ध्वनिक-ऑप्टिक न्यूनाधिक: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[File:Acousto-optic Modulator-en.svg|thumb|upright=1.2|ध्वनिक-ऑप्टिक न्यूनाधिक में एक [[पीजोइलेक्ट्रिक ट्रांसड्यूसर]] होता है जो कांच या क्वार्ट्ज जैसी | [[File:Acousto-optic Modulator-en.svg|thumb|upright=1.2|ध्वनिक-ऑप्टिक न्यूनाधिक में एक [[पीजोइलेक्ट्रिक ट्रांसड्यूसर]] होता है जो कांच या क्वार्ट्ज जैसी पदार्थ में ध्वनि तरंगें बनाता है। एक प्रकाश किरण कई क्रमों में विवर्तित होती है। एक शुद्ध साइनसॉइड के साथ पदार्थ को दोलन करके और एओएम को झुकाकर ताकि प्रकाश समतल ध्वनि तरंगों से पहले विवर्तन क्रम में परिलक्षित हो, 90% तक विक्षेपण दक्षता प्राप्त की जा सकती है।]]'''ध्वनि-ऑप्टिक मॉड्यूलेटर''' ('''एओएम'''), जिसे '''ब्रैग सेल''' या एक '''ध्वनि-ऑप्टिक डिफ्लेक्टर''' ('''एओडी''') भी कहा जाता है, ध्वनि तरंगों (सामान्यतः रेडियो-आवृत्ति पर) का उपयोग करके प्रकाश की आवृत्ति को [[विवर्तन]] और स्थानांतरित करने के लिए [[ध्वनिक-ऑप्टिक प्रभाव]] का उपयोग करता है। [[क्यू-स्विचिंग]], सिग्नल [[ मॉडुलन |मॉडुलन]] के लिए दूरसंचार, और आवृत्ति नियंत्रण के लिए [[स्पेक्ट्रोस्कोपी]] में उनका उपयोग [[ लेज़र |लेज़र]] में किया जाता है। पीजोइलेक्ट्रिक ट्रांसड्यूसर कांच जैसी पदार्थ से जुड़ा होता है। दोलनशील विद्युत संकेत ट्रांसड्यूसर को दोलन करने के लिए प्रेरित करता है, जो पदार्थ में ध्वनि तरंगें बनाता है। इन्हें विस्तार और संपीड़न के गतिशील आवधिक विमानों के रूप में माना जा सकता है जो अपवर्तन के सूचकांक को बदलते हैं। परिणामी आवधिक सूचकांक मॉड्यूलेशन से आने वाली प्रकाश स्कैटर ([[ब्रिलौइन बिखराव]] देखें) और हस्तक्षेप [[ब्रैग विवर्तन]] के समान होता है। इंटरेक्शन को तीन-तरंग मिश्रण प्रक्रिया के रूप में माना जा सकता है जिसके परिणामस्वरूप [[योग-आवृत्ति पीढ़ी]] या [[फोनन]] और फोटॉन के बीच [[अंतर-आवृत्ति पीढ़ी]] होती है। | ||
== संचालन के सिद्धांत == | == संचालन के सिद्धांत == | ||
Line 11: | Line 11: | ||
:<math>2\Lambda\sin\theta = m\frac{\lambda}{n}</math> | :<math>2\Lambda\sin\theta = m\frac{\lambda}{n}</math> | ||
यहाँ, m=..., −2, −1, 0, +1, +2, ... विवर्तन का क्रम है, <math>\lambda</math> निर्वात में प्रकाश की तरंग दैर्ध्य है, <math>n</math> क्रिस्टल | यहाँ, m=..., −2, −1, 0, +1, +2, ... विवर्तन का क्रम है, <math>\lambda</math> निर्वात में प्रकाश की तरंग दैर्ध्य है, <math>n</math> क्रिस्टल पदार्थ (जैसे क्वार्ट्ज) का अपवर्तक सूचकांक है, और <math>\Lambda</math> ध्वनि की तरंग दैर्ध्य है।<ref>[http://jila1.nickersonm.com/papers/A%20Guide%20to%20Acousto-Optic%20Modulators.pdf "A Guide to Acousto-Optic Modulators"]</ref> <math>\frac{\lambda}{n}</math> स्वयं पदार्थ में प्रकाश की तरंग दैर्ध्य है। ध्यान दें कि एम = 0 क्रम घटना बीम के समान दिशा में यात्रा करता है, और ध्वनि तरंग के प्रसार के लंबवत से ब्रैग कोण से बाहर निकलता है। | ||
पतले क्रिस्टल में साइनसोइडल मॉड्यूलेशन से विवर्तन का परिणाम ज्यादातर m= −1, 0, +1 विवर्तन क्रम में होता है। मध्यम मोटाई के क्रिस्टल में कैस्केड विवर्तन विवर्तन के उच्च क्रम की ओर जाता है। कमजोर मॉड्यूलेशन वाले मोटे क्रिस्टल में, केवल नॉनलाइनियर ऑप्टिक्स#फेज मैचिंग ऑर्डर डिफ्रेक्ट होते हैं; इसे ब्रैग विवर्तन कहते हैं। कोणीय विक्षेपण 1 से 5000 बीम चौड़ाई (रिज़ॉल्वेबल स्पॉट्स की संख्या) तक हो सकता है। नतीजतन, विक्षेपण | पतले क्रिस्टल में साइनसोइडल मॉड्यूलेशन से विवर्तन का परिणाम ज्यादातर m= −1, 0, +1 विवर्तन क्रम में होता है। मध्यम मोटाई के क्रिस्टल में कैस्केड विवर्तन विवर्तन के उच्च क्रम की ओर जाता है। कमजोर मॉड्यूलेशन वाले मोटे क्रिस्टल में, केवल नॉनलाइनियर ऑप्टिक्स#फेज मैचिंग ऑर्डर डिफ्रेक्ट होते हैं; इसे ब्रैग विवर्तन कहते हैं। कोणीय विक्षेपण 1 से 5000 बीम चौड़ाई (रिज़ॉल्वेबल स्पॉट्स की संख्या) तक हो सकता है। नतीजतन, विक्षेपण सामान्यतः दसियों [[milliradian]] तक सीमित होता है। | ||
आसन्न आदेशों के बीच कोणीय अलगाव ब्रैग कोण से दोगुना है, यानी <math>\Delta\theta\approx \frac{\lambda}{n\Lambda}</math>. | आसन्न आदेशों के बीच कोणीय अलगाव ब्रैग कोण से दोगुना है, यानी <math>\Delta\theta\approx \frac{\lambda}{n\Lambda}</math>. | ||
=== तीव्रता === | === तीव्रता === | ||
ध्वनि तरंग द्वारा विवर्तित प्रकाश की मात्रा ध्वनि की तीव्रता पर निर्भर करती है। इसलिए, ध्वनि की तीव्रता का उपयोग विवर्तित पुंज में प्रकाश की तीव्रता को नियंत्रित करने के लिए किया जा सकता है। | ध्वनि तरंग द्वारा विवर्तित प्रकाश की मात्रा ध्वनि की तीव्रता पर निर्भर करती है। इसलिए, ध्वनि की तीव्रता का उपयोग विवर्तित पुंज में प्रकाश की तीव्रता को नियंत्रित करने के लिए किया जा सकता है। सामान्यतः, तीव्रता जो m = 0 क्रम में विवर्तित होती है, इनपुट प्रकाश तीव्रता के 15% और 99% के बीच भिन्न हो सकती है। इसी तरह, m = +1 ऑर्डर की तीव्रता 0% और 80% के बीच भिन्न हो सकती है। | ||
दक्षता की अभिव्यक्ति m = +1 क्रम में है:<ref>{{Cite journal|last=Lekavich|first=J.|date=Apr 1986|title=ध्वनिक-ऑप्टिक उपकरणों की मूल बातें|journal=Lasers and Applications|pages=59–64}}</ref> | दक्षता की अभिव्यक्ति m = +1 क्रम में है:<ref>{{Cite journal|last=Lekavich|first=J.|date=Apr 1986|title=ध्वनिक-ऑप्टिक उपकरणों की मूल बातें|journal=Lasers and Applications|pages=59–64}}</ref> | ||
Line 32: | Line 32: | ||
ब्रैग विवर्तन से एक अंतर यह है कि प्रकाश गतिमान विमानों से बिखर रहा है। इसका एक परिणाम यह है कि विवर्तित किरण f की आवृत्ति m क्रम में [[डॉपलर प्रभाव]] होगा-ध्वनि तरंग F की आवृत्ति के बराबर राशि द्वारा स्थानांतरित। | ब्रैग विवर्तन से एक अंतर यह है कि प्रकाश गतिमान विमानों से बिखर रहा है। इसका एक परिणाम यह है कि विवर्तित किरण f की आवृत्ति m क्रम में [[डॉपलर प्रभाव]] होगा-ध्वनि तरंग F की आवृत्ति के बराबर राशि द्वारा स्थानांतरित। | ||
:<math>f \rightarrow f + mF</math> | :<math>f \rightarrow f + mF</math> | ||
इस फ़्रीक्वेंसी शिफ्ट को इस तथ्य से भी समझा जा सकता है कि नॉनलाइनियर ऑप्टिक्स # फेज़ मैचिंग (फोटॉनों और फ़ोनों के) को बिखरने की प्रक्रिया में संरक्षित किया जाता है। कम खर्चीले एओएम के लिए, अत्याधुनिक वाणिज्यिक उपकरण के लिए एक विशिष्ट आवृत्ति बदलाव 27 मेगाहर्ट्ज से 1 गीगाहर्ट्ज तक भिन्न होता है। कुछ एओएम में, दो ध्वनिक तरंगें | इस फ़्रीक्वेंसी शिफ्ट को इस तथ्य से भी समझा जा सकता है कि नॉनलाइनियर ऑप्टिक्स # फेज़ मैचिंग (फोटॉनों और फ़ोनों के) को बिखरने की प्रक्रिया में संरक्षित किया जाता है। कम खर्चीले एओएम के लिए, अत्याधुनिक वाणिज्यिक उपकरण के लिए एक विशिष्ट आवृत्ति बदलाव 27 मेगाहर्ट्ज से 1 गीगाहर्ट्ज तक भिन्न होता है। कुछ एओएम में, दो ध्वनिक तरंगें पदार्थ में विपरीत दिशाओं में यात्रा करती हैं, जिससे एक स्थायी तरंग बनती है। इस मामले में विवर्तित बीम के स्पेक्ट्रम में कई आवृत्ति बदलाव होते हैं, किसी भी मामले में ध्वनि तरंग की आवृत्ति के पूर्णांक गुणक होते हैं। | ||
=== चरण === | === चरण === | ||
Line 42: | Line 42: | ||
==मॉडलिंग== | ==मॉडलिंग== | ||
एकॉस्टो-ऑप्टिक मॉड्यूलेटर विशिष्ट यांत्रिक उपकरणों जैसे टिल्टेबल मिरर की तुलना में बहुत तेज़ होते हैं। एओएम को बाहर निकलने वाले बीम को स्थानांतरित करने में लगने वाला समय मोटे तौर पर बीम के पार ध्वनि तरंग के पारगमन समय ( | एकॉस्टो-ऑप्टिक मॉड्यूलेटर विशिष्ट यांत्रिक उपकरणों जैसे टिल्टेबल मिरर की तुलना में बहुत तेज़ होते हैं। एओएम को बाहर निकलने वाले बीम को स्थानांतरित करने में लगने वाला समय मोटे तौर पर बीम के पार ध्वनि तरंग के पारगमन समय (सामान्यतः 5 से 100 [[ दूसरा |दूसरा]] ) तक सीमित होता है। यह एक Ti-Sapphire लेज़र में सक्रिय मॉडलिंग [[modlocking]] बनाने के लिए पर्याप्त तेज़ है। जब तेजी से नियंत्रण आवश्यक होता है तो [[ इलेक्ट्रो-ऑप्टिक न्यूनाधिक |इलेक्ट्रो-ऑप्टिक न्यूनाधिक]] का उपयोग किया जाता है। हालांकि, इसके लिए बहुत अधिक [[ वाल्ट |वाल्ट]] ेज (जैसे 1...10 वोल्ट) की आवश्यकता होती है, जबकि एओएम अधिक विक्षेपण रेंज, सरल डिज़ाइन और कम बिजली की खपत (3 [[वाट]] से कम) प्रदान करते हैं।<ref>{{cite web |last1=Keller |first1=Ursula |last2=Gallmann |first2=Lukas |title=अल्ट्राफास्ट लेजर भौतिकी|url=https://ethz.ch/content/dam/ethz/special-interest/phys/quantum-electronics/ultrafast-laser-physics-dam/education/lectures/ultrafast_laser_physics/lecture_notes/7_Active_modelocking.pdf |website=ETH Zurich |access-date=21 March 2022}}</ref> | ||
Revision as of 08:55, 1 June 2023
ध्वनि-ऑप्टिक मॉड्यूलेटर (एओएम), जिसे ब्रैग सेल या एक ध्वनि-ऑप्टिक डिफ्लेक्टर (एओडी) भी कहा जाता है, ध्वनि तरंगों (सामान्यतः रेडियो-आवृत्ति पर) का उपयोग करके प्रकाश की आवृत्ति को विवर्तन और स्थानांतरित करने के लिए ध्वनिक-ऑप्टिक प्रभाव का उपयोग करता है। क्यू-स्विचिंग, सिग्नल मॉडुलन के लिए दूरसंचार, और आवृत्ति नियंत्रण के लिए स्पेक्ट्रोस्कोपी में उनका उपयोग लेज़र में किया जाता है। पीजोइलेक्ट्रिक ट्रांसड्यूसर कांच जैसी पदार्थ से जुड़ा होता है। दोलनशील विद्युत संकेत ट्रांसड्यूसर को दोलन करने के लिए प्रेरित करता है, जो पदार्थ में ध्वनि तरंगें बनाता है। इन्हें विस्तार और संपीड़न के गतिशील आवधिक विमानों के रूप में माना जा सकता है जो अपवर्तन के सूचकांक को बदलते हैं। परिणामी आवधिक सूचकांक मॉड्यूलेशन से आने वाली प्रकाश स्कैटर (ब्रिलौइन बिखराव देखें) और हस्तक्षेप ब्रैग विवर्तन के समान होता है। इंटरेक्शन को तीन-तरंग मिश्रण प्रक्रिया के रूप में माना जा सकता है जिसके परिणामस्वरूप योग-आवृत्ति पीढ़ी या फोनन और फोटॉन के बीच अंतर-आवृत्ति पीढ़ी होती है।
संचालन के सिद्धांत
विशिष्ट एओएम ब्रैग के नियम # ब्रैग स्थिति के तहत संचालित होता है, जहां ब्रैग कोण पर घटना प्रकाश आता है ध्वनि तरंग के प्रसार के लंबवत से।[1][2]
विवर्तन
जब घटना प्रकाश किरण ब्रैग कोण पर होती है, तो एक विवर्तन पैटर्न उभर कर आता है जहां विवर्तित किरण का क्रम प्रत्येक कोण θ पर होता है जो संतुष्ट करता है:
यहाँ, m=..., −2, −1, 0, +1, +2, ... विवर्तन का क्रम है, निर्वात में प्रकाश की तरंग दैर्ध्य है, क्रिस्टल पदार्थ (जैसे क्वार्ट्ज) का अपवर्तक सूचकांक है, और ध्वनि की तरंग दैर्ध्य है।[3] स्वयं पदार्थ में प्रकाश की तरंग दैर्ध्य है। ध्यान दें कि एम = 0 क्रम घटना बीम के समान दिशा में यात्रा करता है, और ध्वनि तरंग के प्रसार के लंबवत से ब्रैग कोण से बाहर निकलता है।
पतले क्रिस्टल में साइनसोइडल मॉड्यूलेशन से विवर्तन का परिणाम ज्यादातर m= −1, 0, +1 विवर्तन क्रम में होता है। मध्यम मोटाई के क्रिस्टल में कैस्केड विवर्तन विवर्तन के उच्च क्रम की ओर जाता है। कमजोर मॉड्यूलेशन वाले मोटे क्रिस्टल में, केवल नॉनलाइनियर ऑप्टिक्स#फेज मैचिंग ऑर्डर डिफ्रेक्ट होते हैं; इसे ब्रैग विवर्तन कहते हैं। कोणीय विक्षेपण 1 से 5000 बीम चौड़ाई (रिज़ॉल्वेबल स्पॉट्स की संख्या) तक हो सकता है। नतीजतन, विक्षेपण सामान्यतः दसियों milliradian तक सीमित होता है।
आसन्न आदेशों के बीच कोणीय अलगाव ब्रैग कोण से दोगुना है, यानी .
तीव्रता
ध्वनि तरंग द्वारा विवर्तित प्रकाश की मात्रा ध्वनि की तीव्रता पर निर्भर करती है। इसलिए, ध्वनि की तीव्रता का उपयोग विवर्तित पुंज में प्रकाश की तीव्रता को नियंत्रित करने के लिए किया जा सकता है। सामान्यतः, तीव्रता जो m = 0 क्रम में विवर्तित होती है, इनपुट प्रकाश तीव्रता के 15% और 99% के बीच भिन्न हो सकती है। इसी तरह, m = +1 ऑर्डर की तीव्रता 0% और 80% के बीच भिन्न हो सकती है।
दक्षता की अभिव्यक्ति m = +1 क्रम में है:[4]
जहां बाहरी चरण भ्रमण .
विभिन्न तरंग दैर्ध्य के लिए समान दक्षता प्राप्त करने के लिए, एओएम में आरएफ शक्ति ऑप्टिकल बीम के तरंग दैर्ध्य के वर्ग के समानुपाती होती है। ध्यान दें कि यह सूत्र हमें यह भी बताता है कि, जब हम एक उच्च RF पावर P पर शुरू करते हैं, तो यह साइन स्क्वेर्ड फ़ंक्शन में पहले शिखर से अधिक हो सकता है, जिस स्थिति में हम P को बढ़ाते हैं, हम दूसरी चोटी पर स्थिर हो जाते हैं बहुत उच्च आरएफ शक्ति, एओएम को ओवरड्राइव करने और क्रिस्टल या अन्य घटकों को संभावित नुकसान के लिए अग्रणी। इस समस्या से बचने के लिए, हमेशा बहुत कम आरएफ शक्ति से शुरू करना चाहिए, और धीरे-धीरे इसे पहले शिखर पर स्थिर करने के लिए बढ़ाना चाहिए।
ध्यान दें कि दो विन्यास हैं जो ब्रैग स्थिति को संतुष्ट करते हैं: यदि ध्वनि तरंग के प्रसार की दिशा में घटना बीम के वेव वेक्टर के वेक्टर घटक ध्वनि तरंग के खिलाफ जाते हैं, तो ब्रैग विवर्तन/बिखरने की प्रक्रिया का परिणाम अधिकतम दक्षता m = +1 क्रम में होगा, जिसकी एक सकारात्मक आवृत्ति बदलाव है; हालाँकि, यदि घटना किरण ध्वनि तरंग के साथ जाती है, तो m = -1 क्रम में अधिकतम विवर्तन दक्षता प्राप्त होती है, जिसमें ऋणात्मक आवृत्ति बदलाव होता है।
फ्रीक्वेंसी
ब्रैग विवर्तन से एक अंतर यह है कि प्रकाश गतिमान विमानों से बिखर रहा है। इसका एक परिणाम यह है कि विवर्तित किरण f की आवृत्ति m क्रम में डॉपलर प्रभाव होगा-ध्वनि तरंग F की आवृत्ति के बराबर राशि द्वारा स्थानांतरित।
इस फ़्रीक्वेंसी शिफ्ट को इस तथ्य से भी समझा जा सकता है कि नॉनलाइनियर ऑप्टिक्स # फेज़ मैचिंग (फोटॉनों और फ़ोनों के) को बिखरने की प्रक्रिया में संरक्षित किया जाता है। कम खर्चीले एओएम के लिए, अत्याधुनिक वाणिज्यिक उपकरण के लिए एक विशिष्ट आवृत्ति बदलाव 27 मेगाहर्ट्ज से 1 गीगाहर्ट्ज तक भिन्न होता है। कुछ एओएम में, दो ध्वनिक तरंगें पदार्थ में विपरीत दिशाओं में यात्रा करती हैं, जिससे एक स्थायी तरंग बनती है। इस मामले में विवर्तित बीम के स्पेक्ट्रम में कई आवृत्ति बदलाव होते हैं, किसी भी मामले में ध्वनि तरंग की आवृत्ति के पूर्णांक गुणक होते हैं।
चरण
इसके अलावा, विवर्तित किरण का चरण भी ध्वनि तरंग के चरण द्वारा स्थानांतरित किया जाएगा। चरण को एक मनमानी राशि से बदला जा सकता है।
ध्रुवीकरण
संरेख अनुप्रस्थ तरंग ध्वनिक तरंगें या लंबवत अनुदैर्ध्य तरंगें ध्रुवीकरण (तरंगों) को बदल सकती हैं। ध्वनिक तरंगें पॉकेल्स सेल की तरह एक birefringence फेज-शिफ्ट को प्रेरित करती हैं[dubious ]. ध्वनिक-ऑप्टिक ट्यून करने योग्य फ़िल्टर, विशेष रूप से ध्वनिक-ऑप्टिक प्रोग्रामेबल डिस्पर्सिव फिल्टर, जो चर पल्स आकार उत्पन्न कर सकता है, इस सिद्धांत पर आधारित है।[5]
मॉडलिंग
एकॉस्टो-ऑप्टिक मॉड्यूलेटर विशिष्ट यांत्रिक उपकरणों जैसे टिल्टेबल मिरर की तुलना में बहुत तेज़ होते हैं। एओएम को बाहर निकलने वाले बीम को स्थानांतरित करने में लगने वाला समय मोटे तौर पर बीम के पार ध्वनि तरंग के पारगमन समय (सामान्यतः 5 से 100 दूसरा ) तक सीमित होता है। यह एक Ti-Sapphire लेज़र में सक्रिय मॉडलिंग modlocking बनाने के लिए पर्याप्त तेज़ है। जब तेजी से नियंत्रण आवश्यक होता है तो इलेक्ट्रो-ऑप्टिक न्यूनाधिक का उपयोग किया जाता है। हालांकि, इसके लिए बहुत अधिक वाल्ट ेज (जैसे 1...10 वोल्ट) की आवश्यकता होती है, जबकि एओएम अधिक विक्षेपण रेंज, सरल डिज़ाइन और कम बिजली की खपत (3 वाट से कम) प्रदान करते हैं।[6]
अनुप्रयोग
- क्यू-स्विचिंग
- टी-नीलम लेजर # चिरप्ड-पल्स एम्पलीफायरों, चिरप्ड पल्स प्रवर्धन
- ऑप्टिकल गुहा
- मॉडलिंग
- लेजर डॉपलर वाइब्रोमेटर
- फोटोग्राफिक फिल्म की डिजिटल इमेजिंग के लिए आरजीबी लेजर लाइट मॉड्यूलेशन
- संनाभि माइक्रोस्कोपी
- सिंथेटिक सरणी हेटेरोडाइन पहचान
- हाइपरस्पेक्ट्रल इमेजिंग
यह भी देखें
- ध्वनिक-प्रकाशिकी
- ध्वनिक-ऑप्टिक झुकानेवाला
- इलेक्ट्रो-ऑप्टिक न्यूनाधिक
- जेफ्री सेल
- ध्वनिक-ऑप्टिकल स्पेक्ट्रोमीटर
- लिक्विड क्रिस्टल ट्यून करने योग्य फिल्टर
- फोटोलोच
- पॉकल्स प्रभाव
- फ्रीक्वेंसी शिफ्टिंग
बाहरी संबंध
संदर्भ
- ↑ "अकाउस्टो-ऑप्टिक थ्योरी एप्लीकेशन नोट्स" (PDF).
- ↑ Paschotta, Dr Rüdiger. "ध्वनिक-ऑप्टिक मॉड्यूलेटर". www.rp-photonics.com (in English). Retrieved 2020-08-03.
- ↑ "A Guide to Acousto-Optic Modulators"
- ↑ Lekavich, J. (Apr 1986). "ध्वनिक-ऑप्टिक उपकरणों की मूल बातें". Lasers and Applications: 59–64.
- ↑ Eklund, H.; Roos, A.; Eng, S.T. (1975). "ध्वनिक-ऑप्टिक उपकरणों में लेजर बीम ध्रुवीकरण का घूर्णन". Optical and Quantum Electronics. 7 (2): 73–79. doi:10.1007/BF00631587. S2CID 122616113.
- ↑ Keller, Ursula; Gallmann, Lukas. "अल्ट्राफास्ट लेजर भौतिकी" (PDF). ETH Zurich. Retrieved 21 March 2022.