असोसिएहेड्रोन: Difference between revisions

From Vigyanwiki
No edit summary
Line 59: Line 59:
  5      1  14  56  84  42        197
  5      1  14  56  84  42        197
|}
|}
अनुक्रम का n (Kn+1) के असोसिएशेड्रन के (n − k) आयामी चेहरों की संख्या को "गणितीय त्रिकोणी" [ (n, k) द्वारा दी जाती है, जो दाहिने ओर दिखाई जाती है।
अनुक्रम का n (Kn+1) के असोसिएशेड्रन के (n − k) आयामी फलकों की संख्या को "गणितीय त्रिकोणी" [ (n, k) द्वारा दी जाती है, जो दाहिने ओर दिखाई जाती है।


Kn+1 में शीर्षों की संख्या n-वें [[कैटलन संख्या|समुच्चयों की  संख्या]] त्रिकोण में दायां विकर्ण है।
Kn+1 में शीर्षों की संख्या n-वें [[कैटलन संख्या|समुच्चयों की  संख्या]] त्रिकोण में दायां विकर्ण है।


Kn+1 (n≥2) में त्रिकोणीय संख्या से एक कम होकर (त्रिकोणी के दूसरे स्तंभ में) चेहरों की संख्या होती है, क्योंकि प्रत्येक चेहरा n वस्तुओं के समूहों के रूप में तमारी जाल Tn का निर्माण करने वाले n के उपसमूह के समरूप होता है, केवल पहले और अंतिम तत्व को सम्मिलित करने वाले 2-उपसमूह को छोड़कर।।
Kn+1 (n≥2) में त्रिकोणीय संख्या से एक कम होकर (त्रिकोणी के दूसरे स्तंभ में) फलकों की संख्या होती है, क्योंकि प्रत्येक फलक n वस्तुओं के समूहों के रूप में तमारी जाल Tn का निर्माण करने वाले n के उपसमूह के समरूप होता है, केवल पहले और अंतिम तत्व को सम्मिलित करने वाले 2-उपसमूह को छोड़कर।।


सभी आयामों के चेहरों की संख्या (सहित असोसिएशेड्रन स्वयं को भी एक चेहरा के रूप में, लेकिन खाली समुच्चय को सम्मिलित नहीं करते हुए) एक श्रेडर-हिपार्कस संख्या होती है।<ref>{{citation
सभी आयामों के फलकों की संख्या (सहित असोसिएशेड्रन स्वयं को भी एक फलक के रूप में, लेकिन खाली समुच्चय को सम्मिलित नहीं करते हुए) एक श्रेडर-हिपार्कस संख्या होती है।<ref>{{citation
  | last = Holtkamp | first = Ralf
  | last = Holtkamp | first = Ralf
  | arxiv = math/0407074
  | arxiv = math/0407074
Line 80: Line 80:
== व्यास ==
== व्यास ==


1980 के दशक के उत्तरार्ध में, रोटेशन दूरी की समस्या के संबंध में, [[डेनियल स्लेटर]], [[रॉबर्ट टार्जन]] और [[विलियम थर्स्टन]] ने एक प्रमाण प्रदान किया कि एन-डायमेंशनल एसोसिएहेड्रोन के व्यास<sub>''n'' + 2</sub> अपरिमित रूप से कई n और n के सभी बड़े पर्याप्त मानों के लिए अधिक से अधिक 2n − 4 है।<ref>{{citation
1980 के दशक में, घुमाव दूरी की समस्या से संबंधितता में, डेनियल स्लीटर, रॉबर्ट टार्जन, और विलियम थर्स्टन ने प्रमाणित किया कि असोसिएशेड्रन Kn + 2 का व्यास अनंत संख्या के लिए न्यूनतम 2n - 4 होता है और सभी "पर्याप्त बड़े" मानों के लिए n होता है।।<ref>{{citation
  | last1 = Sleator | first1 = Daniel | authorlink1 = Daniel Sleator
  | last1 = Sleator | first1 = Daniel | authorlink1 = Daniel Sleator
  | last2 = Tarjan | first2 = Robert | authorlink2 = Robert Tarjan
  | last2 = Tarjan | first2 = Robert | authorlink2 = Robert Tarjan

Revision as of 13:49, 25 May 2023

असोसिएहेड्रोन K5 (सामने)
असोसिएहेड्रोन K5 (पीछे)
K5 तामरी जाली का हस आरेख है T4.
के 9 चेहरे K5
उपरोक्त हस्से आरेख में प्रत्येक शीर्ष में 3 निकटस्थ फलकों के अंडाकार हैं। चेहरे जिनके अंडाकार प्रतिच्छेदन नहीं करते हैं।

गणित में, एक एसोसिएहेड्रॉन Kn एक (n - 2)-आयामी उत्तल बहुशीर्ष होते है, जिसमें प्रत्येक शीर्ष n अक्षरों की एक शृंखला में सही ढंग से खोलने और बंद करने वाले कोष्ठकों को सम्मिलित करने के नियमों के समान होते है,और किनारे साहचर्य नियम के एकल आवेदन के अनुरूप होते हैं। एक असोसिएहेड्रन के शीर्ष पर्यायत्रिकों के समरूप नियमित बहुभुज के (n + 1) सिरों के त्रिकोणीकरण को संबोधित करते हैं, तथा सिरा उन ढालों को संबोधित करते हैं जिनमें एक एकल सिरा त्रिकोणीकरण से हटाया जाता है और उसे एक विभिन्न सिरे द्वारा प्रतिस्थापित किया जाता है।[1] जिम स्टाशेफ असोसिएहेड्रन को जिम स्टाशेफ़ के काम के बाद स्टाशेफ़ पॉलिटोप के नाम से भी जाना जाता है, जिन्होंने इसे 1960 के दशक के प्रारंभ में पुनः खोजा था। उनसे पहले, दोव तमारी ने उन पर काम किया था।


उदाहरण

एक आयामी असोसिएहेड्रन K₃ तीन चिह्नों की ((xy)z) और (x(yz)) दो कोष्ठक या वर्ग के दो त्रिकोणीकरणों को प्रतिष्ठित करता है। यह अपने आप में एक रेखाखंड है।

द्वि-आयामी एसोसिएहेड्रोन K4 चार प्रतीकों के पाँच कोष्ठकों का प्रतिनिधित्व करता है, यह स्वयं एक पंचभुज है और एकपद श्रेणी के पंचभुज आरेख से संबंधित होता है।

त्रिआयामी असोसिएहेड्रन K₅ एक नौ-आयामी बहुभुज है जिसमें नौ चेहरे होते हैं (तीन अलग-अलग चतुर्भुज और छह पंचभुज) और चौदह शीर्ष होते हैं,और इसका द्विपरावर्तक त्रिकोणीय नामक संक्षेत्र होता है।

बोध

प्रारंभ में जिम स्टाशेफ ने इन वस्तुओं को कर्विलिनियर बहुतलीय के रूप में माना। इसके बाद, उन्हें कई अलग-अलग विधियों से उत्तल बहुतलीय के रूप में निर्देशांक दिए गए; एक सर्वेक्षण के लिए सेबलोस, सैंटोस और ज़िग्लर (2015) का परिचय देखें। असोसिएशेड्रन को एक त्रिकोण या नियमित बहुभुज का द्वितीयक बहुतलीय रूप में प्रतिष्ठित किया जा सकता है।[2]इस निर्माण में, n + 1 भुजों वाले नियमित बहुभुज की प्रत्येक त्रिकोणीकरण (n + 1)-आयामी यूक्लिडीयन स्थान में एक बिंदु के समान होता है, जिसका i-वाला संयोजक बिंदु से संबंधित त्रिकोणों का कुल क्षेत्रफल होता है। उदाहरण के रूप में, यूनिट वर्गाकार के दो त्रिकोणीकरण इस तरीके से उत्पन्न करते हैं, जिनके संयोजक (1, 1/2, 1, 1/2) और (1/2, 1, 1/2, 1) होते हैं। . इन दो बिंदुओं का उत्तल हल एसोसिएहेड्रोन K₃ की प्राप्ति है. यद्यपि यह 4-आयामी स्थान में रहता है, यह उस स्थान के भीतर एक रेखा खंड बनाता है। इसी तरह, असोसिएशेड्रन K4 को यहां एक नियमित पंचभुज के रूप में पांच-आयामी यूक्लिडीयन अंतरिक्ष में प्रतिष्ठित किया जा सकता है, जिसके शिखर संयोजक (1, 2 + φ, 1, 1 + φ, 1 + φ) के चक्रीय प्रतिवर्तन हैं, जहां φ स्वर्णिम अनुपात को दर्शाता है। . नियमित षट्कोण के भीतर संभावित त्रिकोणों के क्षेत्रफल एक-दूसरे के पूर्णांक गुणक होते हैं, इसलिए इस निर्माण का उपयोग करके त्रिआयामी असोसिएशेड्रन K5 को पूर्णांक संयोजक छः आयामों में दिए जा सकते हैं। यद्यपि यह निर्माण असंख्यातांकों को संयोजक के रूप में उत्पन्न करता है।।[2][3]

K5 एक आदेश के रूप में - 4 त्रिकोणीय द्विपिरामिड काट दिया

क्योंकि K5 एक पॉलिहेड्रन है जिसमें केवल वही शिखर संयोजक होते हैं जहां 3 किनारों की जोड़ी एक साथ होती है, इसलिए एक हाइड्रोकार्बन की मौजूदगी संभव है जिसका रासायनिक संरचना K5 की संरेखा द्वारा प्रतिष्ठित की जाती है।यह "असोसिएहेड्रेन" C14H14 का SMILES नोटेशन होगा: C12-C3-C4-C1-C5-C6-C2-C7-C3-C8-C4-C5-C6-C78। इसके किनारे लगभग बराबर लंबाई के होंगे, लेकिन प्रत्येक फलक के शिखर संयोजक आवश्यकतानुसार समतली नहीं होंगे।

वास्तव में, K5 एक निकट-हिट जॉनसन ठोस है: यह ऐसा दिखता है कि इसे वर्गों और नियमित पंचभुजों से बनाना संभव हो सकता है, लेकिन यह ऐसा नहीं है। या तो शिखर संयोजक थोड़े से बाहरी समतली के पास होंगे, या फलकों को थोड़ा-सा अनियमितता के दिशा में विकृत किया जाना होगा।

के-फलकों की संख्या

   k = 1    2    3    4    5
n
1      1                               1
2      1    2                          3
3      1    5    5                    11
4      1    9   21   14               45
5      1   14   56   84   42         197

अनुक्रम का n (Kn+1) के असोसिएशेड्रन के (n − k) आयामी फलकों की संख्या को "गणितीय त्रिकोणी" [ (n, k) द्वारा दी जाती है, जो दाहिने ओर दिखाई जाती है।

Kn+1 में शीर्षों की संख्या n-वें समुच्चयों की संख्या त्रिकोण में दायां विकर्ण है।

Kn+1 (n≥2) में त्रिकोणीय संख्या से एक कम होकर (त्रिकोणी के दूसरे स्तंभ में) फलकों की संख्या होती है, क्योंकि प्रत्येक फलक n वस्तुओं के समूहों के रूप में तमारी जाल Tn का निर्माण करने वाले n के उपसमूह के समरूप होता है, केवल पहले और अंतिम तत्व को सम्मिलित करने वाले 2-उपसमूह को छोड़कर।।

सभी आयामों के फलकों की संख्या (सहित असोसिएशेड्रन स्वयं को भी एक फलक के रूप में, लेकिन खाली समुच्चय को सम्मिलित नहीं करते हुए) एक श्रेडर-हिपार्कस संख्या होती है।[4]


व्यास

1980 के दशक में, घुमाव दूरी की समस्या से संबंधितता में, डेनियल स्लीटर, रॉबर्ट टार्जन, और विलियम थर्स्टन ने प्रमाणित किया कि असोसिएशेड्रन Kn + 2 का व्यास अनंत संख्या के लिए न्यूनतम 2n - 4 होता है और सभी "पर्याप्त बड़े" मानों के लिए n होता है।।[5] उन्होंने प्रमाणित किया कि n के लिए यह ऊपरी सीमा वही होती है जब n अधिक बड़ा होता है, और यह अनुमान लगाया गया था कि "अधिक बड़ा" का अर्थ "9 से तीव्र रूप से अधिक" होता है। यह अनुमान 2012 में लियोनेल पोर्निन द्वारा प्रमाणित किया गया।


प्रकीर्णन आयाम

2017 में, मिज़ेरा और अरकानी-हमीद एट अल ने दिखाया कि द्वि-आसन्न क्यूबिक स्केलर सिद्धांत के लिए स्कैटरिंग एम्पलीट्यूड के सिद्धांत में एसोसिएड्रॉन एक केंद्रीय भूमिका निभाता है। विशेष रूप से, बिखरने वाले कीनेमेटीक्स के स्थान में एक एसोसिएहेड्रोन उपस्थित है, और पेड़ के स्तर के बिखरने का द्विआयामी एसोसिएहेड्रोन का आयतन है।[6]शृंखला सिद्धांत में खुले और बंद शृंखला के बिखरने वाले आयामों के बीच संबंधों को समझाने में एसोसिएड्रॉन भी सहायता करता है।[7]

यह भी देखें

संदर्भ

  1. Tamari, Dov (1951), Monoïdes préordonnés et chaînes de Malcev, Thèse, Université de Paris, MR 0051833.
  2. 2.0 2.1 Ceballos, Cesar; Santos, Francisco; Ziegler, Günter M. (2015), "Many non-equivalent realizations of the associahedron", Combinatorica, 35 (5): 513–551, arXiv:1109.5544, doi:10.1007/s00493-014-2959-9.
  3. Hohlweg, Christophe; Lange, Carsten E. M. C. (2007), "Realizations of the associahedron and cyclohedron", Discrete & Computational Geometry, 37 (4): 517–543, arXiv:math.CO/0510614, doi:10.1007/s00454-007-1319-6, MR 2321739.
  4. Holtkamp, Ralf (2006), "On Hopf algebra structures over free operads", Advances in Mathematics, 207 (2): 544–565, arXiv:math/0407074, doi:10.1016/j.aim.2005.12.004, MR 2271016.
  5. Sleator, Daniel; Tarjan, Robert; Thurston, William (1988), "Rotation distance, triangulations, and hyperbolic geometry", Journal of the American Mathematical Society, 1 (3): 647–681, doi:10.1090/S0894-0347-1988-0928904-4, MR 0928904.
  6. Arkani-Hamed, Nima; Bai, Yuntao; He, Song; Yan, Gongwang (2018), "Scattering Forms and the Positive Geometry of Kinematics, Color and the Worldsheet", Journal of High Energy Physics, 2018: 96, arXiv:1711.09102, doi:10.1007/JHEP05(2018)096.
  7. Mizera, Sebastian (2017). "कावई-लेवेलेन-टाई संबंधों का संयोजन और टोपोलॉजी". Journal of High Energy Physics. 2017: 97. arXiv:1706.08527. doi:10.1007/JHEP08(2017)097.


बाहरी संबंध