डिराक माप: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 15: Line 15:


== डायराक माप के गुण ==
== डायराक माप के गुण ==
होने देना {{math|''δ''<sub>''x''</sub>}} किसी निश्चित बिंदु पर केंद्रित डायराक माप को निरूपित करता है {{math|''x''}} कुछ औसत दर्जे की जगह में {{math|(''X'', Σ)}}.
माना कि δx कुछ मापने योग्य स्थान {{math|(''X'', Σ)}} में कुछ निश्चित बिंदु {{math|''x''}} पर केंद्रित डायराक माप को दर्शाता है। 
* {{math|''δ''<sub>''x''</sub>}} एक प्रायिकता माप है, और इसलिए एक परिमित माप है।
* {{math|''δ''<sub>''x''</sub>}} एक प्रायिकता माप है, और इसलिए एक परिमित माप है।



Revision as of 00:00, 30 May 2023

3-बिंदु समुच्चय के सभी संभावित उपसमुच्चयों को प्रदर्शित करने वाला आरेख {x,y,z}. डिराक माप δx आरेख के ऊपरी-बाएँ आधे भाग में सभी समुच्चयों के लिए 1 और निचले-दाएँ आधे भाग में सभी समुच्चयों के लिए 0 का आकार निर्दिष्ट करता है।

गणित में, डायराक माप केवल एक समुच्चय के आधार पर आकार निर्दिष्ट करता है कि इसमें एक निश्चित तत्व x उपस्थित है या नहीं। यह डिराक डेल्टा फलन, भौतिकी और अन्य तकनीकी क्षेत्रों में महत्वपूर्ण उपकरण के विचार को औपचारिक रूप प्रदान करने का एक उपाय है।

परिभाषा

डायराक माप एक समुच्चय X पर माप δx (किसी भी σ-बीजगणित के साथ उपसमुच्चय X का) दिए गए xX के लिए और कोई भी (मापने योग्य समुच्चय) समुच्चय AX के द्वारा परिभाषित करता है।

जहाँ 1A, A का सूचक फलन है।

डायराक माप एक संभाव्यता माप है और संभाव्यता के संदर्भ में यह लगभग सुनिश्चित परिणाम प्रतिदर्श समष्टि X में परिणाम x का प्रतिनिधित्व करता है। हम यह भी कह सकते हैं कि माप x पर एक एकल परमाणु (माप सिद्धांत) है। चूंकि डायराक माप को परमाणु माप के रूप में मानना ​​​​सही नहीं है। जब हम डायराक डेल्टा की अनुक्रमिक परिभाषा पर विचार करते हैं। डेल्टा अनुक्रम की सीमा के रूप में डायराक उपाय संभाव्यता उपायों के उत्तल समुच्चय के एक्सट्रीम प्वॉइंट X पर उपस्थित हैं।

इसका नाम डायराक डेल्टा फलन से बैक-फॉर्मेशन है। जिसे एक वितरण (गणित) के रूप में माना जाता है, उदाहरण के लिए वास्तविक रेखा पर, विशेष प्रकार के वितरण के लिए उपाय किए जा सकते हैं। पहचान-

जो निम्नलिखित रूप में है-

डेल्टा फलन की परिभाषा का भाग बनने के लिए अधिकांशतः प्राप्त किया जाता है, जिसको लेबेसेग एकीकरण के प्रमेय के रूप में होता है।

डायराक माप के गुण

माना कि δx कुछ मापने योग्य स्थान (X, Σ) में कुछ निश्चित बिंदु x पर केंद्रित डायराक माप को दर्शाता है।

  • δx एक प्रायिकता माप है, और इसलिए एक परिमित माप है।

लगता है कि (X, T) एक टोपोलॉजिकल स्पेस है और वह Σ कम से कम उतना ही ठीक है जितना कि बोरेल सिग्मा बीजगणित | बोरेल σ-बीजगणित σ(T) पर X.

सामान्यीकरण

एक असतत माप डायराक माप के समान है, सिवाय इसके कि यह एक बिंदु के बजाय कई बिंदुओं पर केंद्रित है। अधिक औपचारिक रूप से, वास्तविक रेखा पर एक माप (गणित) को असतत माप कहा जाता है (लेबेसेग माप के संबंध में) यदि इसका समर्थन (माप सिद्धांत) अधिक से अधिक एक गणनीय समुच्चय है।

यह भी देखें

  • असतत उपाय
  • डिराक डेल्टा फलन

संदर्भ

  • Dieudonné, Jean (1976). "Examples of measures". Treatise on analysis, Part 2. Academic Press. p. 100. ISBN 0-12-215502-5.
  • Benedetto, John (1997). "§2.1.3 Definition, δ[[Category: Templates Vigyan Ready]]". Harmonic analysis and applications. CRC Press. p. 72. ISBN 0-8493-7879-6. {{cite book}}: URL–wikilink conflict (help)