असोसिएहेड्रोन: Difference between revisions

From Vigyanwiki
No edit summary
Line 119: Line 119:


== प्रकीर्णन आयाम ==
== प्रकीर्णन आयाम ==
2017 में, मिज़ेरा<ref name="Mizera 2017">{{cite journal|last1=Mizera|first1=Sebastian|title=कावई-लेवेलेन-टाई संबंधों का संयोजन और टोपोलॉजी|journal=[[Journal of High Energy Physics]]|year=2017|volume=2017|pages=97|doi=10.1007/JHEP08(2017)097|arxiv=1706.08527}}</ref> उनके कोनों पर। मेड एट अल।<ref name="Arkani-Hamed et al. 2017">{{citation
2017 में, मिज़ेरा और अरकानी-हमीद एट अल ने दिखाया कि द्वि-आसन्न क्यूबिक स्केलर सिद्धांत के लिए स्कैटरिंग एम्पलीट्यूड के सिद्धांत में एसोसिएड्रॉन एक केंद्रीय भूमिका निभाता है। विशेष रूप से, बिखरने वाले कीनेमेटीक्स के स्थान में एक एसोसिएहेड्रोन उपस्थित है, और पेड़ के स्तर के बिखरने का द्विआयामी एसोसिएहेड्रोन का आयतन है।<ref name="Arkani-Hamed et al. 2017">{{citation
  | last1 = Arkani-Hamed | first1 = Nima
  | last1 = Arkani-Hamed | first1 = Nima
  | last2 = Bai | first2 = Yuntao
  | last2 = Bai | first2 = Yuntao
Line 129: Line 129:
  | pages = 96
  | pages = 96
  | title = Scattering Forms and the Positive Geometry of Kinematics, Color and the Worldsheet
  | title = Scattering Forms and the Positive Geometry of Kinematics, Color and the Worldsheet
  | year = 2018| doi = 10.1007/JHEP05(2018)096}}.</ref> ने दिखाया कि द्वि-आसन्न क्यूबिक स्केलर सिद्धांत के लिए स्कैटरिंग एम्पलीट्यूड के सिद्धांत में एसोसिएड्रॉन एक केंद्रीय भूमिका निभाता है। विशेष रूप से, बिखरने वाले कीनेमेटीक्स के स्थान में एक एसोसिएहेड्रोन मौजूद है, और पेड़ के स्तर के बिखरने का आयाम दोहरी एसोसिएहेड्रोन का आयतन है।<ref name="Arkani-Hamed et al. 2017" />[[ स्ट्रिंग सिद्धांत | शृंखला           सिद्धांत]] में खुले और बंद  शृंखला         ्स के बिखरने वाले आयामों के बीच संबंधों को समझाने में एसोसिएड्रॉन भी मदद करता है।<ref name="Mizera 2017" />[[आयाम]] भी देखें।
  | year = 2018| doi = 10.1007/JHEP05(2018)096}}.</ref>[[ स्ट्रिंग सिद्धांत |शृंखला सिद्धांत]] में खुले और बंद  शृंखला के बिखरने वाले आयामों के बीच संबंधों को समझाने में एसोसिएड्रॉन भी सहायता करता है।<ref name="Mizera 2017">{{cite journal|last1=Mizera|first1=Sebastian|title=कावई-लेवेलेन-टाई संबंधों का संयोजन और टोपोलॉजी|journal=[[Journal of High Energy Physics]]|year=2017|volume=2017|pages=97|doi=10.1007/JHEP08(2017)097|arxiv=1706.08527}}</ref>


== यह भी देखें ==
== यह भी देखें ==

Revision as of 15:41, 11 May 2023

असोसिएहेड्रोन K5 (सामने)
असोसिएहेड्रोन K5 (पीछे)
K5 तामरी जाली का हस आरेख है T4.
के 9 चेहरे K5
उपरोक्त हस्से आरेख में प्रत्येक शीर्ष में 3 निकटस्थ फलकों के अंडाकार हैं। चेहरे जिनके अंडाकार प्रतिच्छेदन नहीं करते हैं।

गणित में, असोसिएहेड्रॉन K_n एक (n-2)-आयामी व्यासीय बहुभुज होता है जिसमें प्रत्येक शिखर n अक्षरों की एक शृंखला में खोलने और बंद करने के सही ढंग को दर्शाता है, और एज को एसोसिएटिविटी नियम के एकल आवेदन के संबंध में दर्शाता है। समानता से, असोसिएहेड्रॉन के शिखर एक नियमित बहुभुज के n + 1 सिरों के त्रिकोणीकरणों के संबंधित होते हैं और एज एकल विकर्ण को त्रिकोणीकरण से हटाकर एक अलग विकर्ण से बदलने को दर्शाते हैं। [1] जिम स्टाशेफ के कार्य के उपरांत , असोसिएहेड्रों को स्टाशेफ पॉलिटोप के रूप में भी जाना जाता है, जिन्हें डोव तमारी द्वारा उन पर पहले कार्य किया गया था। जिम स्टाशेफ ने इन्हें 1960 के दशक की प्रारंभ में पुनः खोजा था।


उदाहरण

एक आयामी असोसिएहेड्रॉन K3 तीन चिह्नों के ((xy)z) और (x(yz)) दो बाल-बंद निर्देशिकरणों, या एक वर्ग के दो त्रिकोणीकरणों को दर्शाता है। यह अपने आप में एक रेखाखंड है।

द्वि-आयामी एसोसिएहेड्रोन K4 चार प्रतीकों के पाँच कोष्ठकों का प्रतिनिधित्व करता है, यह स्वयं एक पंचभुज है और मोनॉइडल श्रेणी के पंचभुज आरेख से संबंधित होता है।

त्रि-आयामीअसोसिएहेड्रॉन K5एक नौ-भुज होता है जिसमें नौ भुजाएं होती हैं (तीन अलग-अलग चतुर्भुज और छह पंचभुज) और चौदह कोण होते हैं, और इसका द्विपरावर्तक त्रिकोणीय नामक प्रिज्म होता है।

बोध

शुरुआत में जिम स्टाशेफ ने इन वस्तुओं को वक्रीय पॉलीटोप्स के रूप में माना। इसके बाद, उन्हें कई अलग-अलग तरीकों से उत्तल पॉलीटोप्स के रूप में निर्देशांक दिए गए; का परिचय देखें Ceballos, Santos & Ziegler (2015) सर्वेक्षण के लिए।[2] एसोसिएहेड्रोन को साकार करने का एक तरीका एक नियमित बहुभुज के ज्यामितीय ग्राफ सिद्धांत के रूप में है।[2]इस निर्माण में, n + 1 भुजाओं वाले एक नियमित बहुभुज का प्रत्येक त्रिभुज (n + 1)-आयामी यूक्लिडियन अंतरिक्ष में एक बिंदु से मेल खाता है, जिसका ith निर्देशांक बहुभुज के iवें शीर्ष पर त्रिभुजों का कुल क्षेत्रफल है। उदाहरण के लिए, इकाई वर्ग के दो त्रिकोण निर्देशांक (1, 1/2, 1, 1/2) और (1/2, 1, 1/2, 1) के साथ दो चार-आयामी बिंदुओं को इस तरह से जन्म देते हैं। . इन दो बिंदुओं का उत्तल हल एसोसिएहेड्रोन के की प्राप्ति है3. यद्यपि यह 4-आयामी स्थान में रहता है, यह उस स्थान के भीतर एक रेखा खंड (एक 1-आयामी पॉलीटॉप) बनाता है। इसी प्रकार, एसोसिएहेड्रोन के4 इस तरह से पांच-आयामी यूक्लिडियन अंतरिक्ष में एक नियमित पेंटागन के रूप में महसूस किया जा सकता है, जिसके शीर्ष निर्देशांक वेक्टर के चक्रीय क्रमपरिवर्तन हैं (1, 2 + φ, 1, 1 + φ, 1 + φ) जहां φ सुनहरे अनुपात को दर्शाता है . क्योंकि एक नियमित षट्भुज के भीतर संभावित त्रिभुजों में ऐसे क्षेत्र होते हैं जो एक दूसरे के पूर्णांक गुणक होते हैं, इस निर्माण का उपयोग पूर्णांक निर्देशांक (छह आयामों में) को त्रि-आयामी एसोसिएहेड्रोन के देने के लिए किया जा सकता है।5; हालांकि (के के उदाहरण के रूप में4 पहले से ही दिखाता है) यह निर्माण सामान्य रूप से अपरिमेय संख्याओं को निर्देशांक के रूप में ले जाता है।

जीन लुइस लॉडे के कारण एक और अहसास, एन-लीफ जड़ वाला बाइनरी ट्री के साथ एसोसियाहेड्रोन के कोने के पत्राचार पर आधारित है, और सीधे (n − 2)-आयामी अंतरिक्ष में पूर्णांक निर्देशांक उत्पन्न करता है। लोडे की प्राप्ति का iवां निर्देशांक है aibi, जहाँ एकiपेड़ के iवें आंतरिक नोड (बाएं से दाएं क्रम में) के बाएं बच्चे के पत्ते के वंशजों की संख्या है और बीiसही बच्चे के पत्ते के वंशजों की संख्या है।[3] एसोसियाहेड्रॉन को सीधे (n − 2)-आयामी अंतरिक्ष में एक पॉलीटॉप के रूप में महसूस करना संभव है, जिसके लिए सभी सामान्य (ज्यामिति) में निर्देशांक हैं जो 0, +1, या -1 हैं। ऐसा करने के घातीय रूप से कई संयोजी रूप से भिन्न तरीके हैं।[2][4]

K5 एक आदेश के रूप में - 4 त्रिकोणीय द्विपिरामिड काट दिया

क्योंकि के5 एक पॉलीहेड्रॉन है जिसमें केवल कोने होते हैं जिसमें 3 किनारे एक साथ आते हैं, हाइड्रोकार्बन के अस्तित्व के लिए संभव है (प्लेटोनिक हाइड्रोकार्बन के समान) जिसका रासायनिक संरचना के कंकाल द्वारा दर्शाया गया है5.[5] यह "एसोसिएथेरेन" सी14H14 SMILES अंकन होगा: C12-C3-C4-C1-C5-C6-C2-C7-C3-C8-C4-C5-C6-C78। इसके किनारे लगभग समान लंबाई के होंगे, लेकिन प्रत्येक फलक के शीर्ष आवश्यक रूप से समतलीय नहीं होंगे।

दरअसल, के5 लगभग निकट-मिस जॉनसन ठोस है: ऐसा लगता है कि वर्गों और नियमित पेंटागन से बनाना संभव हो सकता है, लेकिन ऐसा नहीं है। या तो शीर्ष समतलीय नहीं होंगे, या चेहरों को नियमितता से थोड़ा दूर विकृत करना होगा।

के-चेहरों की संख्या

   k = 1    2    3    4    5
n
1      1                               1
2      1    2                          3
3      1    5    5                    11
4      1    9   21   14               45
5      1   14   56   84   42         197

क्रम n (K.) के साहचर्यफलक के (n − k)-विमीय चेहरों की संख्याn+1) त्रिकोणीय सरणी द्वारा दिया गया है[6] (एन, के), दाईं ओर दिखाया गया है।

K में शीर्षों की संख्याn+1 n-वें कैटलन संख्या (त्रिकोण में दायां विकर्ण) है।

कश्मीर में पहलू (ज्यामिति) की संख्याn+1 (n≥2 के लिए) n-वां त्रिकोणीय संख्या ऋण एक (त्रिकोण में दूसरा स्तंभ) है, क्योंकि प्रत्येक पहलू n वस्तुओं के 2-उपसमूह से मेल खाता है, जिनके समूह तामरी जाली टी बनाते हैंn, 2-उपसमुच्चय को छोड़कर जिसमें पहला और अंतिम तत्व होता है।

सभी आयामों के चेहरों की संख्या (एक चेहरे के रूप में एसोसिएहेड्रोन सहित, लेकिन खाली सेट सहित नहीं) एक श्रोडर-हिप्पार्कस संख्या (त्रिभुज की पंक्ति संख्या) है।[7]


व्यास

1980 के दशक के उत्तरार्ध में, रोटेशन दूरी की समस्या के संबंध में, डेनियल स्लेटर, रॉबर्ट टार्जन और विलियम थर्स्टन ने एक प्रमाण प्रदान किया कि एन-डायमेंशनल एसोसिएहेड्रोन के व्यासn + 2 अपरिमित रूप से कई n और n के सभी बड़े पर्याप्त मानों के लिए अधिक से अधिक 2n − 4 है।[8] उन्होंने यह भी साबित किया कि जब n काफी बड़ा होता है तो यह ऊपरी सीमा तंग होती है, और यह अनुमान लगाया जाता है कि पर्याप्त बड़े का अर्थ है "9 से सख्ती से अधिक"। यह अनुमान 2012 में लियोनेल पौरिन द्वारा सिद्ध किया गया था।[9]


प्रकीर्णन आयाम

2017 में, मिज़ेरा और अरकानी-हमीद एट अल ने दिखाया कि द्वि-आसन्न क्यूबिक स्केलर सिद्धांत के लिए स्कैटरिंग एम्पलीट्यूड के सिद्धांत में एसोसिएड्रॉन एक केंद्रीय भूमिका निभाता है। विशेष रूप से, बिखरने वाले कीनेमेटीक्स के स्थान में एक एसोसिएहेड्रोन उपस्थित है, और पेड़ के स्तर के बिखरने का द्विआयामी एसोसिएहेड्रोन का आयतन है।[10]शृंखला सिद्धांत में खुले और बंद शृंखला के बिखरने वाले आयामों के बीच संबंधों को समझाने में एसोसिएड्रॉन भी सहायता करता है।[11]

यह भी देखें

संदर्भ

  1. Tamari, Dov (1951), Monoïdes préordonnés et chaînes de Malcev, Thèse, Université de Paris, MR 0051833.
  2. 2.0 2.1 2.2 Ceballos, Cesar; Santos, Francisco; Ziegler, Günter M. (2015), "Many non-equivalent realizations of the associahedron", Combinatorica, 35 (5): 513–551, arXiv:1109.5544, doi:10.1007/s00493-014-2959-9.
  3. Loday, Jean-Louis (2004), "Realization of the Stasheff polytope", Archiv der Mathematik, 83 (3): 267–278, arXiv:math/0212126, doi:10.1007/s00013-004-1026-y, MR 2108555.
  4. Hohlweg, Christophe; Lange, Carsten E. M. C. (2007), "Realizations of the associahedron and cyclohedron", Discrete & Computational Geometry, 37 (4): 517–543, arXiv:math.CO/0510614, doi:10.1007/s00454-007-1319-6, MR 2321739.
  5. IPME document about mini-fullerenes - page 30 (page 9 in this PDF) shows in chapter “7. Fullerene of fourteen carbon atoms C14” under “b) Base-truncated triangular bipyramid (Fig. 16)” a K5 polyhedron
  6. Sloane, N. J. A. (ed.). "Sequence A033282 (Triangle read by rows: T(n, k) is the number of diagonal dissections of a convex n-gon into k+1 regions.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  7. Holtkamp, Ralf (2006), "On Hopf algebra structures over free operads", Advances in Mathematics, 207 (2): 544–565, arXiv:math/0407074, doi:10.1016/j.aim.2005.12.004, MR 2271016.
  8. Sleator, Daniel; Tarjan, Robert; Thurston, William (1988), "Rotation distance, triangulations, and hyperbolic geometry", Journal of the American Mathematical Society, 1 (3): 647–681, doi:10.1090/S0894-0347-1988-0928904-4, MR 0928904.
  9. Pournin, Lionel (2014), "The diameter of associahedra", Advances in Mathematics, 259: 13–42, arXiv:1207.6296, doi:10.1016/j.aim.2014.02.035, MR 3197650.
  10. Arkani-Hamed, Nima; Bai, Yuntao; He, Song; Yan, Gongwang (2018), "Scattering Forms and the Positive Geometry of Kinematics, Color and the Worldsheet", Journal of High Energy Physics, 2018: 96, arXiv:1711.09102, doi:10.1007/JHEP05(2018)096.
  11. Mizera, Sebastian (2017). "कावई-लेवेलेन-टाई संबंधों का संयोजन और टोपोलॉजी". Journal of High Energy Physics. 2017: 97. arXiv:1706.08527. doi:10.1007/JHEP08(2017)097.


बाहरी संबंध