ''i1D'' या ''i2D'' के रूप में संदर्भित किया जाता है। | |||
== संकेतों के लिए औपचारिक परिभाषा == | == संकेतों के लिए औपचारिक परिभाषा == | ||
''N''-चर फलन f के लिए, चर के समुच्चय को ''N''-आयाम सदिश '''x''' के रूप में दर्शाया जा सकता है: <math display="inline">f = f\left(\mathbf{x} \right) \text{ where } \mathbf{x} = \left(x_1, \dots, x_N \right)</math>. | |||
<math display="inline">f = f\left(\mathbf{x} \right) \text{ where } \mathbf{x} = \left(x_1, \dots, x_N \right)</math>. | |||
यदि कुछ ''M''-चर फलन जी और ''M × N'' मैट्रिक्स '''A''' के लिए यह स्थिति है | |||
* सभी ' | * सभी ''''x'''<nowiki/>' के लिए; <math display="inline">f(\mathbf{x}) = g(\mathbf{Ax}),</math> | ||
* M सबसे छोटी संख्या है जिसके लिए f और g के बीच उपरोक्त संबंध पाया जा सकता है, | * M सबसे छोटी संख्या है जिसके लिए f और g के बीच उपरोक्त संबंध पाया जा सकता है, | ||
तो f का आंतरिक आयाम M है। | तो f का आंतरिक आयाम M है। | ||
आंतरिक आयाम f का लक्षण वर्णन है, यह न तो g का और न ही 'A' का स्पष्ट लक्षण वर्णन है। अर्थात्, यदि उपरोक्त संबंध कुछ f, g, और 'A' के लिए संतुष्ट है, तो इसे उसी f और g' और 'A'' द्वारा दिए गए के लिए भी संतुष्ट होना चाहिए | आंतरिक आयाम f का लक्षण वर्णन है, यह न तो g का और न ही '''A''' का स्पष्ट लक्षण वर्णन है। अर्थात्, यदि उपरोक्त संबंध कुछ f, g, और '''A''' के लिए संतुष्ट है, तो इसे उसी f और g' और 'A'' द्वारा दिए गए के लिए भी संतुष्ट होना चाहिए <math display="inline">g'\left(\mathbf{y}\right) = g \left(\mathbf{By}\right) </math> और <math display="inline">\mathbf{A'} = \mathbf{B}^{-1} \mathbf{A}</math> जहां '''B''' एक गैर विलक्षण M × M मैट्रिक्स है, क्योंकि <math display="inline">f\left(\mathbf{x}\right) = | ||
<math display="inline">g'\left(\mathbf{y}\right) = g \left(\mathbf{By}\right) </math> | g'\left(\mathbf{A'x}\right) = g \left(\mathbf{BA'x}\right) = g\left(\mathbf{Ax}\right) </math> है।'' | ||
और | |||
<math display="inline">\mathbf{A'} = \mathbf{B}^{-1} \mathbf{A}</math> | |||
जहां | |||
<math display="inline">f\left(\mathbf{x}\right) = | |||
g'\left(\mathbf{A'x}\right) = g \left(\mathbf{BA'x}\right) = g\left(\mathbf{Ax}\right) </math> | |||
== कम आंतरिक आयाम के संकेतों का [[फूरियर रूपांतरण]] == | == कम आंतरिक आयाम के संकेतों का [[फूरियर रूपांतरण]] == | ||
एक | एक ''N'' चर फलन जिसमें आंतरिक आयाम ''M < N'' है, में एक विशेषता फूरियर रूपांतरण है। चूंकि इस प्रकार का फलन एक या कई आयामों के साथ स्थिर होता है, इसलिए इसका फूरियर रूपांतरण [[आवृत्ति डोमेन]] में समान आयाम के साथ एक [[डिराक डेल्टा समारोह|डिराक डेल्टा वितरण]] (स्थिर का फूरियर रूपांतरण) की तरह दिखाई देना चाहिए। | ||
=== एक साधारण उदाहरण === | === एक साधारण उदाहरण === | ||
मान लीजिए f एक दो-चर फलन है जो कि i1D है। इसका | मान लीजिए f एक दो-चर फलन है जो कि i1D है। इसका तात्पर्य है कि एक सामान्यीकृत सदिश उपस्थित है <math display="inline">\mathbf{n} \in \reals^{2}</math> और एक एक चर फलन जी ऐसा है कि <math display="inline">f(\mathbf{x}) = g(\mathbf{n}^{\operatorname {T}} \mathbf{x})</math> सभी के लिए <math display="inline">\mathbf{x} \in \reals^{2}</math> है। | ||
<math display="inline">f(\mathbf{x}) = g(\mathbf{n}^{\operatorname {T}} \mathbf{x})</math> | |||
सभी के लिए <math display="inline">\mathbf{x} \in \reals^{2}</math> | |||
यहाँ G, g का फूरियर रूपांतरण है (दोनों एक-चर | यदि F, f का फूरियर रूपांतरण है (दोनों दो-चर फलन हैं) तो ऐसा होना चाहिए <math display="inline">F \left(\mathbf{u}\right) = G \left(\mathbf{n}^{\mathrm{T}} \mathbf{u}\right) \cdot \delta \left(\mathbf{m}^{\mathrm{T}} \mathbf{u}\right)</math>. | ||
यहाँ ''G'', g का फूरियर रूपांतरण है (दोनों एक-चर फलन हैं), ''δ'' डिराक डेल्टा वितरण (इकाई आवेग) और '''m''' एक सामान्यीकृत सदिश <math display="inline">\reals^{2}</math>, '''n''' के लंबवत है। इसका तात्पर्य यह है कि ''एफ'' एक रेखा को छोड़कर हर जगह लुप्त हो जाता है जो आवृत्ति डोमेन की उत्पत्ति के माध्यम से गुजरता है और m के समानांतर है। इस रेखा के साथ F, G के अनुसार परिवर्तित होता रहता है। | |||
=== सामान्य मामला === | === सामान्य मामला === | ||
मान लीजिए f एक N- | मान लीजिए f एक N-चर फलन है जिसका आंतरिक आयाम M है, अर्थात, एक M-चर फलन g और M × N मैट्रिक्स 'A'उपस्थित है जैसे कि <math display="inline">f(\mathbf{x}) = g(\mathbf{Ax}) \quad \forall \mathbf{x}</math>. | ||
<math display="inline">f(\mathbf{x}) = g(\mathbf{Ax}) \quad \forall \mathbf{x}</math>. | |||
इसके फूरियर | इसके फूरियर रूपांतरण ''F'' को निम्नानुसार वर्णित किया जा सकता है: | ||
* | * आयाम M के उप-स्थान को छोड़कर एफ हर जगह लुप्त हो जाता है | ||
* उपस्थान M को मैट्रिक्स 'A' की पंक्तियों द्वारा फैलाया गया है | * उपस्थान M को मैट्रिक्स 'A' की पंक्तियों द्वारा फैलाया गया है | ||
* उप-स्थान में, | * उप-स्थान में, ''F'' ''G'' के अनुसार g के फूरियर रूपांतरण के अनुसार भिन्न होता है | ||
== सामान्यीकरण == | == सामान्यीकरण == | ||
ऊपर वर्णित आंतरिक आयाम का प्रकार यह मानता है कि | ऊपर वर्णित आंतरिक आयाम का प्रकार यह मानता है कि ''N''-चर फलन ''f'' के निर्देशांक पर एक [[रैखिक परिवर्तन]] लागू किया जाता है जिससे कि ''M'' चर का उत्पादन किया जा सके जो कि एफ के प्रत्येक मान का प्रतिनिधित्व करने के लिए आवश्यक है। इसका मतलब यह है कि ''N'' और ''M'' के आधार पर एफ पंक्तियों, समतल या अधिसमतल के साथ स्थिर है। | ||
एक सामान्य स्थिति में, f का आंतरिक आयाम M होता है यदि M फलन ''a<sub>1</sub>'', ''a<sub>2</sub>'', ..., ''a<sub>M</sub>'' और एक M- चर फलन g उपस्थित होता है जैसे कि | |||
*<math display="inline">f(\mathbf{x}) = g \left( a_1(\mathbf{x}), a_2(\mathbf{x}), \dots, a_M(\mathbf{x}) \right)</math> सभी एक्स के लिए | |||
* ''M'' फलन की सबसे छोटी संख्या है जो उपरोक्त परिवर्तन की अनुमति देता है | |||
<math display="block">f\left(\frac{y_1 + y_2}{2}, \frac{y_1 - y_2}{2}\right) = g\left(y_1\right)</math> | एक साधारण उदाहरण एक 2-चर फलन f को ध्रुवीय निर्देशांक में परिवर्तित कर रहा है:<math display="block">f\left(\frac{y_1 + y_2}{2}, \frac{y_1 - y_2}{2}\right) = g\left(y_1\right)</math> | ||
*<math>f(x_1, x_2) = g \left(\sqrt{x_1^2 + x_2^2} \right)</math>, f i1D है और मूल बिंदु पर केंद्रित किसी भी वृत्त के साथ स्थिर है | *<math>f(x_1, x_2) = g \left(\sqrt{x_1^2 + x_2^2} \right)</math>, f i1D है और मूल बिंदु पर केंद्रित किसी भी वृत्त के साथ स्थिर है | ||
*<math>f(x_1, x_2) = g \left(\arctan \left(\frac{x_2}{x_1}\right)\right)</math>, f i1D है और | *<math>f(x_1, x_2) = g \left(\arctan \left(\frac{x_2}{x_1}\right)\right)</math>, f i1D है और मूल बिंदु से सभी किरणों के साथ स्थिर है | ||
सामान्य | सामान्य स्थितियों के लिए, या तो बिंदु समुच्चय का एक सरल विवरण जिसके लिए f स्थिर है या इसका फूरियर रूपांतरण सामान्यतः संभव नहीं है। | ||
== स्थानीय आंतरिक आयाम == | == स्थानीय आंतरिक आयाम == | ||
स्थानीय आंतरिक आयाम (एलआईडी) अवलोकन को संदर्भित करता है कि | स्थानीय आंतरिक आयाम (एलआईडी) अवलोकन को संदर्भित करता है कि अधिकांशतः डेटा को निम्न-आयामी मैनिफोल्ड पर वितरित किया जाता है जब केवल डेटा के पास के उप-समूचय पर विचार किया जाता है। उदाहरण के लिए फलन <math>f(x,y) = x + \max\{0, |y|-1\} | ||
</math> एक-आयामी माना जा सकता है जब y 0 के | </math> एक-आयामी माना जा सकता है जब y, 0 के पास हो (एक चर x के साथ), दो-आयामी जब y, 1 के पास हो और फिर से एक-आयामी जब y धनात्मक हो और 1 से बहुत बड़ा हो (चर x+y के साथ)। | ||
स्थानीय आंतरिक आयाम का उपयोग अधिकांशतः डेटा के संबंध में किया जाता है। इसके पश्चात सामान्यतः डेटा बिंदु के k निकटतम बिंदुओ के आधार पर अनुमान लगाया जाता है,<ref>{{Cite journal|last1=Amsaleg|first1=Laurent|last2=Chelly|first2=Oussama|last3=Furon|first3=Teddy|last4=Girard|first4=Stéphane|last5=Houle|first5=Michael E.|last6=Kawarabayashi|first6=Ken-ichi|last7=Nett|first7=Michael|date=2015-08-10|title=स्थानीय आंतरिक आयाम का अनुमान लगाना|url=https://doi.org/10.1145/2783258.2783405|journal=Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining|series=KDD '15|location=Sydney, NSW, Australia|publisher=Association for Computing Machinery|pages=29–38|doi=10.1145/2783258.2783405|isbn=978-1-4503-3664-2|s2cid=16058196 }}</ref>अधिकांशतः गणित में [[दोहरीकरण स्थान|दोहरीकरण आयाम]] से संबंधित अवधारणा पर आधारित होता है। चूँकि d-गोले का आयतन d में घातीय रूप से बढ़ता है, जिस दर पर खोज त्रिज्या के रूप में नए बिंदु पाए जाते हैं, उसका उपयोग स्थानीय आंतरिक आयाम (जैसे, GED अनुमान)<ref>{{Cite journal|last1=Houle|first1=M. E.|last2=Kashima|first2=H.|last3=Nett|first3=M.|date=2012|title=सामान्यीकृत विस्तार आयाम|url=https://ieeexplore.ieee.org/document/6406405|journal=2012 IEEE 12th International Conference on Data Mining Workshops|volume=|pages=587–594|doi=10.1109/ICDMW.2012.94|isbn=978-1-4673-5164-5 |s2cid=8336466 |via=}}</ref> का अनुमान लगाने के लिए किया जा सकता है।<ref>{{Cite journal|last1=Thordsen|first1=Erik|last2=Schubert|first2=Erich|date=2020|editor-last=Satoh|editor-first=Shin'ichi|editor2-last=Vadicamo|editor2-first=Lucia|editor3-last=Zimek|editor3-first=Arthur|editor4-last=Carrara|editor4-first=Fabio|editor5-last=Bartolini|editor5-first=Ilaria|editor6-last=Aumüller|editor6-first=Martin|editor7-last=Jónsson|editor7-first=Björn Þór|editor8-last=Pagh|editor8-first=Rasmus|editor8-link= Rasmus Pagh |title=ABID: Angle Based Intrinsic Dimensionality|url=https://link.springer.com/chapter/10.1007/978-3-030-60936-8_17|journal=Similarity Search and Applications|series=Lecture Notes in Computer Science|volume=12440 |language=en|location=Cham|publisher=Springer International Publishing|pages=218–232|doi=10.1007/978-3-030-60936-8_17|isbn=978-3-030-60936-8|arxiv=2006.12880|s2cid=219980390 }}</ref> | |||
== इतिहास == | == इतिहास == | ||
1950 के दशक के | 1950 के दशक के समय बहुआयामी डेटा समुच्चयों का पता लगाने और सारांशित करने के लिए तथाकथित "स्केलिंग" विधियों को [[सामाजिक विज्ञान|सामाजिक विज्ञानों]] में विकसित किया गया था।<ref name="Torgerson">{{cite book | ||
| first = Warren S. |last=Torgerson | | first = Warren S. |last=Torgerson | ||
| title = Theory and methods of scaling | | title = Theory and methods of scaling | ||
| orig-year = 1958 | year=1978 | isbn=0471879452 |oclc=256008416 | | orig-year = 1958 | year=1978 | isbn=0471879452 |oclc=256008416 | ||
| publisher = Wiley}}</ref> 1962 में शेपर्ड द्वारा गैर-मीट्रिक बहुआयामी स्केलिंग शुरू करने के | | publisher = Wiley}}</ref> 1962 में शेपर्ड द्वारा गैर-मीट्रिक बहुआयामी स्केलिंग शुरू करने के पश्चात<ref>{{cite journal | ||
| first = Roger N. |last=Shepard | | first = Roger N. |last=Shepard | ||
| title = The analysis of proximities: Multidimensional scaling with an unknown distance function. I. | | title = The analysis of proximities: Multidimensional scaling with an unknown distance function. I. | ||
Line 104: | Line 86: | ||
| year = 1962 |doi=10.1007/BF02289630 | | year = 1962 |doi=10.1007/BF02289630 | ||
|s2cid=186222646 | |s2cid=186222646 | ||
}}</ref> बहुआयामी स्केलिंग (एमडीएस) के भीतर प्रमुख | }}</ref> बहुआयामी स्केलिंग (एमडीएस) के भीतर प्रमुख अनुसंधान क्षेत्रों में से एक आंतरिक आयाम का अनुमान था।<ref>{{cite journal | ||
| first = Roger N. |last=Shepard | | first = Roger N. |last=Shepard | ||
| title = Representation of structure in similarity data: Problems and prospects | | title = Representation of structure in similarity data: Problems and prospects | ||
Line 113: | Line 95: | ||
| year = 1974 |doi=10.1007/BF02291665 | | year = 1974 |doi=10.1007/BF02291665 | ||
|s2cid=121704645 | |s2cid=121704645 | ||
}}</ref> इस विषय का अध्ययन [[सूचना सिद्धांत]] में भी किया गया था, 1965 में बेनेट द्वारा अग्रणी, | }}</ref> इस विषय का अध्ययन [[सूचना सिद्धांत]] में भी किया गया था, 1965 में बेनेट द्वारा अग्रणी, "आंतरिक आयाम" शब्द गढ़ा और इसका अनुमान लगाने के लिए एक कंप्यूटर प्रोग्राम लिखा।<ref>{{cite book | ||
| first = Robert S. |last=Bennet | | first = Robert S. |last=Bennet | ||
| chapter = Representation and analysis of signals—Part XXI: The intrinsic dimensionality of signal collections | | chapter = Representation and analysis of signals—Part XXI: The intrinsic dimensionality of signal collections | ||
Line 139: | Line 121: | ||
| date = September 1969 |doi=10.1109/TIT.1969.1054365 | | date = September 1969 |doi=10.1109/TIT.1969.1054365 | ||
}}</ref> | }}</ref> | ||
1970 के दशक के समय आंतरिक आयामीता आकलन विधियों का निर्माण किया गया था जो कि आयामीता में कमी पर निर्भर नहीं करती थी जैसे कि एमडीएस: स्थानीय अभिलाक्षणिक मान पर आधारित,<ref>{{Cite journal |last1=Fukunaga |first1=K. |last2=Olsen |first2=D. R. |date=1971 |title=डेटा की आंतरिक आयामीता खोजने के लिए एक एल्गोरिथ्म|journal=IEEE Transactions on Computers |volume=20 |issue=2 |pages=176–183 |doi=10.1109/T-C.1971.223208|s2cid=30206700 }}</ref> दूरी वितरण पर आधारित,<ref>{{Cite journal |last1=Pettis |first1=K. W. |first2=Thomas A. |last2=Bailey |first3=Anil K. |last3=Jain |first4=Richard C. |last4=Dubes |date=1979 |title=निकट-पड़ोसी जानकारी से आंतरिक आयामी अनुमानक|journal=IEEE Transactions on Pattern Analysis and Machine Intelligence |volume=1 |issue=1 |pages=25–37 |doi=10.1109/TPAMI.1979.4766873|pmid=21868828 |s2cid=2196461 }}</ref> और अन्य आयाम-निर्भर ज्यामितीय गुणों पर आधारित<ref>{{Cite journal |last=Trunk |first=G. V. |date=1976 |title=एक शोर संकेत संग्रह के आंतरिक आयाम का सांख्यिकीय अनुमान|journal=IEEE Transactions on Computers |volume=100 |issue=2 |pages=165–171 |doi=10.1109/TC.1976.5009231|s2cid=1181023 }}</ref> | |||
गतिशील प्रणालियों के क्षेत्र में लगभग 1980 के पश्चात से समुच्चय और संभाव्यता उपायों के आंतरिक आयाम का व्यापक अध्ययन किया गया है, जहां (अजीब) आकर्षित करने वालों के आयाम रुचि का विषय रहे हैं।<ref>{{Cite journal |last1=Grassberger |first1=P. |last2=Procaccia |first2=I. |date=1983 |title=अजीब आकर्षित करने वालों की विचित्रता को मापना|journal=Physica D: Nonlinear Phenomena |volume=9 |issue=1–2 |pages=189–208 |doi=10.1016/0167-2789(83)90298-1|bibcode=1983PhyD....9..189G }}</ref><ref>{{Cite book |editor-first=Howell |editor-last=Tong |title=Dynamical Systems and Bifurcations, Proceedings of a Workshop Held in Groningen, The Netherlands, April 16-20, 1984 |last=Takens |first=F. |publisher=Springer-Verlag |year=1984 |isbn=3540394117 |series=Lecture Notes in Mathematics |volume=1125 |pages=99–106 |chapter=On the numerical determination of the dimension of an attractor |doi=10.1007/BFb0075637}}</ref><ref>{{Cite book |title=आयाम अनुमान और मॉडल|last=Cutler |first=C. D. |publisher=World Scientific |year=1993 |isbn=9810213530 |series=Nonlinear Time Series and Chaos |volume=1 |pages=1–107 |chapter=A review of the theory and estimation of fractal dimension |chapter-url=https://books.google.com/books?id=uLyp99DIJG8C&pg=PA1}}</ref><ref>{{Cite book |title=Multifractals — Theory and Applications |last=Harte |first=D. |publisher=Chapman and Hall/CRC |year=2001 |isbn=9781584881544 }}</ref> जहां (अजीब) आकर्षित करने वालों के लिए कई गुना धारणा नहीं है, और मापा गया आयाम भग्न आयाम का कुछ संस्करण है - जो गैर-पूर्णांक भी हो सकता है। चूंकि, भग्न आयाम की परिभाषाएँ कई गुना के लिए कई गुना आयाम देती हैं। | |||
2000 के दशक में आंतरिक आयाम का अनुमान लगाने के लिए "आयाम का अभिशाप" का उपयोग किया गया है।<ref>{{Cite journal |last=Chavez |first=E. |date=2001 |title=मीट्रिक रिक्त स्थान में खोज करना|journal=ACM Computing Surveys |volume=33 |issue=3 |pages=273–321 |doi=10.1145/502807.502808|hdl=10533/172863 |s2cid=3201604 |hdl-access=free }}</ref><ref>{{Cite journal |last=Pestov |first=V. |date=2008 |title=डेटासेट के आंतरिक आयाम के लिए एक स्वयंसिद्ध दृष्टिकोण|journal=Neural Networks |volume=21 |issue=2–3 |pages=204–213 |doi=10.1016/j.neunet.2007.12.030 |pmid=18234471 |arxiv=0712.2063|s2cid=2309396 }}</ref> | |||
== अनुप्रयोग == | == अनुप्रयोग == | ||
एक दो-चर संकेत | एक दो-चर संकेत की स्थिति जो i1D है अधिकांशतः [[कंप्यूटर दृष्टि]] और आकृति प्रसंस्करण में प्रकट होती है और स्थानीय आकृति क्षेत्रों के विचार को पकड़ती है जिसमें रेखाएँ या किनारे होते हैं। ऐसे क्षेत्रों के विश्लेषण का एक लंबा इतिहास है, लेकिन यह तब तक नहीं था जब तक कि इस तरह के संचालन का अधिक औपचारिक और सैद्धांतिक उपचार शुरू नहीं हुआ था, तब तक आंतरिक आयाम की अवधारणा स्थापित नहीं हुई थी, भले ही नाम भिन्न हो। | ||
उदाहरण के लिए | उदाहरण के लिए बिगून एंड ग्रैनलंड (1987)<ref>{{cite book | ||
| first1=Josef |last1=Bigün | | first1=Josef |last1=Bigün | ||
| first2=Gösta H. |last2=Granlund | | first2=Gösta H. |last2=Granlund | ||
Line 162: | Line 139: | ||
| pages=433–438 | | pages=433–438 | ||
| chapter-url = http://www2.hh.se/staff/josef/publ/publications/bigun87london.pdf}} | | chapter-url = http://www2.hh.se/staff/josef/publ/publications/bigun87london.pdf}} | ||
</ref> और | </ref> द्वारा रैखिक सममित और ग्रैनलंड एंड नट्सन (1995) में<ref>{{cite book | ||
| first1=Gösta H. |last1=Granlund | | first1=Gösta H. |last1=Granlund | ||
| first2=Hans |last2=Knutsson | | first2=Hans |last2=Knutsson | ||
Line 170: | Line 147: | ||
| isbn=978-1-4757-2377-9 | | isbn=978-1-4757-2377-9 | ||
| publisher=Kluwer Academic }} | | publisher=Kluwer Academic }} | ||
</ref> | </ref> जिस अवधारणा को यहाँ आंतरिक आयाम 1 या ''i1D'' समीप बिंदु के एक आकृति निकटम के रूप में संदर्भित किया गया है, उसे नॉटसन (1982) द्वारा 1-आयामी कहा जाता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
<!-- New links in alphabetical order please --> | <!-- New links in alphabetical order please --> | ||
Line 178: | Line 153: | ||
* [[भग्न आयाम]] | * [[भग्न आयाम]] | ||
* [[हॉसडॉर्फ आयाम]] | * [[हॉसडॉर्फ आयाम]] | ||
* [[सामयिक आयाम]] | * [[सामयिक आयाम|टोपोलॉजिकल आयाम]] | ||
== संदर्भ == | == संदर्भ == | ||
Line 193: | Line 168: | ||
| hdl-access = free | | hdl-access = free | ||
}} | }} | ||
[[Category: | [[Category:CS1 English-language sources (en)]] | ||
[[Category:Created On 24/05/2023]] | [[Category:Created On 24/05/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:कंप्यूटर दृष्टि]] | |||
[[Category:मूर्ति प्रोद्योगिकी]] |
Latest revision as of 14:59, 6 June 2023
डेटा समुच्चय के आंतरिक आयाम को डेटा के न्यूनतम प्रतिनिधित्व में आवश्यक चर की संख्या के रूप में माना जा सकता है। इसी तरह, बहुआयामी संकेतों के संकेत प्रसंस्करण में, संकेत का आंतरिक आयाम बताता है कि संकेत के ठीक सन्निकटन को उत्पन्न करने के लिए कितने चर की आवश्यकता होती है।
आंतरिक आयाम का आकलन करते समय, चूंकि, मैनीफोल्ड आयाम के आधार पर थोड़ी व्यापक परिभाषा का उपयोग अधिकांशतः किया जाता है, जहां आंतरिक आयाम में एक प्रतिनिधित्व को केवल स्थानीय रूप से उपस्थित होने की आवश्यकता होती है। इस तरह के आंतरिक आयाम आकलन विधि डेटा समुच्चय के विभिन्न भागों में विभिन्न आंतरिक आयामों के साथ डेटा समुच्चय को संभाल सकती हैं। इसे अधिकांशतः स्थानीय आंतरिक आयाम (एलआईडी) के रूप में जाना जाता है।
आंतरिक आयाम का उपयोग निम्न सीमा के रूप में किया जा सकता है कि आयाम में कमी के माध्यम से डेटा समुच्चय को किस आयाम में संपीड़ित करना संभव है, लेकिन इसका उपयोग डेटा समुच्चय या संकेत की जटिलता के माप के रूप में भी किया जा सकता है। N चर के डेटा समुच्चय या संकेत के लिए, इसका आंतरिक आयाम M, 0 ≤ M ≤ N को संतुष्ट करता है, चूंकि अनुमानक उच्च मान प्राप्त कर सकते हैं।
उदाहरण
एक दो-चर फलन (या संकेत) हो जो इस रूप का हैं कुछ एक-चर फलन g के लिए जो एक स्थिर फलन नहीं है। इसका अर्थ है कि f, g के अनुसार, पहले चर के साथ या पहले निर्देशांक (गणित) के साथ भिन्न होता है। दूसरी ओर, f दूसरे चर के संबंध में या दूसरे निर्देशांक के साथ स्थिर होता है। f का मान निर्धारित करने के लिए केवल एक, अर्थात् पहले चर का मान जानना आवश्यक है। इसलिए, यह एक दो चर वाला फलन है लेकिन इसका आंतरिक आयाम एक है।
थोड़ा और जटिल उदाहरण है। f अभी भी आंतरिक एक-आयामी है, जिसे चरों में परिवर्तन करके देखा जा सकता है और जो देता है. चूँकि f में भिन्नता को एकल चर y1 द्वारा वर्णित किया जा सकता है, इसका आंतरिक आयाम एक है।
इस स्थिति के लिए कि एफ स्थिर है, इसका आंतरिक आयाम शून्य है क्योंकि भिन्नता का वर्णन करने के लिए किसी चर की आवश्यकता नहीं है। सामान्य स्थिति के लिए, जब दो-चर फलन f का आंतरिक आयाम न तो शून्य या एक होता है, तो यह दो होता है।
गणित सिद्धांत में, फलन जो आंतरिक आयाम शून्य, एक या दो के हैं, उन्हें कभी-कभी क्रमशः i0D, i1D या i2D के रूप में संदर्भित किया जाता है।
संकेतों के लिए औपचारिक परिभाषा
N-चर फलन f के लिए, चर के समुच्चय को N-आयाम सदिश x के रूप में दर्शाया जा सकता है: .
यदि कुछ M-चर फलन जी और M × N मैट्रिक्स A के लिए यह स्थिति है
- सभी 'x' के लिए;
- M सबसे छोटी संख्या है जिसके लिए f और g के बीच उपरोक्त संबंध पाया जा सकता है,
तो f का आंतरिक आयाम M है।
आंतरिक आयाम f का लक्षण वर्णन है, यह न तो g का और न ही A का स्पष्ट लक्षण वर्णन है। अर्थात्, यदि उपरोक्त संबंध कुछ f, g, और A के लिए संतुष्ट है, तो इसे उसी f और g' और 'A द्वारा दिए गए के लिए भी संतुष्ट होना चाहिए और जहां B एक गैर विलक्षण M × M मैट्रिक्स है, क्योंकि है।
कम आंतरिक आयाम के संकेतों का फूरियर रूपांतरण
एक N चर फलन जिसमें आंतरिक आयाम M < N है, में एक विशेषता फूरियर रूपांतरण है। चूंकि इस प्रकार का फलन एक या कई आयामों के साथ स्थिर होता है, इसलिए इसका फूरियर रूपांतरण आवृत्ति डोमेन में समान आयाम के साथ एक डिराक डेल्टा वितरण (स्थिर का फूरियर रूपांतरण) की तरह दिखाई देना चाहिए।
एक साधारण उदाहरण
मान लीजिए f एक दो-चर फलन है जो कि i1D है। इसका तात्पर्य है कि एक सामान्यीकृत सदिश उपस्थित है और एक एक चर फलन जी ऐसा है कि सभी के लिए है।
यदि F, f का फूरियर रूपांतरण है (दोनों दो-चर फलन हैं) तो ऐसा होना चाहिए .
यहाँ G, g का फूरियर रूपांतरण है (दोनों एक-चर फलन हैं), δ डिराक डेल्टा वितरण (इकाई आवेग) और m एक सामान्यीकृत सदिश , n के लंबवत है। इसका तात्पर्य यह है कि एफ एक रेखा को छोड़कर हर जगह लुप्त हो जाता है जो आवृत्ति डोमेन की उत्पत्ति के माध्यम से गुजरता है और m के समानांतर है। इस रेखा के साथ F, G के अनुसार परिवर्तित होता रहता है।
सामान्य मामला
मान लीजिए f एक N-चर फलन है जिसका आंतरिक आयाम M है, अर्थात, एक M-चर फलन g और M × N मैट्रिक्स 'A'उपस्थित है जैसे कि .
इसके फूरियर रूपांतरण F को निम्नानुसार वर्णित किया जा सकता है:
- आयाम M के उप-स्थान को छोड़कर एफ हर जगह लुप्त हो जाता है
- उपस्थान M को मैट्रिक्स 'A' की पंक्तियों द्वारा फैलाया गया है
- उप-स्थान में, F G के अनुसार g के फूरियर रूपांतरण के अनुसार भिन्न होता है
सामान्यीकरण
ऊपर वर्णित आंतरिक आयाम का प्रकार यह मानता है कि N-चर फलन f के निर्देशांक पर एक रैखिक परिवर्तन लागू किया जाता है जिससे कि M चर का उत्पादन किया जा सके जो कि एफ के प्रत्येक मान का प्रतिनिधित्व करने के लिए आवश्यक है। इसका मतलब यह है कि N और M के आधार पर एफ पंक्तियों, समतल या अधिसमतल के साथ स्थिर है।
एक सामान्य स्थिति में, f का आंतरिक आयाम M होता है यदि M फलन a1, a2, ..., aM और एक M- चर फलन g उपस्थित होता है जैसे कि
- सभी एक्स के लिए
- M फलन की सबसे छोटी संख्या है जो उपरोक्त परिवर्तन की अनुमति देता है
एक साधारण उदाहरण एक 2-चर फलन f को ध्रुवीय निर्देशांक में परिवर्तित कर रहा है:
- , f i1D है और मूल बिंदु पर केंद्रित किसी भी वृत्त के साथ स्थिर है
- , f i1D है और मूल बिंदु से सभी किरणों के साथ स्थिर है
सामान्य स्थितियों के लिए, या तो बिंदु समुच्चय का एक सरल विवरण जिसके लिए f स्थिर है या इसका फूरियर रूपांतरण सामान्यतः संभव नहीं है।
स्थानीय आंतरिक आयाम
स्थानीय आंतरिक आयाम (एलआईडी) अवलोकन को संदर्भित करता है कि अधिकांशतः डेटा को निम्न-आयामी मैनिफोल्ड पर वितरित किया जाता है जब केवल डेटा के पास के उप-समूचय पर विचार किया जाता है। उदाहरण के लिए फलन एक-आयामी माना जा सकता है जब y, 0 के पास हो (एक चर x के साथ), दो-आयामी जब y, 1 के पास हो और फिर से एक-आयामी जब y धनात्मक हो और 1 से बहुत बड़ा हो (चर x+y के साथ)।
स्थानीय आंतरिक आयाम का उपयोग अधिकांशतः डेटा के संबंध में किया जाता है। इसके पश्चात सामान्यतः डेटा बिंदु के k निकटतम बिंदुओ के आधार पर अनुमान लगाया जाता है,[1]अधिकांशतः गणित में दोहरीकरण आयाम से संबंधित अवधारणा पर आधारित होता है। चूँकि d-गोले का आयतन d में घातीय रूप से बढ़ता है, जिस दर पर खोज त्रिज्या के रूप में नए बिंदु पाए जाते हैं, उसका उपयोग स्थानीय आंतरिक आयाम (जैसे, GED अनुमान)[2] का अनुमान लगाने के लिए किया जा सकता है।[3]
इतिहास
1950 के दशक के समय बहुआयामी डेटा समुच्चयों का पता लगाने और सारांशित करने के लिए तथाकथित "स्केलिंग" विधियों को सामाजिक विज्ञानों में विकसित किया गया था।[4] 1962 में शेपर्ड द्वारा गैर-मीट्रिक बहुआयामी स्केलिंग शुरू करने के पश्चात[5] बहुआयामी स्केलिंग (एमडीएस) के भीतर प्रमुख अनुसंधान क्षेत्रों में से एक आंतरिक आयाम का अनुमान था।[6] इस विषय का अध्ययन सूचना सिद्धांत में भी किया गया था, 1965 में बेनेट द्वारा अग्रणी, "आंतरिक आयाम" शब्द गढ़ा और इसका अनुमान लगाने के लिए एक कंप्यूटर प्रोग्राम लिखा।[7][8][9]
1970 के दशक के समय आंतरिक आयामीता आकलन विधियों का निर्माण किया गया था जो कि आयामीता में कमी पर निर्भर नहीं करती थी जैसे कि एमडीएस: स्थानीय अभिलाक्षणिक मान पर आधारित,[10] दूरी वितरण पर आधारित,[11] और अन्य आयाम-निर्भर ज्यामितीय गुणों पर आधारित[12]
गतिशील प्रणालियों के क्षेत्र में लगभग 1980 के पश्चात से समुच्चय और संभाव्यता उपायों के आंतरिक आयाम का व्यापक अध्ययन किया गया है, जहां (अजीब) आकर्षित करने वालों के आयाम रुचि का विषय रहे हैं।[13][14][15][16] जहां (अजीब) आकर्षित करने वालों के लिए कई गुना धारणा नहीं है, और मापा गया आयाम भग्न आयाम का कुछ संस्करण है - जो गैर-पूर्णांक भी हो सकता है। चूंकि, भग्न आयाम की परिभाषाएँ कई गुना के लिए कई गुना आयाम देती हैं।
2000 के दशक में आंतरिक आयाम का अनुमान लगाने के लिए "आयाम का अभिशाप" का उपयोग किया गया है।[17][18]
अनुप्रयोग
एक दो-चर संकेत की स्थिति जो i1D है अधिकांशतः कंप्यूटर दृष्टि और आकृति प्रसंस्करण में प्रकट होती है और स्थानीय आकृति क्षेत्रों के विचार को पकड़ती है जिसमें रेखाएँ या किनारे होते हैं। ऐसे क्षेत्रों के विश्लेषण का एक लंबा इतिहास है, लेकिन यह तब तक नहीं था जब तक कि इस तरह के संचालन का अधिक औपचारिक और सैद्धांतिक उपचार शुरू नहीं हुआ था, तब तक आंतरिक आयाम की अवधारणा स्थापित नहीं हुई थी, भले ही नाम भिन्न हो।
उदाहरण के लिए बिगून एंड ग्रैनलंड (1987)[19] द्वारा रैखिक सममित और ग्रैनलंड एंड नट्सन (1995) में[20] जिस अवधारणा को यहाँ आंतरिक आयाम 1 या i1D समीप बिंदु के एक आकृति निकटम के रूप में संदर्भित किया गया है, उसे नॉटसन (1982) द्वारा 1-आयामी कहा जाता है।
यह भी देखें
संदर्भ
- ↑ Amsaleg, Laurent; Chelly, Oussama; Furon, Teddy; Girard, Stéphane; Houle, Michael E.; Kawarabayashi, Ken-ichi; Nett, Michael (2015-08-10). "स्थानीय आंतरिक आयाम का अनुमान लगाना". Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD '15. Sydney, NSW, Australia: Association for Computing Machinery: 29–38. doi:10.1145/2783258.2783405. ISBN 978-1-4503-3664-2. S2CID 16058196.
- ↑ Houle, M. E.; Kashima, H.; Nett, M. (2012). "सामान्यीकृत विस्तार आयाम". 2012 IEEE 12th International Conference on Data Mining Workshops: 587–594. doi:10.1109/ICDMW.2012.94. ISBN 978-1-4673-5164-5. S2CID 8336466.
- ↑ Thordsen, Erik; Schubert, Erich (2020). Satoh, Shin'ichi; Vadicamo, Lucia; Zimek, Arthur; Carrara, Fabio; Bartolini, Ilaria; Aumüller, Martin; Jónsson, Björn Þór; Pagh, Rasmus (eds.). "ABID: Angle Based Intrinsic Dimensionality". Similarity Search and Applications. Lecture Notes in Computer Science (in English). Cham: Springer International Publishing. 12440: 218–232. arXiv:2006.12880. doi:10.1007/978-3-030-60936-8_17. ISBN 978-3-030-60936-8. S2CID 219980390.
- ↑ Torgerson, Warren S. (1978) [1958]. Theory and methods of scaling. Wiley. ISBN 0471879452. OCLC 256008416.
- ↑ Shepard, Roger N. (1962). "The analysis of proximities: Multidimensional scaling with an unknown distance function. I.". Psychometrika. 27 (2): 125–140. doi:10.1007/BF02289630. S2CID 186222646.
- ↑ Shepard, Roger N. (1974). "Representation of structure in similarity data: Problems and prospects". Psychometrika. 39 (4): 373–421. doi:10.1007/BF02291665. S2CID 121704645.
- ↑ Bennet, Robert S. (June 1965). "Representation and analysis of signals—Part XXI: The intrinsic dimensionality of signal collections". Rep. 163. Baltimore, MD: The Johns Hopkins University.
- ↑ Robert S. Bennett (1965). Representation and Analysis of Signals Part XXI. The intrinsic dimensionality of signal collections (PDF) (PhD). Ann Arbor, Michigan: The Johns Hopkins University. Archived from the original (PDF) on December 27, 2019.
- ↑ Bennett, Robert S. (September 1969). "The intrinsic dimensionality of signal collections". IEEE Transactions on Information Theory. 15 (5): 517–525. doi:10.1109/TIT.1969.1054365.
- ↑ Fukunaga, K.; Olsen, D. R. (1971). "डेटा की आंतरिक आयामीता खोजने के लिए एक एल्गोरिथ्म". IEEE Transactions on Computers. 20 (2): 176–183. doi:10.1109/T-C.1971.223208. S2CID 30206700.
- ↑ Pettis, K. W.; Bailey, Thomas A.; Jain, Anil K.; Dubes, Richard C. (1979). "निकट-पड़ोसी जानकारी से आंतरिक आयामी अनुमानक". IEEE Transactions on Pattern Analysis and Machine Intelligence. 1 (1): 25–37. doi:10.1109/TPAMI.1979.4766873. PMID 21868828. S2CID 2196461.
- ↑ Trunk, G. V. (1976). "एक शोर संकेत संग्रह के आंतरिक आयाम का सांख्यिकीय अनुमान". IEEE Transactions on Computers. 100 (2): 165–171. doi:10.1109/TC.1976.5009231. S2CID 1181023.
- ↑ Grassberger, P.; Procaccia, I. (1983). "अजीब आकर्षित करने वालों की विचित्रता को मापना". Physica D: Nonlinear Phenomena. 9 (1–2): 189–208. Bibcode:1983PhyD....9..189G. doi:10.1016/0167-2789(83)90298-1.
- ↑ Takens, F. (1984). "On the numerical determination of the dimension of an attractor". In Tong, Howell (ed.). Dynamical Systems and Bifurcations, Proceedings of a Workshop Held in Groningen, The Netherlands, April 16-20, 1984. Lecture Notes in Mathematics. Vol. 1125. Springer-Verlag. pp. 99–106. doi:10.1007/BFb0075637. ISBN 3540394117.
- ↑ Cutler, C. D. (1993). "A review of the theory and estimation of fractal dimension". आयाम अनुमान और मॉडल. Nonlinear Time Series and Chaos. Vol. 1. World Scientific. pp. 1–107. ISBN 9810213530.
- ↑ Harte, D. (2001). Multifractals — Theory and Applications. Chapman and Hall/CRC. ISBN 9781584881544.
- ↑ Chavez, E. (2001). "मीट्रिक रिक्त स्थान में खोज करना". ACM Computing Surveys. 33 (3): 273–321. doi:10.1145/502807.502808. hdl:10533/172863. S2CID 3201604.
- ↑ Pestov, V. (2008). "डेटासेट के आंतरिक आयाम के लिए एक स्वयंसिद्ध दृष्टिकोण". Neural Networks. 21 (2–3): 204–213. arXiv:0712.2063. doi:10.1016/j.neunet.2007.12.030. PMID 18234471. S2CID 2309396.
- ↑ Bigün, Josef; Granlund, Gösta H. (1987). "Optimal orientation detection of linear symmetry" (PDF). Proceedings of the International Conference on Computer Vision. pp. 433–438.
- ↑ Granlund, Gösta H.; Knutsson, Hans (1995). Signal Processing in Computer Vision. Kluwer Academic. ISBN 978-1-4757-2377-9.
- Michael Felsberg; Sinan Kalkan; Norbert Krueger (2009). "Continuous Dimensionality Characterization of Image Structures". Image and Vision Computing. 27 (6): 628–636. doi:10.1016/j.imavis.2008.06.018. hdl:11511/36631.