असोसिएहेड्रोन: Difference between revisions

From Vigyanwiki
No edit summary
Line 20: Line 20:


== बोध ==
== बोध ==
शुरुआत में जिम स्टाशेफ ने इन वस्तुओं को कर्विलिनियर पॉलीटोप्स के रूप में माना। इसके बाद, उन्हें कई अलग-अलग विधियों  से उत्तल पॉलीटोप्स के रूप में निर्देशांक दिए गए; एक सर्वेक्षण के लिए सेबलोस, सैंटोस और ज़िग्लर (2015) का परिचय देखें। {{harvtxt|Ceballos|Santos|Ziegler|2015}} सर्वेक्षण के लिए।<ref name="csz">{{citation
प्रारंभ में जिम स्टाशेफ ने इन वस्तुओं को कर्विलिनियर बहुतलीय के रूप में माना। इसके बाद, उन्हें कई अलग-अलग विधियों  से उत्तल बहुतलीय के रूप में निर्देशांक दिए गए; एक सर्वेक्षण के लिए सेबलोस, सैंटोस और ज़िग्लर (2015) का परिचय देखें। असोसिएशेड्रन को एक त्रिकोण या नियमित बहुभुज का द्वितीयक बहुतलीय रूप में प्रतिष्ठित किया जा सकता है।<ref name="csz">{{citation
  | last1 = Ceballos | first1 = Cesar
  | last1 = Ceballos | first1 = Cesar
  | last2 = Santos | first2 = Francisco | author2-link = Francisco Santos Leal
  | last2 = Santos | first2 = Francisco | author2-link = Francisco Santos Leal
Line 31: Line 31:
  | title = Many non-equivalent realizations of the associahedron
  | title = Many non-equivalent realizations of the associahedron
  | volume = 35
  | volume = 35
  | year = 2015}}.</ref>
  | year = 2015}}.</ref>इस निर्माण में, n + 1 भुजों वाले नियमित बहुभुज की प्रत्येक त्रिकोणीकरण (n + 1)-आयामी यूक्लिडीयन स्थान में एक बिंदु के समान होता है, जिसका i-वाला संयोजक बिंदु से संबंधित त्रिकोणों का कुल क्षेत्रफल होता है। उदाहरण के रूप में, यूनिट वर्गाकार के दो त्रिकोणीकरण इस तरीके से उत्पन्न करते हैं, जिनके संयोजक (1, 1/2, 1, 1/2) और (1/2, 1, 1/2, 1) होते हैं। . इन दो बिंदुओं का उत्तल हल एसोसिएहेड्रोन K₃ की प्राप्ति है. यद्यपि यह 4-आयामी स्थान में रहता है, यह उस स्थान के भीतर एक रेखा खंड बनाता है। इसी तरह, असोसिएशेड्रन ''K''<sub>4</sub> को यहां एक नियमित पंचभुज के रूप में पांच-आयामी यूक्लिडीयन अंतरिक्ष में प्रतिष्ठित किया जा सकता है, जिसके शिखर संयोजक (1, 2 + φ, 1, 1 + φ, 1 + φ) के चक्रीय प्रतिवर्तन हैं, जहां φ स्वर्णिम अनुपात को दर्शाता है। . नियमित षट्कोण के भीतर संभावित त्रिकोणों के क्षेत्रफल एक-दूसरे के पूर्णांक गुणक होते हैं, इसलिए इस निर्माण का उपयोग करके त्रिआयामी असोसिएशेड्रन K5 को पूर्णांक संयोजक छः आयामों में दिए जा सकते हैं। यद्यपि यह निर्माण असंख्यातांकों को संयोजक के रूप में उत्पन्न करता है।
एसोसिएहेड्रोन को साकार करने का एक तरीका एक नियमित बहुभुज के [[ज्यामितीय ग्राफ सिद्धांत]] के रूप में है।<ref name="csz"/>इस निर्माण में, + 1 भुजाओं वाले एक नियमित बहुभुज का प्रत्येक त्रिभुज (+ 1)-आयामी [[यूक्लिडियन अंतरिक्ष]] में एक बिंदु से मेल खाता है, जिसका ith निर्देशांक बहुभुज के iवें शीर्ष पर त्रिभुजों का कुल क्षेत्रफल है। उदाहरण के लिए, [[इकाई वर्ग]] के दो त्रिकोण निर्देशांक (1, 1/2, 1, 1/2) और (1/2, 1, 1/2, 1) के साथ दो चार-आयामी बिंदुओं को इस तरह से जन्म देते हैं। . इन दो बिंदुओं का उत्तल हल एसोसिएहेड्रोन के की प्राप्ति है<sub>3</sub>. यद्यपि यह 4-आयामी स्थान में रहता है, यह उस स्थान के भीतर एक रेखा खंड (एक 1-आयामी पॉलीटॉप) बनाता है। इसी प्रकार, एसोसिएहेड्रोन के<sub>4</sub> इस तरह से पांच-आयामी यूक्लिडियन अंतरिक्ष में एक [[नियमित पेंटागन]] के रूप में महसूस किया जा सकता है, जिसके शीर्ष निर्देशांक वेक्टर के [[चक्रीय क्रमपरिवर्तन]] हैं (1, 2 + φ, 1, 1 + φ, 1 + φ) जहां φ सुनहरे अनुपात को दर्शाता है . क्योंकि एक [[नियमित षट्भुज]] के भीतर संभावित त्रिभुजों में ऐसे क्षेत्र होते हैं जो एक दूसरे के पूर्णांक गुणक होते हैं, इस निर्माण का उपयोग पूर्णांक निर्देशांक (छह आयामों में) को त्रि-आयामी एसोसिएहेड्रोन के देने के लिए किया जा सकता है।<sub>5</sub>; हालांकि (के के उदाहरण के रूप में<sub>4</sub> पहले से ही दिखाता है) यह निर्माण सामान्य रूप से अपरिमेय संख्याओं को निर्देशांक के रूप में ले जाता है।


[[जीन लुइस लॉडे]] के कारण एक और अहसास, एन-लीफ [[ जड़ वाला बाइनरी ट्री ]] के साथ एसोसियाहेड्रोन के कोने के पत्राचार पर आधारित है, और सीधे (n − 2)-आयामी अंतरिक्ष में पूर्णांक निर्देशांक उत्पन्न करता है। लोडे की प्राप्ति का iवां निर्देशांक है a<sub>i</sub>b<sub>i</sub>, जहाँ एक<sub>i</sub>पेड़ के iवें आंतरिक नोड (बाएं से दाएं क्रम में) के बाएं बच्चे के पत्ते के वंशजों की संख्या है और बी<sub>i</sub>सही बच्चे के पत्ते के वंशजों की संख्या है।<ref>{{citation
[[जीन लुइस लॉडे]] के कारण एक और अहसास, एन-लीफ [[ जड़ वाला बाइनरी ट्री ]] के साथ एसोसियाहेड्रोन के कोने के पत्राचार पर आधारित है, और सीधे (n − 2)-आयामी अंतरिक्ष में पूर्णांक निर्देशांक उत्पन्न करता है। लोडे की प्राप्ति का iवां निर्देशांक है a<sub>i</sub>b<sub>i</sub>, जहाँ एक<sub>i</sub>पेड़ के iवें आंतरिक नोड (बाएं से दाएं क्रम में) के बाएं बच्चे के पत्ते के वंशजों की संख्या है और बी<sub>i</sub>सही बच्चे के पत्ते के वंशजों की संख्या है।<ref>{{citation

Revision as of 13:16, 25 May 2023

असोसिएहेड्रोन K5 (सामने)
असोसिएहेड्रोन K5 (पीछे)
K5 तामरी जाली का हस आरेख है T4.
के 9 चेहरे K5
उपरोक्त हस्से आरेख में प्रत्येक शीर्ष में 3 निकटस्थ फलकों के अंडाकार हैं। चेहरे जिनके अंडाकार प्रतिच्छेदन नहीं करते हैं।

गणित में, एक एसोसिएहेड्रॉन Kn एक (n - 2)-आयामी उत्तल बहुशीर्ष होते है, जिसमें प्रत्येक शीर्ष n अक्षरों की एक शृंखला में सही ढंग से खोलने और बंद करने वाले कोष्ठकों को सम्मिलित करने के नियमों के समान होते है,और किनारे साहचर्य नियम के एकल आवेदन के अनुरूप होते हैं। एक असोसिएहेड्रन के शीर्ष पर्यायत्रिकों के समरूप नियमित बहुभुज के (n + 1) सिरों के त्रिकोणीकरण को संबोधित करते हैं, तथा सिरा उन ढालों को संबोधित करते हैं जिनमें एक एकल सिरा त्रिकोणीकरण से हटाया जाता है और उसे एक विभिन्न सिरे द्वारा प्रतिस्थापित किया जाता है।[1] जिम स्टाशेफ असोसिएहेड्रन को जिम स्टाशेफ़ के काम के बाद स्टाशेफ़ पॉलिटोप के नाम से भी जाना जाता है, जिन्होंने इसे 1960 के दशक के प्रारंभ में पुनः खोजा था। उनसे पहले, दोव तमारी ने उन पर काम किया था।


उदाहरण

एक आयामी असोसिएहेड्रन K₃ तीन चिह्नों की ((xy)z) और (x(yz)) दो कोष्ठक या वर्ग के दो त्रिकोणीकरणों को प्रतिष्ठित करता है। यह अपने आप में एक रेखाखंड है।

द्वि-आयामी एसोसिएहेड्रोन K4 चार प्रतीकों के पाँच कोष्ठकों का प्रतिनिधित्व करता है, यह स्वयं एक पंचभुज है और एकपद श्रेणी के पंचभुज आरेख से संबंधित होता है।

त्रिआयामी असोसिएहेड्रन K₅ एक नौ-आयामी बहुभुज है जिसमें नौ चेहरे होते हैं (तीन अलग-अलग चतुर्भुज और छह पंचभुज) और चौदह शीर्ष होते हैं,और इसका द्विपरावर्तक त्रिकोणीय नामक संक्षेत्र होता है।

बोध

प्रारंभ में जिम स्टाशेफ ने इन वस्तुओं को कर्विलिनियर बहुतलीय के रूप में माना। इसके बाद, उन्हें कई अलग-अलग विधियों से उत्तल बहुतलीय के रूप में निर्देशांक दिए गए; एक सर्वेक्षण के लिए सेबलोस, सैंटोस और ज़िग्लर (2015) का परिचय देखें। असोसिएशेड्रन को एक त्रिकोण या नियमित बहुभुज का द्वितीयक बहुतलीय रूप में प्रतिष्ठित किया जा सकता है।[2]इस निर्माण में, n + 1 भुजों वाले नियमित बहुभुज की प्रत्येक त्रिकोणीकरण (n + 1)-आयामी यूक्लिडीयन स्थान में एक बिंदु के समान होता है, जिसका i-वाला संयोजक बिंदु से संबंधित त्रिकोणों का कुल क्षेत्रफल होता है। उदाहरण के रूप में, यूनिट वर्गाकार के दो त्रिकोणीकरण इस तरीके से उत्पन्न करते हैं, जिनके संयोजक (1, 1/2, 1, 1/2) और (1/2, 1, 1/2, 1) होते हैं। . इन दो बिंदुओं का उत्तल हल एसोसिएहेड्रोन K₃ की प्राप्ति है. यद्यपि यह 4-आयामी स्थान में रहता है, यह उस स्थान के भीतर एक रेखा खंड बनाता है। इसी तरह, असोसिएशेड्रन K4 को यहां एक नियमित पंचभुज के रूप में पांच-आयामी यूक्लिडीयन अंतरिक्ष में प्रतिष्ठित किया जा सकता है, जिसके शिखर संयोजक (1, 2 + φ, 1, 1 + φ, 1 + φ) के चक्रीय प्रतिवर्तन हैं, जहां φ स्वर्णिम अनुपात को दर्शाता है। . नियमित षट्कोण के भीतर संभावित त्रिकोणों के क्षेत्रफल एक-दूसरे के पूर्णांक गुणक होते हैं, इसलिए इस निर्माण का उपयोग करके त्रिआयामी असोसिएशेड्रन K5 को पूर्णांक संयोजक छः आयामों में दिए जा सकते हैं। यद्यपि यह निर्माण असंख्यातांकों को संयोजक के रूप में उत्पन्न करता है।

जीन लुइस लॉडे के कारण एक और अहसास, एन-लीफ जड़ वाला बाइनरी ट्री के साथ एसोसियाहेड्रोन के कोने के पत्राचार पर आधारित है, और सीधे (n − 2)-आयामी अंतरिक्ष में पूर्णांक निर्देशांक उत्पन्न करता है। लोडे की प्राप्ति का iवां निर्देशांक है aibi, जहाँ एकiपेड़ के iवें आंतरिक नोड (बाएं से दाएं क्रम में) के बाएं बच्चे के पत्ते के वंशजों की संख्या है और बीiसही बच्चे के पत्ते के वंशजों की संख्या है।[3] एसोसियाहेड्रॉन को सीधे (n − 2)-आयामी अंतरिक्ष में एक पॉलीटॉप के रूप में महसूस करना संभव है, जिसके लिए सभी सामान्य (ज्यामिति) में निर्देशांक हैं जो 0, +1, या -1 हैं। ऐसा करने के घातीय रूप से कई संयोजी रूप से भिन्न तरीके हैं।[2][4]

K5 एक आदेश के रूप में - 4 त्रिकोणीय द्विपिरामिड काट दिया

क्योंकि के5 एक पॉलीहेड्रॉन है जिसमें केवल कोने होते हैं जिसमें 3 किनारे एक साथ आते हैं, हाइड्रोकार्बन के अस्तित्व के लिए संभव है (प्लेटोनिक हाइड्रोकार्बन के समान) जिसका रासायनिक संरचना के कंकाल द्वारा दर्शाया गया है5.[5] यह "एसोसिएथेरेन" सी14H14 SMILES अंकन होगा: C12-C3-C4-C1-C5-C6-C2-C7-C3-C8-C4-C5-C6-C78। इसके किनारे लगभग समान लंबाई के होंगे, लेकिन प्रत्येक फलक के शीर्ष आवश्यक रूप से समतलीय नहीं होंगे।

दरअसल, के5 लगभग निकट-मिस जॉनसन ठोस है: ऐसा लगता है कि वर्गों और नियमित पेंटागन से बनाना संभव हो सकता है, लेकिन ऐसा नहीं है। या तो शीर्ष समतलीय नहीं होंगे, या चेहरों को नियमितता से थोड़ा दूर विकृत करना होगा।

के-चेहरों की संख्या

   k = 1    2    3    4    5
n
1      1                               1
2      1    2                          3
3      1    5    5                    11
4      1    9   21   14               45
5      1   14   56   84   42         197

आदेश n के असोसिएहेड्रन (Kn+1) के (n-k) आयामी चेहरों की संख्या को संख्या त्रिज्या (n,k) द्वारा दी गई है, जो दाहिने तरफ दिखाई देती है।

K में शीर्षों की संख्याn+1 n-वें समुच्चयों की संख्या त्रिकोण में दायां विकर्ण है।

Kn+1 (n≥2 के लिए) में पहलुओं की संख्या n-वें त्रिकोणीय संख्या शून्य से एक (त्रिकोण में दूसरा स्तंभ) है, क्योंकि प्रत्येक पहलू n वस्तुओं के 2-उपसमूह से मेल खाता है जिनके समूह तामारी जाली बनाते हैं Tn, 2-उपसमुच्चय को छोड़कर जिसमें पहला और अंतिम तत्व होता है।

सभी आयामों के चेहरों की संख्या एक श्रोडर-हिप्पार्कस संख्या त्रिभुज की पंक्ति संख्या है।[6]


व्यास

1980 के दशक के उत्तरार्ध में, रोटेशन दूरी की समस्या के संबंध में, डेनियल स्लेटर, रॉबर्ट टार्जन और विलियम थर्स्टन ने एक प्रमाण प्रदान किया कि एन-डायमेंशनल एसोसिएहेड्रोन के व्यासn + 2 अपरिमित रूप से कई n और n के सभी बड़े पर्याप्त मानों के लिए अधिक से अधिक 2n − 4 है।[7] उन्होंने प्रमाणित किया कि n के लिए यह ऊपरी सीमा वही होती है जब n अधिक बड़ा होता है, और यह अनुमान लगाया गया था कि "अधिक बड़ा" का अर्थ "9 से तीव्र रूप से अधिक" होता है। यह अनुमान 2012 में लियोनेल पोर्निन द्वारा प्रमाणित किया गया।


प्रकीर्णन आयाम

2017 में, मिज़ेरा और अरकानी-हमीद एट अल ने दिखाया कि द्वि-आसन्न क्यूबिक स्केलर सिद्धांत के लिए स्कैटरिंग एम्पलीट्यूड के सिद्धांत में एसोसिएड्रॉन एक केंद्रीय भूमिका निभाता है। विशेष रूप से, बिखरने वाले कीनेमेटीक्स के स्थान में एक एसोसिएहेड्रोन उपस्थित है, और पेड़ के स्तर के बिखरने का द्विआयामी एसोसिएहेड्रोन का आयतन है।[8]शृंखला सिद्धांत में खुले और बंद शृंखला के बिखरने वाले आयामों के बीच संबंधों को समझाने में एसोसिएड्रॉन भी सहायता करता है।[9]

यह भी देखें

संदर्भ

  1. Tamari, Dov (1951), Monoïdes préordonnés et chaînes de Malcev, Thèse, Université de Paris, MR 0051833.
  2. 2.0 2.1 Ceballos, Cesar; Santos, Francisco; Ziegler, Günter M. (2015), "Many non-equivalent realizations of the associahedron", Combinatorica, 35 (5): 513–551, arXiv:1109.5544, doi:10.1007/s00493-014-2959-9.
  3. Loday, Jean-Louis (2004), "Realization of the Stasheff polytope", Archiv der Mathematik, 83 (3): 267–278, arXiv:math/0212126, doi:10.1007/s00013-004-1026-y, MR 2108555.
  4. Hohlweg, Christophe; Lange, Carsten E. M. C. (2007), "Realizations of the associahedron and cyclohedron", Discrete & Computational Geometry, 37 (4): 517–543, arXiv:math.CO/0510614, doi:10.1007/s00454-007-1319-6, MR 2321739.
  5. IPME document about mini-fullerenes - page 30 (page 9 in this PDF) shows in chapter “7. Fullerene of fourteen carbon atoms C14” under “b) Base-truncated triangular bipyramid (Fig. 16)” a K5 polyhedron
  6. Holtkamp, Ralf (2006), "On Hopf algebra structures over free operads", Advances in Mathematics, 207 (2): 544–565, arXiv:math/0407074, doi:10.1016/j.aim.2005.12.004, MR 2271016.
  7. Sleator, Daniel; Tarjan, Robert; Thurston, William (1988), "Rotation distance, triangulations, and hyperbolic geometry", Journal of the American Mathematical Society, 1 (3): 647–681, doi:10.1090/S0894-0347-1988-0928904-4, MR 0928904.
  8. Arkani-Hamed, Nima; Bai, Yuntao; He, Song; Yan, Gongwang (2018), "Scattering Forms and the Positive Geometry of Kinematics, Color and the Worldsheet", Journal of High Energy Physics, 2018: 96, arXiv:1711.09102, doi:10.1007/JHEP05(2018)096.
  9. Mizera, Sebastian (2017). "कावई-लेवेलेन-टाई संबंधों का संयोजन और टोपोलॉजी". Journal of High Energy Physics. 2017: 97. arXiv:1706.08527. doi:10.1007/JHEP08(2017)097.


बाहरी संबंध