एपर्चर (एंटीना): Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[ विद्युत चुम्बकीय | विद्युत चुम्बकीय]] और [[एंटीना (रेडियो)]] सिद्धांत में | [[ विद्युत चुम्बकीय | विद्युत चुम्बकीय]] और [[एंटीना (रेडियो)]] सिद्धांत में एंटीना के एपर्चर को ए सतह के रूप में परिभाषित किया जाता है, एंटीना के पास या उस पर, जिस पर इसे बनाना सुविधाजनक होता है बाहरी बिंदुओं पर क्षेत्र की गणना करने के उद्देश्य से क्षेत्र मानों के संबंध में धारणाएँ एपर्चर को अधिकांशतः ऐन्टेना के पास एक समतल सतह के उस भाग के रूप में लिया जाता है जो अधिकतम विकिरण की दिशा के लंबवत होता है जिसके माध्यम से विकिरण का प्रमुख भाग गुजरता है।<ref name="IEEE">{{cite book |title=IEEE Std 145-2013, IEEE Standard for Definitions of Terms for Antennas |publisher=IEEE}}</ref> | ||
== प्रभावी क्षेत्र == | == प्रभावी क्षेत्र == | ||
ऐन्टेना के प्रभावी क्षेत्र को परिभाषित किया गया है "किसी दिए गए दिशा में, उस दिशा से ऐन्टेना पर एक प्लेन तरंग घटना के पावर फ्लक्स घनत्व के लिए एक प्राप्त एंटीना के टर्मिनलों पर उपलब्ध शक्ति का अनुपात लहर ध्रुवीकरण से मेल खाती है ऐन्टेना के लिए।"<ref name="IEEE" /> इस परिभाषा में विशेष रूप से ध्यान देने योग्य बात यह है कि प्रभावी क्षेत्र और शक्ति प्रवाह घनत्व दोनों एक विमान तरंग के घटना कोण के कार्य हैं। मान लें कि एक विशेष दिशा <math>(\theta, \phi)</math> से एक समतल तरंग, जो सरणी सामान्य के सापेक्ष दिगंश और उन्नयन कोण हैं, में एक शक्ति प्रवाह घनत्व है <math>\|\vec{S}\|</math>; यह एक वर्ग मीटर के समतल तरंग की दिशा के सामान्य एक इकाई क्षेत्र से गुजरने वाली शक्ति की मात्रा है। | ऐन्टेना के प्रभावी क्षेत्र को परिभाषित किया गया है "किसी दिए गए दिशा में, उस दिशा से ऐन्टेना पर एक प्लेन तरंग घटना के पावर फ्लक्स घनत्व के लिए एक प्राप्त एंटीना के टर्मिनलों पर उपलब्ध शक्ति का अनुपात लहर ध्रुवीकरण से मेल खाती है ऐन्टेना के लिए।"<ref name="IEEE" /> इस परिभाषा में विशेष रूप से ध्यान देने योग्य बात यह है कि प्रभावी क्षेत्र और शक्ति प्रवाह घनत्व दोनों एक विमान तरंग के घटना कोण के कार्य हैं। मान लें कि एक विशेष दिशा <math>(\theta, \phi)</math> से एक समतल तरंग, जो सरणी सामान्य के सापेक्ष दिगंश और उन्नयन कोण हैं, में एक शक्ति प्रवाह घनत्व है <math>\|\vec{S}\|</math>; यह एक वर्ग मीटर के समतल तरंग की दिशा के सामान्य एक इकाई क्षेत्र से गुजरने वाली शक्ति की मात्रा है। | ||
परिभाषा के अनुसार, यदि कोई एंटेना <math>P_\text{O}</math> वाट को अपने आउटपुट टर्मिनलों से जुड़ी संचरण र्रेखा | परिभाषा के अनुसार, यदि कोई एंटेना <math>P_\text{O}</math> वाट को अपने आउटपुट टर्मिनलों से जुड़ी संचरण र्रेखा को वितरित करता है जब विद्युत् घनत्व के एक समान क्षेत्र द्वारा विकिरणित किया जाता है <math>|S(\theta, \phi)|</math> वाट प्रति वर्ग मीटर उस विमान तरंग की दिशा के लिए एंटीना का प्रभावी क्षेत्र <math>A_\text{e}</math>} द्वारा दिया जाता है | ||
: <math>A_\text{e}(\theta, \phi) = \frac{P_O}{\|\vec{S}(\theta, \phi)\|}.</math> | : <math>A_\text{e}(\theta, \phi) = \frac{P_O}{\|\vec{S}(\theta, \phi)\|}.</math> | ||
Line 14: | Line 14: | ||
एंटीना या एपर्चर का प्रभावी क्षेत्र प्राप्त करने वाले एंटीना पर आधारित होता है। चूँकि | एंटीना या एपर्चर का प्रभावी क्षेत्र प्राप्त करने वाले एंटीना पर आधारित होता है। चूँकि पारस्परिकता के कारण प्राप्त करने और संचारित करने में एक एंटीना की प्रत्यक्षता समान होती है इसलिए विभिन्न दिशाओं (विकिरण प्रतिरूप) में एक एंटीना द्वारा प्रेषित शक्ति भी प्रभावी क्षेत्र <math>A_e</math> के समानुपाती होती है। जब कोई दिशा निर्दिष्ट नहीं की जाती है तो <math>A_e</math> को इसके अधिकतम मान को संदर्भित करने के लिए समझा जाता है।<ref name="IEEE" /> | ||
=== प्रभावी लंबाई === | === प्रभावी लंबाई === | ||
Line 33: | Line 33: | ||
: <math>l_\text{eff} = V_0 / E_\text{s},</math> | : <math>l_\text{eff} = V_0 / E_\text{s},</math> | ||
जहाँ | जहाँ | ||
: <math>V_0</math> एंटीना के टर्मिनलों पर दिखने वाला विवर्त परिपथ | : <math>V_0</math> एंटीना के टर्मिनलों पर दिखने वाला विवर्त परिपथ वोल्टेज है | ||
: <math>E_s</math> ऐन्टेना पर [[ वाल्ट |वाल्ट]] प्रति मीटर में रेडियो संकेत की विद्युत क्षेत्र शक्ति है। | : <math>E_s</math> ऐन्टेना पर [[ वाल्ट |वाल्ट]] प्रति मीटर में रेडियो संकेत की विद्युत क्षेत्र शक्ति है। | ||
प्रभावी लंबाई जितनी लंबी होगी उसके टर्मिनलों पर वोल्टेज उतना ही अधिक होगा। चूँकि | प्रभावी लंबाई जितनी लंबी होगी उसके टर्मिनलों पर वोल्टेज उतना ही अधिक होगा। चूँकि उस वोल्टेज द्वारा निहित वास्तविक शक्ति ऐन्टेना के फीडपॉइंट प्रतिबाधा पर निर्भर करती है इसलिए यह सीधे एंटीना लाभ से संबंधित नहीं हो सकती है जो प्राप्त शक्ति का एक माप है (किन्तु सीधे वोल्टेज या करंट निर्दिष्ट नहीं करता है) उदाहरण के लिए एक अर्ध-तरंग द्विध्रुव की एक छोटी द्विध्रुव की तुलना में अधिक प्रभावी लंबाई होती है। चूँकि लघु द्विध्रुव का प्रभावी क्षेत्र लगभग उतना ही बड़ा है जितना कि यह अर्ध-तरंग एंटीना के लिए है, क्योंकि (आदर्श रूप से) एक आदर्श प्रतिबाधा-मिलान नेटवर्क दिया जाता है, यह उस तरंग से लगभग उतनी ही शक्ति प्राप्त कर सकता है। ध्यान दें कि किसी दिए गए एंटीना फीडपॉइंट प्रतिबाधा के लिए, एक एंटीना का लाभ या <math>A_\text{eff}</math> , <math>l_\text{eff}</math> के वर्ग के अनुसार बढ़ता है जिससे अलग-अलग तरंग दिशाओं के सापेक्ष एंटीना की प्रभावी लंबाई उन दिशाओं में लाभ के वर्गमूल का अनुसरण करे किन्तु चूंकि एंटीना के भौतिक आकार को बदलने से अनिवार्य रूप से प्रतिबाधा (अधिकांशतः एक महान कारक द्वारा) बदल जाती है, प्रभावी लंबाई अपने आप में एक एंटीना की चरम दिशात्मकता का वर्णन करने के लिए योग्यता का एक उपयोगी आंकड़ा नहीं है और सैद्धांतिक महत्व का अधिक है। | ||
== एपर्चर दक्षता == | == एपर्चर दक्षता == | ||
Line 49: | Line 49: | ||
| isbn = 978-81-8431-176-1}}</ref> चूँकि तथाकथित एपर्चर एंटेना जैसे परवलयिक व्यंजन और हॉर्न एंटेना में एक बड़ा (तरंग दैर्ध्य के सापेक्ष) भौतिक क्षेत्र <math>A_\text{phys}</math> होता है, जो इस तरह के विकिरण के लिए अपारदर्शी होता है अनिवार्य रूप से एक से छाया डालना समतल तरंग और इस प्रकार मूल बीम से <math>A_\text{phys} S</math> शक्ति की मात्रा को हटाना। विमान तरंग से निकाली गई वह शक्ति वास्तव में ऐन्टेना (विद्युत शक्ति में परिवर्तित), परावर्तित या अन्यथा बिखरी हुई, या अवशोषित (गर्मी में परिवर्तित) द्वारा प्राप्त की जा सकती है। इस स्थिति में प्रभावी एपर्चर <math>A_e</math> सदैव ऐन्टेना के भौतिक एपर्चर<math>A_\text{phys}</math>के क्षेत्रफल से कम (या समान ) होता है क्योंकि यह वास्तव में केवल उस तरंग के भाग के लिए खाता होता है। विद्युत शक्ति के रूप में प्राप्त होता है। एपर्चर ऐन्टेना की एपर्चर दक्षता <math>e_\text{a}</math> को इन दो क्षेत्रों के अनुपात के रूप में परिभाषित किया गया है: | | isbn = 978-81-8431-176-1}}</ref> चूँकि तथाकथित एपर्चर एंटेना जैसे परवलयिक व्यंजन और हॉर्न एंटेना में एक बड़ा (तरंग दैर्ध्य के सापेक्ष) भौतिक क्षेत्र <math>A_\text{phys}</math> होता है, जो इस तरह के विकिरण के लिए अपारदर्शी होता है अनिवार्य रूप से एक से छाया डालना समतल तरंग और इस प्रकार मूल बीम से <math>A_\text{phys} S</math> शक्ति की मात्रा को हटाना। विमान तरंग से निकाली गई वह शक्ति वास्तव में ऐन्टेना (विद्युत शक्ति में परिवर्तित), परावर्तित या अन्यथा बिखरी हुई, या अवशोषित (गर्मी में परिवर्तित) द्वारा प्राप्त की जा सकती है। इस स्थिति में प्रभावी एपर्चर <math>A_e</math> सदैव ऐन्टेना के भौतिक एपर्चर<math>A_\text{phys}</math>के क्षेत्रफल से कम (या समान ) होता है क्योंकि यह वास्तव में केवल उस तरंग के भाग के लिए खाता होता है। विद्युत शक्ति के रूप में प्राप्त होता है। एपर्चर ऐन्टेना की एपर्चर दक्षता <math>e_\text{a}</math> को इन दो क्षेत्रों के अनुपात के रूप में परिभाषित किया गया है: | ||
: <math>e_\text{a} = \frac{A_e}{A_\text{phys}}.</math> | : <math>e_\text{a} = \frac{A_e}{A_\text{phys}}.</math> | ||
एपर्चर दक्षता 0 और 1 के बीच एक आयाम रहित पैरामीटर है जो मापता है कि ऐन्टेना अपने भौतिक एपर्चर को पार करने वाली सभी रेडियो तरंग शक्ति का उपयोग करने के लिए कितना समीप आता है। यदि एपर्चर दक्षता 100% थी, तो उसके भौतिक एपर्चर पर पड़ने वाली सभी तरंगों की शक्ति उसके आउटपुट टर्मिनलों से जुड़े भार को वितरित विद्युत शक्ति में परिवर्तित हो जाएगी इसलिए ये दो क्षेत्र समान होंगे: <math>A_\text{e} = A_\text{phys}</math> किन्तु एक परवलयिक डिश के फ़ीड के साथ-साथ अन्य बिखरने या हानि तंत्रों द्वारा गैर-समान प्रकाश के कारण यह व्यवहार में प्राप्त नहीं होता है। चूंकि परवलयिक एंटीना की लागत और हवा का भार भौतिक एपर्चर आकार के साथ बढ़ता है, एपर्चर दक्षता को अधिकतम करके इन्हें कम करने के लिए एक शक्तिशाली प्रेरणा हो सकती है (एक निर्दिष्ट एंटीना लाभ प्राप्त करते समय)। ठेठ एपर्चर एंटेना की एपर्चर क्षमता 0.35 | एपर्चर दक्षता 0 और 1 के बीच एक आयाम रहित पैरामीटर है जो मापता है कि ऐन्टेना अपने भौतिक एपर्चर को पार करने वाली सभी रेडियो तरंग शक्ति का उपयोग करने के लिए कितना समीप आता है। यदि एपर्चर दक्षता 100% थी, तो उसके भौतिक एपर्चर पर पड़ने वाली सभी तरंगों की शक्ति उसके आउटपुट टर्मिनलों से जुड़े भार को वितरित विद्युत शक्ति में परिवर्तित हो जाएगी इसलिए ये दो क्षेत्र समान होंगे: <math>A_\text{e} = A_\text{phys}</math> किन्तु एक परवलयिक डिश के फ़ीड के साथ-साथ अन्य बिखरने या हानि तंत्रों द्वारा गैर-समान प्रकाश के कारण यह व्यवहार में प्राप्त नहीं होता है। चूंकि परवलयिक एंटीना की लागत और हवा का भार भौतिक एपर्चर आकार के साथ बढ़ता है, एपर्चर दक्षता को अधिकतम करके इन्हें कम करने के लिए एक शक्तिशाली प्रेरणा हो सकती है (एक निर्दिष्ट एंटीना लाभ प्राप्त करते समय)। ठेठ एपर्चर एंटेना की एपर्चर क्षमता 0.35 से 0.70 से अधिक तक भिन्न होती है। | ||
ध्यान दें कि जब कोई ऐन्टेना की दक्षता के बारे में बात करता है तो अधिकांशतः इसका अर्थ विकिरण दक्षता होता है एक उपाय जो सभी एंटेना पर प्रयुक्त होता है (न केवल एपर्चर एंटेना) और केवल ओमिक हानि के कारण लाभ में कमी के लिए खाता है। एपर्चर एंटेना के बाहर अधिकांश एंटेना पतले तारों या छड़ों से बने होते हैं जिनमें एक छोटा सा भौतिक क्रॉस-आंशिक क्षेत्र होता है (सामान्यतः <math>A_\text{e}</math>) जिसके लिए एपर्चर दक्षता भी परिभाषित नहीं है। | ध्यान दें कि जब कोई ऐन्टेना की दक्षता के बारे में बात करता है तो अधिकांशतः इसका अर्थ विकिरण दक्षता होता है एक उपाय जो सभी एंटेना पर प्रयुक्त होता है (न केवल एपर्चर एंटेना) और केवल ओमिक हानि के कारण लाभ में कमी के लिए खाता है। एपर्चर एंटेना के बाहर अधिकांश एंटेना पतले तारों या छड़ों से बने होते हैं जिनमें एक छोटा सा भौतिक क्रॉस-आंशिक क्षेत्र होता है (सामान्यतः <math>A_\text{e}</math>) जिसके लिए एपर्चर दक्षता भी परिभाषित नहीं है। | ||
Line 58: | Line 58: | ||
जैसा कि नीचे दिखाया गया है, दोषरहित आइसोट्रोपिक ऐन्टेना का छिद्र जो इस परिभाषा के अनुसार एकता लाभ है, है | जैसा कि नीचे दिखाया गया है, दोषरहित आइसोट्रोपिक ऐन्टेना का छिद्र जो इस परिभाषा के अनुसार एकता लाभ है, है | ||
: <math>A_\text{iso} = \frac{\lambda^2}{4\pi},</math> | : <math>A_\text{iso} = \frac{\lambda^2}{4\pi},</math> | ||
जहाँ | जहाँ <math>\lambda</math> रेडियो तरंगों की [[तरंग दैर्ध्य]] है। इस प्रकार | ||
: <math>G = \frac{A_\text{e}}{A_\text{iso}} = \frac{4\pi A_\text{e}}{\lambda^2}.</math> | : <math>G = \frac{A_\text{e}}{A_\text{iso}} = \frac{4\pi A_\text{e}}{\lambda^2}.</math> | ||
इसलिए बड़े प्रभावी छिद्रों वाले एंटेना को उच्च-लाभ वाले एंटेना (या बीम एंटेना) माना जाता है जिनकी कोणीय बीम चौड़ाई अपेक्षाकृत कम होती है। एंटेना प्राप्त करने के रूप में वे अन्य दिशाओं से आने वाली तरंगों (जिसे हस्तक्षेप माना जाएगा) की तुलना में पसंदीदा दिशा से आने वाली रेडियो तरंगों के प्रति अधिक संवेदनशील होते हैं। ट्रांसमिटिंग एंटेना के रूप में उनकी अधिकांश शक्ति अन्य दिशाओं की मान पर एक विशेष दिशा में विकीर्ण होती है। चूँकि | इसलिए बड़े प्रभावी छिद्रों वाले एंटेना को उच्च-लाभ वाले एंटेना (या बीम एंटेना) माना जाता है जिनकी कोणीय बीम चौड़ाई अपेक्षाकृत कम होती है। एंटेना प्राप्त करने के रूप में वे अन्य दिशाओं से आने वाली तरंगों (जिसे हस्तक्षेप माना जाएगा) की तुलना में पसंदीदा दिशा से आने वाली रेडियो तरंगों के प्रति अधिक संवेदनशील होते हैं। ट्रांसमिटिंग एंटेना के रूप में उनकी अधिकांश शक्ति अन्य दिशाओं की मान पर एक विशेष दिशा में विकीर्ण होती है। चूँकि एंटीना लाभ और प्रभावी छिद्र दिशा के कार्य हैं जब कोई दिशा निर्दिष्ट नहीं की जाती है तो इन्हें उनके अधिकतम मान को संदर्भित करने के लिए समझा जाता है जो कि एंटीना के इच्छित उपयोग की दिशा में है (एंटीना के [[मुख्य लोब]] या एंटीना दूरदर्शिता के रूप में भी जाना जाता है) | ||
==शुक्र संचरण सूत्र== | ==शुक्र संचरण सूत्र== | ||
Line 107: | Line 107: | ||
| date = 2016 | | date = 2016 | ||
| url = https://www.cv.nrao.edu/course/astr534/AntennaTheory.html | | url = https://www.cv.nrao.edu/course/astr534/AntennaTheory.html | ||
| access-date = 22 August 2018}}</ref> | | access-date = 22 August 2018}}</ref> मान लीजिए कि R के चालक बिंदु प्रतिबाधा के साथ एक आदर्श आइसोट्रोपिक एंटीना A तापमान T पर थर्मोडायनामिक संतुलन में एक बंद प्रणाली CA के अंदर बैठता है। हम एंटीना टर्मिनलों को एक दूसरे बंद प्रणाली CR के अंदर प्रतिरोध R के प्रतिरोधक से भी जोड़ते हैं, तापमान पर भी ''T'' बीच में केवल कुछ आवृत्ति घटकों को पारित करने वाला एक इच्छानुसार दोषरहित इलेक्ट्रॉनिक फ़िल्टर ''F<sub>ν</sub>'' डाला जा सकता है। | ||
प्रत्येक गुहा थर्मल संतुलन में है और इस प्रकार तापमान ''T'' के कारण ब्लैक-बॉडी विकिरण से भरा हुआ है। प्रतिरोधक उस तापमान के कारण एक विवर्त परिपथ | प्रत्येक गुहा थर्मल संतुलन में है और इस प्रकार तापमान ''T'' के कारण ब्लैक-बॉडी विकिरण से भरा हुआ है। प्रतिरोधक उस तापमान के कारण एक विवर्त परिपथ वोल्टेज के साथ जॉनसन-निक्विस्ट ध्वनि उत्पन्न करेगा जिसका माध्य-स्क्वायर [[वर्णक्रमीय घनत्व]] द्वारा दिया गया है | ||
: <math>\overline{v_n^2} = 4 k_\text{B} T R \, \eta(f),</math> | : <math>\overline{v_n^2} = 4 k_\text{B} T R \, \eta(f),</math> | ||
जहाँ | जहाँ <math>\eta(f)</math> आवृत्ति f पर प्रयुक्त होने वाला एक क्वांटम-मैकेनिकल कारक है; सामान्य तापमान और इलेक्ट्रॉनिक आवृत्तियों पर <math>\eta(f) = 1</math>, किन्तु सामान्यतः द्वारा दिया जाता है | ||
: <math>\eta(f) = \frac{hf/k_\text{B} T}{e^{hf/k_\text{B} T} - 1}.</math> | : <math>\eta(f) = \frac{hf/k_\text{B} T}{e^{hf/k_\text{B} T} - 1}.</math> | ||
Line 130: | Line 130: | ||
: | : | ||
चूँकि | चूँकि वह विकिरण गैर-ध्रुवीकृत है, जबकि एंटीना केवल एक ध्रुवीकरण के प्रति संवेदनशील है, इसे 2 के कारक से कम कर देता है। ऐन्टेना द्वारा स्वीकार किए गए ब्लैक-बॉडी विकिरण से कुल शक्ति का पता लगाने के लिए हमें उस मात्रा को अनुमानित क्रॉस-आंशिक रूप से एकीकृत करना होगा। सभी ठोस कोणों Ω और सभी आवृत्तियों f पर एंटीना का क्षेत्रफल ''A''<sub>eff</sub> : | ||
: <math>P_A = \int_0^\infty \int_{4\pi} \, \frac{P_{f,A,\Omega}(f)}{2} A_\text{eff}(\Omega, f) \, F_\nu(f) \, d\Omega \, df.</math> | : <math>P_A = \int_0^\infty \int_{4\pi} \, \frac{P_{f,A,\Omega}(f)}{2} A_\text{eff}(\Omega, f) \, F_\nu(f) \, d\Omega \, df.</math> | ||
चूंकि हमने एक आइसोटोपिक रेडिएटर ग्रहण किया है, ''A''<sub>eff</sub> | चूंकि हमने एक आइसोटोपिक रेडिएटर ग्रहण किया है, ''A''<sub>eff</sub> कोण से स्वतंत्र है, इसलिए ठोस कोणों पर एकीकरण तुच्छ है जो 4π के कारक का परिचय देता है। और फिर से हम नैरोबैंड इलेक्ट्रॉनिक फ़िल्टर कार्य ''F<sub>ν</sub>'' का साधारण स्थिति ले सकते हैं जो केवल बैंडविड्थ ''B''<sub>1</sub> की शक्ति को पास करता है आवृत्ति ''f''<sub>1</sub> के आसपास डबल इंटीग्रल तब सरल हो जाता है | ||
: <math>P_A = 2\pi P_{f,A,\Omega}(f) A_\text{eff} \, B_1 | : <math>P_A = 2\pi P_{f,A,\Omega}(f) A_\text{eff} \, B_1 | ||
= \frac{4\pi \, k_\text{B} T \, \eta(f_1)}{\lambda_1^2} A_\text{eff} B_1,</math> | = \frac{4\pi \, k_\text{B} T \, \eta(f_1)}{\lambda_1^2} A_\text{eff} B_1,</math> | ||
जहाँ | जहाँ <math>\lambda_1 = c/f_1</math> फ़्री-स्पेस तरंग दैर्ध्य आवृत्ति f के अनुरूप है<sub>1</sub>. | ||
चूंकि प्रत्येक प्रणाली एक ही तापमान पर थर्मोडायनामिक संतुलन में है हम गुहाओं के बीच शक्ति के शुद्ध हस्तांतरण की अपेक्षा नहीं करते हैं। अन्यथा ऊष्मप्रवैगिकी के दूसरे नियम के उल्लंघन में एक गुहा गर्म हो जाएगी और दूसरी ठंडी हो जाएगी। इसलिए, दोनों दिशाओं में शक्ति का प्रवाह समान होना चाहिए: | चूंकि प्रत्येक प्रणाली एक ही तापमान पर थर्मोडायनामिक संतुलन में है हम गुहाओं के बीच शक्ति के शुद्ध हस्तांतरण की अपेक्षा नहीं करते हैं। अन्यथा ऊष्मप्रवैगिकी के दूसरे नियम के उल्लंघन में एक गुहा गर्म हो जाएगी और दूसरी ठंडी हो जाएगी। इसलिए, दोनों दिशाओं में शक्ति का प्रवाह समान होना चाहिए: | ||
Line 143: | Line 143: | ||
= k_\text{B} T \, \eta(f_1) \, B_1,</math> | = k_\text{B} T \, \eta(f_1) \, B_1,</math> | ||
: <math>A_\text{eff} = \frac{\lambda_1^2}{4\pi}.</math> | : <math>A_\text{eff} = \frac{\lambda_1^2}{4\pi}.</math> | ||
इस प्रकार हम पाते हैं कि एक काल्पनिक आइसोट्रोपिक एंटीना के लिए ऊष्मप्रवैगिकी मांग करती है कि प्राप्त एंटीना के प्रभावी क्रॉस-सेक्शन में λ2/4π का क्षेत्र हो। इस परिणाम को और सामान्यीकृत किया जा सकता है यदि हम इंटीग्रल ओवर आवृत्ति | इस प्रकार हम पाते हैं कि एक काल्पनिक आइसोट्रोपिक एंटीना के लिए ऊष्मप्रवैगिकी मांग करती है कि प्राप्त एंटीना के प्रभावी क्रॉस-सेक्शन में λ2/4π का क्षेत्र हो। इस परिणाम को और सामान्यीकृत किया जा सकता है यदि हम इंटीग्रल ओवर आवृत्ति को अधिक सामान्य होने दें। फिर हम पाते हैं कि एक ही एंटीना के लिए ''A''<sub>eff</sub> उसी सूत्र के अनुसार आवृत्ति के साथ भिन्न होना चाहिए, λ = c/f का उपयोग करना। इसके अतिरिक्त ठोस कोण पर अभिन्न एक एंटीना के लिए सामान्यीकृत किया जा सकता है जो आइसोट्रोपिक नहीं है (अर्थात कोई वास्तविक एंटीना)। चूंकि विद्युत चुम्बकीय विकिरण के आगमन का कोण उपरोक्त इंटीग्रल में केवल ''A''<sub>eff</sub> में प्रवेश करता है, हम सरल किन्तु शक्तिशाली परिणाम पर पहुंचते हैं कि तरंग दैर्ध्य λ पर सभी कोणों पर प्रभावी क्रॉस-सेक्शन ''A''<sub>eff</sub> का औसत भी दिया जाना चाहिए | ||
{{Equation box 1 | {{Equation box 1 | ||
|indent = : | |indent = : | ||
Line 150: | Line 150: | ||
चूँकि | चूँकि उपरोक्त पर्याप्त प्रमाण है, हम ध्यान दे सकते हैं कि ऐन्टेना की प्रतिबाधा R होने की स्थिति जो प्रतिरोधक के समान है को भी शिथिल किया जा सकता है। सिद्धांत रूप में किसी भी ऐन्टेना प्रतिबाधा (जो पूरी तरह से प्रतिक्रियाशील नहीं है) को एक उपयुक्त (दोषरहित) मेल खाने वाले नेटवर्क को सम्मिलित करके प्रतिबाधा-मिलान प्रतिरोधक R से किया जा सकता है। चूंकि वह नेटवर्क दोषरहित है ''P''<sub>A</sub>और ''P''<sub>R</sub> अभी भी विपरीत दिशाओं में प्रवाहित होंगे तथापि ऐन्टेना और प्रतिरोध के टर्मिनलों पर देखा जाने वाला वोल्टेज और धाराएं अलग-अलग होंगी। किसी भी दिशा में विद्युत प्रवाह का वर्णक्रमीय घनत्व अभी भी <math>k_\text{B} T \, \eta(f)</math> द्वारा दिया जाएगा और वास्तव में यह बहुत ही तापीय-ध्वनि शक्ति वर्णक्रमीय घनत्व से जुड़ा है एक इलेक्ट्रोमैग्नेटिक मोड के साथ यह फ्री-स्पेस में हो या विद्युत रूप से प्रसारित हो। चूंकि रोकनेवाला के लिए केवल एक ही कनेक्शन है रोकनेवाला स्वयं एक ही मोड का प्रतिनिधित्व करता है। और एक एंटीना जिसमें एकल विद्युत कनेक्शन भी होता है, <math>\lambda_1^2/(4\pi)</math> के औसत प्रभावी क्रॉस-सेक्शन के अनुसार विद्युत चुम्बकीय क्षेत्र के एक मोड से जुड़ता है। | ||
==संदर्भ== | ==संदर्भ== | ||
Line 157: | Line 157: | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
{{DEFAULTSORT:Antenna Aperture}}[[Category: एंटेना|एपर्चर]] | {{DEFAULTSORT:Antenna Aperture}}[[Category: एंटेना|एपर्चर]] | ||
Revision as of 22:07, 29 May 2023
विद्युत चुम्बकीय और एंटीना (रेडियो) सिद्धांत में एंटीना के एपर्चर को ए सतह के रूप में परिभाषित किया जाता है, एंटीना के पास या उस पर, जिस पर इसे बनाना सुविधाजनक होता है बाहरी बिंदुओं पर क्षेत्र की गणना करने के उद्देश्य से क्षेत्र मानों के संबंध में धारणाएँ एपर्चर को अधिकांशतः ऐन्टेना के पास एक समतल सतह के उस भाग के रूप में लिया जाता है जो अधिकतम विकिरण की दिशा के लंबवत होता है जिसके माध्यम से विकिरण का प्रमुख भाग गुजरता है।[1]
प्रभावी क्षेत्र
ऐन्टेना के प्रभावी क्षेत्र को परिभाषित किया गया है "किसी दिए गए दिशा में, उस दिशा से ऐन्टेना पर एक प्लेन तरंग घटना के पावर फ्लक्स घनत्व के लिए एक प्राप्त एंटीना के टर्मिनलों पर उपलब्ध शक्ति का अनुपात लहर ध्रुवीकरण से मेल खाती है ऐन्टेना के लिए।"[1] इस परिभाषा में विशेष रूप से ध्यान देने योग्य बात यह है कि प्रभावी क्षेत्र और शक्ति प्रवाह घनत्व दोनों एक विमान तरंग के घटना कोण के कार्य हैं। मान लें कि एक विशेष दिशा से एक समतल तरंग, जो सरणी सामान्य के सापेक्ष दिगंश और उन्नयन कोण हैं, में एक शक्ति प्रवाह घनत्व है ; यह एक वर्ग मीटर के समतल तरंग की दिशा के सामान्य एक इकाई क्षेत्र से गुजरने वाली शक्ति की मात्रा है।
परिभाषा के अनुसार, यदि कोई एंटेना वाट को अपने आउटपुट टर्मिनलों से जुड़ी संचरण र्रेखा को वितरित करता है जब विद्युत् घनत्व के एक समान क्षेत्र द्वारा विकिरणित किया जाता है वाट प्रति वर्ग मीटर उस विमान तरंग की दिशा के लिए एंटीना का प्रभावी क्षेत्र } द्वारा दिया जाता है
ऐन्टेना द्वारा स्वीकार की गई शक्ति (एंटीना टर्मिनलों पर शक्ति) द्वारा प्राप्त की गई शक्ति से कम है जो विकिरण द्वारा एक एंटीना द्वारा प्राप्त की जाती है[1]। ऐन्टेना की दक्षता । [1] विद्युत चुम्बकीय ऊर्जा की शक्ति घनत्व के समान है जहां ऐरे अपर्चर के लिए नॉर्मल यूनिट वेक्टर है, जिसे फिजिकल अपर्चर एरिया से गुणा किया जाता है। आने वाले रेडिएशन को एंटीना के समान ध्रुवीकरण माना जाता है। इसलिए,
और
एंटीना या एपर्चर का प्रभावी क्षेत्र प्राप्त करने वाले एंटीना पर आधारित होता है। चूँकि पारस्परिकता के कारण प्राप्त करने और संचारित करने में एक एंटीना की प्रत्यक्षता समान होती है इसलिए विभिन्न दिशाओं (विकिरण प्रतिरूप) में एक एंटीना द्वारा प्रेषित शक्ति भी प्रभावी क्षेत्र के समानुपाती होती है। जब कोई दिशा निर्दिष्ट नहीं की जाती है तो को इसके अधिकतम मान को संदर्भित करने के लिए समझा जाता है।[1]
प्रभावी लंबाई
अधिकांश एंटीना डिज़ाइन भौतिक क्षेत्र द्वारा परिभाषित नहीं होते हैं किन्तु तारों या पतली छड़ों से युक्त होते हैं; तब प्रभावी एपर्चर का एंटीना के आकार या क्षेत्र से कोई स्पष्ट संबंध नहीं होता है। ऐन्टेना प्रतिक्रिया का एक वैकल्पिक उपाय जिसका ऐसे एंटेना की भौतिक लंबाई से अधिक संबंध है वह है प्रभावी लंबाई जिसे मीटर में मापा जाता है जिसे प्राप्त करने वाले एंटेना के लिए के रूप में परिभाषित किया गया है।[2]
जहाँ
- एंटीना के टर्मिनलों पर दिखने वाला विवर्त परिपथ वोल्टेज है
- ऐन्टेना पर वाल्ट प्रति मीटर में रेडियो संकेत की विद्युत क्षेत्र शक्ति है।
प्रभावी लंबाई जितनी लंबी होगी उसके टर्मिनलों पर वोल्टेज उतना ही अधिक होगा। चूँकि उस वोल्टेज द्वारा निहित वास्तविक शक्ति ऐन्टेना के फीडपॉइंट प्रतिबाधा पर निर्भर करती है इसलिए यह सीधे एंटीना लाभ से संबंधित नहीं हो सकती है जो प्राप्त शक्ति का एक माप है (किन्तु सीधे वोल्टेज या करंट निर्दिष्ट नहीं करता है) उदाहरण के लिए एक अर्ध-तरंग द्विध्रुव की एक छोटी द्विध्रुव की तुलना में अधिक प्रभावी लंबाई होती है। चूँकि लघु द्विध्रुव का प्रभावी क्षेत्र लगभग उतना ही बड़ा है जितना कि यह अर्ध-तरंग एंटीना के लिए है, क्योंकि (आदर्श रूप से) एक आदर्श प्रतिबाधा-मिलान नेटवर्क दिया जाता है, यह उस तरंग से लगभग उतनी ही शक्ति प्राप्त कर सकता है। ध्यान दें कि किसी दिए गए एंटीना फीडपॉइंट प्रतिबाधा के लिए, एक एंटीना का लाभ या , के वर्ग के अनुसार बढ़ता है जिससे अलग-अलग तरंग दिशाओं के सापेक्ष एंटीना की प्रभावी लंबाई उन दिशाओं में लाभ के वर्गमूल का अनुसरण करे किन्तु चूंकि एंटीना के भौतिक आकार को बदलने से अनिवार्य रूप से प्रतिबाधा (अधिकांशतः एक महान कारक द्वारा) बदल जाती है, प्रभावी लंबाई अपने आप में एक एंटीना की चरम दिशात्मकता का वर्णन करने के लिए योग्यता का एक उपयोगी आंकड़ा नहीं है और सैद्धांतिक महत्व का अधिक है।
एपर्चर दक्षता
सामान्यतः ऐन्टेना के एपर्चर को उसके भौतिक आकार से सीधे अनुमान नहीं लगाया जा सकता है।[3] चूँकि तथाकथित एपर्चर एंटेना जैसे परवलयिक व्यंजन और हॉर्न एंटेना में एक बड़ा (तरंग दैर्ध्य के सापेक्ष) भौतिक क्षेत्र होता है, जो इस तरह के विकिरण के लिए अपारदर्शी होता है अनिवार्य रूप से एक से छाया डालना समतल तरंग और इस प्रकार मूल बीम से शक्ति की मात्रा को हटाना। विमान तरंग से निकाली गई वह शक्ति वास्तव में ऐन्टेना (विद्युत शक्ति में परिवर्तित), परावर्तित या अन्यथा बिखरी हुई, या अवशोषित (गर्मी में परिवर्तित) द्वारा प्राप्त की जा सकती है। इस स्थिति में प्रभावी एपर्चर सदैव ऐन्टेना के भौतिक एपर्चरके क्षेत्रफल से कम (या समान ) होता है क्योंकि यह वास्तव में केवल उस तरंग के भाग के लिए खाता होता है। विद्युत शक्ति के रूप में प्राप्त होता है। एपर्चर ऐन्टेना की एपर्चर दक्षता को इन दो क्षेत्रों के अनुपात के रूप में परिभाषित किया गया है:
एपर्चर दक्षता 0 और 1 के बीच एक आयाम रहित पैरामीटर है जो मापता है कि ऐन्टेना अपने भौतिक एपर्चर को पार करने वाली सभी रेडियो तरंग शक्ति का उपयोग करने के लिए कितना समीप आता है। यदि एपर्चर दक्षता 100% थी, तो उसके भौतिक एपर्चर पर पड़ने वाली सभी तरंगों की शक्ति उसके आउटपुट टर्मिनलों से जुड़े भार को वितरित विद्युत शक्ति में परिवर्तित हो जाएगी इसलिए ये दो क्षेत्र समान होंगे: किन्तु एक परवलयिक डिश के फ़ीड के साथ-साथ अन्य बिखरने या हानि तंत्रों द्वारा गैर-समान प्रकाश के कारण यह व्यवहार में प्राप्त नहीं होता है। चूंकि परवलयिक एंटीना की लागत और हवा का भार भौतिक एपर्चर आकार के साथ बढ़ता है, एपर्चर दक्षता को अधिकतम करके इन्हें कम करने के लिए एक शक्तिशाली प्रेरणा हो सकती है (एक निर्दिष्ट एंटीना लाभ प्राप्त करते समय)। ठेठ एपर्चर एंटेना की एपर्चर क्षमता 0.35 से 0.70 से अधिक तक भिन्न होती है।
ध्यान दें कि जब कोई ऐन्टेना की दक्षता के बारे में बात करता है तो अधिकांशतः इसका अर्थ विकिरण दक्षता होता है एक उपाय जो सभी एंटेना पर प्रयुक्त होता है (न केवल एपर्चर एंटेना) और केवल ओमिक हानि के कारण लाभ में कमी के लिए खाता है। एपर्चर एंटेना के बाहर अधिकांश एंटेना पतले तारों या छड़ों से बने होते हैं जिनमें एक छोटा सा भौतिक क्रॉस-आंशिक क्षेत्र होता है (सामान्यतः ) जिसके लिए एपर्चर दक्षता भी परिभाषित नहीं है।
एपर्चर और लाभ
ऐन्टेना की प्रत्यक्षता रेडियो तरंगों को एक दिशा में अधिमानतः निर्देशित करने या किसी दिए गए दिशा से अधिमान्य रूप से प्राप्त करने की क्षमता एक पैरामीटर द्वारा व्यक्त की जाती है जिसे एंटीना लाभ कहा जाता है। इसे सामान्यतः उस एंटीना द्वारा दी गई दिशा में तरंगों से प्राप्त शक्ति के अनुपात के रूप में परिभाषित किया जाता है जो कि एक आदर्श आइसोट्रोपिक एंटीना द्वारा प्राप्त किया जा सकता है अर्थात एक काल्पनिक एंटीना जो सभी दिशाओं से समान रूप से अच्छी तरह से शक्ति प्राप्त करता है। यह देखा जा सकता है कि (दी गई आवृत्ति पर एंटेना के लिए) लाभ भी इन एंटेना के एपर्चर के अनुपात के समान होता है:
जैसा कि नीचे दिखाया गया है, दोषरहित आइसोट्रोपिक ऐन्टेना का छिद्र जो इस परिभाषा के अनुसार एकता लाभ है, है
जहाँ रेडियो तरंगों की तरंग दैर्ध्य है। इस प्रकार
इसलिए बड़े प्रभावी छिद्रों वाले एंटेना को उच्च-लाभ वाले एंटेना (या बीम एंटेना) माना जाता है जिनकी कोणीय बीम चौड़ाई अपेक्षाकृत कम होती है। एंटेना प्राप्त करने के रूप में वे अन्य दिशाओं से आने वाली तरंगों (जिसे हस्तक्षेप माना जाएगा) की तुलना में पसंदीदा दिशा से आने वाली रेडियो तरंगों के प्रति अधिक संवेदनशील होते हैं। ट्रांसमिटिंग एंटेना के रूप में उनकी अधिकांश शक्ति अन्य दिशाओं की मान पर एक विशेष दिशा में विकीर्ण होती है। चूँकि एंटीना लाभ और प्रभावी छिद्र दिशा के कार्य हैं जब कोई दिशा निर्दिष्ट नहीं की जाती है तो इन्हें उनके अधिकतम मान को संदर्भित करने के लिए समझा जाता है जो कि एंटीना के इच्छित उपयोग की दिशा में है (एंटीना के मुख्य लोब या एंटीना दूरदर्शिता के रूप में भी जाना जाता है)
शुक्र संचरण सूत्र
एक प्रेषण ऐन्टेना को दी गई शक्ति का अंश जो एक प्राप्त ऐन्टेना द्वारा प्राप्त किया जाता है, दोनों एंटेना के एपर्चर के उत्पाद के समानुपाती होता है और एंटेना और तरंग दैर्ध्य के बीच की दूरी के वर्ग मानों के व्युत्क्रमानुपाती होता है। यह फ्रिस संचरण समीकरण के एक रूप द्वारा दिया गया है:[4]
जहाँ
- ट्रांसमिटिंग एंटीना इनपुट टर्मिनलों में फीड की गई शक्ति है,
- एंटीना आउटपुट टर्मिनल प्राप्त करने पर उपलब्ध शक्ति है,
- प्राप्त एंटीना का प्रभावी क्षेत्र है,
- संचारण एंटीना का प्रभावी क्षेत्र है,
- एंटेना के बीच की दूरी है (सूत्र केवल के लिए मान्य है जो प्राप्त एंटीना पर एक प्लेन तरंग फ्रंट सुनिश्चित करने के लिए पर्याप्त है, द्वारा पर्याप्त रूप से अनुमानित है, जहां है एंटेना में से किसी का सबसे बड़ा रैखिक आयाम है ),
- रेडियो आवृत्ति की तरंग दैर्ध्य है।
थर्मोडायनामिक विचारों से एंटीना एपर्चर की व्युत्पत्ति
एक आइसोट्रोपिक एंटीना का छिद्र ऊपर लाभ की परिभाषा का आधार ऊष्मप्रवैगिकी के साथ संगति के आधार पर प्राप्त किया जा सकता है।[5][6][7] मान लीजिए कि R के चालक बिंदु प्रतिबाधा के साथ एक आदर्श आइसोट्रोपिक एंटीना A तापमान T पर थर्मोडायनामिक संतुलन में एक बंद प्रणाली CA के अंदर बैठता है। हम एंटीना टर्मिनलों को एक दूसरे बंद प्रणाली CR के अंदर प्रतिरोध R के प्रतिरोधक से भी जोड़ते हैं, तापमान पर भी T बीच में केवल कुछ आवृत्ति घटकों को पारित करने वाला एक इच्छानुसार दोषरहित इलेक्ट्रॉनिक फ़िल्टर Fν डाला जा सकता है।
प्रत्येक गुहा थर्मल संतुलन में है और इस प्रकार तापमान T के कारण ब्लैक-बॉडी विकिरण से भरा हुआ है। प्रतिरोधक उस तापमान के कारण एक विवर्त परिपथ वोल्टेज के साथ जॉनसन-निक्विस्ट ध्वनि उत्पन्न करेगा जिसका माध्य-स्क्वायर वर्णक्रमीय घनत्व द्वारा दिया गया है
जहाँ आवृत्ति f पर प्रयुक्त होने वाला एक क्वांटम-मैकेनिकल कारक है; सामान्य तापमान और इलेक्ट्रॉनिक आवृत्तियों पर , किन्तु सामान्यतः द्वारा दिया जाता है
प्रतिबाधा आर के एक विद्युत स्रोत द्वारा एक मिलान लोड में आपूर्ति की जाने वाली विद्युत की मात्रा (अथार्त R के प्रतिबाधा के साथ कुछ जैसे कि CA में एंटीना) जिसका आरएमएस विवर्त परिपथ वोल्टेज vrms द्वारा दिया जाता है
माध्य-स्क्वायर वोल्टेज उपरोक्त को एकीकृत करके पाया जा सकता है फ़िल्टर Fν द्वारा पारित आवृत्तियों पर माध्य-स्क्वायर ध्वनि वोल्टेज के वर्णक्रमीय घनत्व के लिए समीकरण। सरलता के लिए आइए हम Fν को केंद्रीय आवृत्ति f1 के चारों ओर बैंडविड्थ B1 के एक संकीर्ण बैंड फ़िल्टर के रूप में मानें, इस स्थिति में यह इंटीग्रल निम्नानुसार सरल करता है:
रेसिस्टर से जॉनसन ध्वनि के कारण यह शक्ति ऐन्टेना द्वारा प्राप्त की जाती है जो इसे बंद प्रणाली CA में विकीर्ण करती है।
एक ही एंटीना, तापमान T के ब्लैक-बॉडी विकिरण में नहाया जा रहा है प्लैंक के नियम द्वारा दिए गए एक वर्णक्रमीय चमक (प्रति इकाई क्षेत्र प्रति इकाई आवृत्ति प्रति इकाई ठोस कोण) प्राप्त करता है:
अंकन का उपयोग करना ऊपर परिभाषित।
चूँकि वह विकिरण गैर-ध्रुवीकृत है, जबकि एंटीना केवल एक ध्रुवीकरण के प्रति संवेदनशील है, इसे 2 के कारक से कम कर देता है। ऐन्टेना द्वारा स्वीकार किए गए ब्लैक-बॉडी विकिरण से कुल शक्ति का पता लगाने के लिए हमें उस मात्रा को अनुमानित क्रॉस-आंशिक रूप से एकीकृत करना होगा। सभी ठोस कोणों Ω और सभी आवृत्तियों f पर एंटीना का क्षेत्रफल Aeff :
चूंकि हमने एक आइसोटोपिक रेडिएटर ग्रहण किया है, Aeff कोण से स्वतंत्र है, इसलिए ठोस कोणों पर एकीकरण तुच्छ है जो 4π के कारक का परिचय देता है। और फिर से हम नैरोबैंड इलेक्ट्रॉनिक फ़िल्टर कार्य Fν का साधारण स्थिति ले सकते हैं जो केवल बैंडविड्थ B1 की शक्ति को पास करता है आवृत्ति f1 के आसपास डबल इंटीग्रल तब सरल हो जाता है
जहाँ फ़्री-स्पेस तरंग दैर्ध्य आवृत्ति f के अनुरूप है1.
चूंकि प्रत्येक प्रणाली एक ही तापमान पर थर्मोडायनामिक संतुलन में है हम गुहाओं के बीच शक्ति के शुद्ध हस्तांतरण की अपेक्षा नहीं करते हैं। अन्यथा ऊष्मप्रवैगिकी के दूसरे नियम के उल्लंघन में एक गुहा गर्म हो जाएगी और दूसरी ठंडी हो जाएगी। इसलिए, दोनों दिशाओं में शक्ति का प्रवाह समान होना चाहिए:
फिर हम Aeffके लिए हल कर सकते है आइसोट्रोपिक एंटीना द्वारा इंटरसेप्टेड क्रॉस-सेक्शनल क्षेत्र:
इस प्रकार हम पाते हैं कि एक काल्पनिक आइसोट्रोपिक एंटीना के लिए ऊष्मप्रवैगिकी मांग करती है कि प्राप्त एंटीना के प्रभावी क्रॉस-सेक्शन में λ2/4π का क्षेत्र हो। इस परिणाम को और सामान्यीकृत किया जा सकता है यदि हम इंटीग्रल ओवर आवृत्ति को अधिक सामान्य होने दें। फिर हम पाते हैं कि एक ही एंटीना के लिए Aeff उसी सूत्र के अनुसार आवृत्ति के साथ भिन्न होना चाहिए, λ = c/f का उपयोग करना। इसके अतिरिक्त ठोस कोण पर अभिन्न एक एंटीना के लिए सामान्यीकृत किया जा सकता है जो आइसोट्रोपिक नहीं है (अर्थात कोई वास्तविक एंटीना)। चूंकि विद्युत चुम्बकीय विकिरण के आगमन का कोण उपरोक्त इंटीग्रल में केवल Aeff में प्रवेश करता है, हम सरल किन्तु शक्तिशाली परिणाम पर पहुंचते हैं कि तरंग दैर्ध्य λ पर सभी कोणों पर प्रभावी क्रॉस-सेक्शन Aeff का औसत भी दिया जाना चाहिए
चूँकि उपरोक्त पर्याप्त प्रमाण है, हम ध्यान दे सकते हैं कि ऐन्टेना की प्रतिबाधा R होने की स्थिति जो प्रतिरोधक के समान है को भी शिथिल किया जा सकता है। सिद्धांत रूप में किसी भी ऐन्टेना प्रतिबाधा (जो पूरी तरह से प्रतिक्रियाशील नहीं है) को एक उपयुक्त (दोषरहित) मेल खाने वाले नेटवर्क को सम्मिलित करके प्रतिबाधा-मिलान प्रतिरोधक R से किया जा सकता है। चूंकि वह नेटवर्क दोषरहित है PAऔर PR अभी भी विपरीत दिशाओं में प्रवाहित होंगे तथापि ऐन्टेना और प्रतिरोध के टर्मिनलों पर देखा जाने वाला वोल्टेज और धाराएं अलग-अलग होंगी। किसी भी दिशा में विद्युत प्रवाह का वर्णक्रमीय घनत्व अभी भी द्वारा दिया जाएगा और वास्तव में यह बहुत ही तापीय-ध्वनि शक्ति वर्णक्रमीय घनत्व से जुड़ा है एक इलेक्ट्रोमैग्नेटिक मोड के साथ यह फ्री-स्पेस में हो या विद्युत रूप से प्रसारित हो। चूंकि रोकनेवाला के लिए केवल एक ही कनेक्शन है रोकनेवाला स्वयं एक ही मोड का प्रतिनिधित्व करता है। और एक एंटीना जिसमें एकल विद्युत कनेक्शन भी होता है, के औसत प्रभावी क्रॉस-सेक्शन के अनुसार विद्युत चुम्बकीय क्षेत्र के एक मोड से जुड़ता है।
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 IEEE Std 145-2013, IEEE Standard for Definitions of Terms for Antennas. IEEE.
- ↑ Rudge, Alan W. (1982). The Handbook of Antenna Design. Vol. 1. USA: IET. p. 24. ISBN 0-906048-82-6.
- ↑ Narayan, C. P. (2007). Antennas And Propagation. Technical Publications. p. 51. ISBN 978-81-8431-176-1.
- ↑ Friis, H. T. (May 1946). "एक साधारण ट्रांसमिशन फॉर्मूला पर एक नोट". IRE Proc. 34 (5): 254–256. doi:10.1109/JRPROC.1946.234568. S2CID 51630329.
- ↑ Pawsey, J. L.; Bracewell, R. N. (1955). Radio Astronomy. London: Oxford University Press. pp. 23–24.
- ↑ Rohlfs, Kristen; Wilson, T. L. (2013). Tools of Radio Astronomy, 4th Edition. Springer Science and Business Media. pp. 134–135. ISBN 978-3662053942.
- ↑ Condon, J. J.; Ransom, S. M. (2016). "Antenna Fundamentals". Essential Radio Astronomy course. US National Radio Astronomy Observatory (NRAO) website. Retrieved 22 August 2018.
टिप्पणियाँ
[[de:Apert