मानक बोरेल स्थान: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
गणित में मानक बोरेल स्थान एक [[पोलिश स्थान]] से जुड़ा हुआ बोरेल स्थान हैं।[[ असतत स्थान | असतत]] पोलिश स्थान के डिस्काउन्टिंग बोरेल रिक्त स्थान, [[मापने योग्य स्थान]] के समरूपता वक्र केवल एक मानक बोरेल रिक्त स्थान है। | गणित में '''मानक बोरेल स्थान''' एक [[पोलिश स्थान]] से जुड़ा हुआ बोरेल स्थान हैं।[[ असतत स्थान | असतत]] पोलिश स्थान के डिस्काउन्टिंग बोरेल रिक्त स्थान, [[मापने योग्य स्थान]] के समरूपता वक्र केवल एक '''मानक बोरेल रिक्त स्थान''' है। | ||
== औपचारिक परिभाषा == | == औपचारिक परिभाषा == |
Revision as of 00:20, 29 May 2023
गणित में मानक बोरेल स्थान एक पोलिश स्थान से जुड़ा हुआ बोरेल स्थान हैं। असतत पोलिश स्थान के डिस्काउन्टिंग बोरेल रिक्त स्थान, मापने योग्य स्थान के समरूपता वक्र केवल एक मानक बोरेल रिक्त स्थान है।
औपचारिक परिभाषा
यदि कोई मीट्रिक (गणित) उपस्थित है। जिससे उसे मानक बोरेल मापने योग्य स्थान कहा जाता है। जो इसे इस प्रकार से एक पूर्ण मीट्रिक स्थान वियोज्य स्पेस मीट्रिक स्पेस बनाता है। जिससे एक बोरेल σ-बीजगणित है।[1]
मानक बोरेल रिक्त स्थान में कई उपयोगी विशेषताएं होती हैं। जो सामान्य औसत क्रमांक के स्थान के लिए नहीं होती हैं।
विशेषताएँं
- यदि और मानक बोरेल हैं। जिससे कोई विशेषण मापने योग्य मैपिंग एक समरूपता है (अर्थात प्रतिलोम मानचित्रण भी मापने योग्य है)। यह विश्लेषणात्मक समुच्चय से प्राप्त किया जाता है। सूस्लिन की प्रमेय, एक समुच्चय के रूप में जो एनालिटिक समुच्चय और को-एनालिटिक दोनों होते है, जिससे अनिवार्य रूप से बोरेल हैं।
- यदि और मानक बोरेल स्थान हैं और , जिससे मापने योग्य है। यदि और केवल यदि किसी फलन का ग्राफ़ बोरेल है।
- मानक बोरेल रिक्त स्थान के एक गणना करने योग्य फैमली का उत्पाद और प्रत्यक्ष संघ मानक है।
- मानक बोरेल स्थान पर प्रत्येक पूर्ण माप संभाव्यता माप इसे एक मानक संभावना स्थान में पूर्णतयः परिवर्तित कर देता है।
कुराटोव्स्की का प्रमेय
प्रमेय- माना एक पोलिश रिक्त स्थान हो, अर्थात एक टोपोलॉजिकल रिक्त स्थान हो, जैसे कि एक मेट्रिक (गणित) पर हो, जो की टोपोलॉजी को परिभाषित करता है और वह को एक पूर्ण वियोज्य मीट्रिक स्थान का निर्माण करता है। जिससे बोरेल स्पेस के रूप में बोरेल समरूपता 1) (2) या (3) एक परिमित असतत स्थान में से एक हैं। (यह परिणाम महराम की प्रमेय की पहचान कराता है।)
यह इस प्रकार है कि एक मानक बोरेल स्पेस को इसकी प्रमुखता से आइसोमोर्फिज्म तक की विशेषता है,[2] और यह कि किसी भी अगणनीय मानक बोरेल स्थान में निरंतरता की प्रमुखता होती है।
मानक बोरेल रिक्त स्थान पर बोरेल समरूपता टोपोलॉजिकल रिक्त स्थान पर होमोमोर्फिम्स के समान हैं। दोनों विशेषण हैं और संरचना के अनुसार विवृत हैं और एक होमियोमोर्फिज्म और इसके व्युत्क्रम दोनों निरंतरता (टोपोलॉजी) हैं, दोनों के अतिरिक्त केवल बोरेल औसत क्रम के रूप में हैं।
यह भी देखें
संदर्भ
- ↑ Mackey, G.W. (1957): Borel structure in groups and their duals. Trans. Am. Math. Soc., 85, 134-165.
- ↑ Srivastava, S.M. (1991), A Course on Borel Sets, Springer Verlag, ISBN 0-387-98412-7