बहुआयामी स्केलिंग: Difference between revisions
mNo edit summary |
|||
Line 24: | Line 24: | ||
: उत्कृष्ट एमडीएस [[यूक्लिडियन दूरी]] की दूरी मानता है। तो यह प्रत्यक्ष असमानता अनुपात के लिए लागू नहीं है। | : उत्कृष्ट एमडीएस [[यूक्लिडियन दूरी]] की दूरी मानता है। तो यह प्रत्यक्ष असमानता अनुपात के लिए लागू नहीं है। | ||
=== | === स्तरीय बहुआकारीय मापांक (एमएमडीएस) === | ||
यह उत्कृष्ट एमडीएस का एक अधिसमुच्चय है जो विभिन्न प्रकार के हानि फलन और वजन के साथ ज्ञात दूरी के निविष्ट मैट्रिसेस के लिए अनुकूलन प्रक्रिया को सामान्यीकृत करता है। इस संदर्भ में उपयोगी हानि फलन को दबाव कहा जाता है, जिसे अक्सर दबाव प्रमुखता नामक प्रक्रिया का उपयोग करके कम किया जाता है। | यह उत्कृष्ट एमडीएस का एक अधिसमुच्चय है जो विभिन्न प्रकार के हानि फलन और वजन के साथ ज्ञात दूरी के निविष्ट मैट्रिसेस के लिए अनुकूलन प्रक्रिया को सामान्यीकृत करता है। इस संदर्भ में उपयोगी हानि फलन को दबाव कहा जाता है, जिसे अक्सर दबाव प्रमुखता नामक प्रक्रिया का उपयोग करके कम किया जाता है। स्तरीय एमडीएस "दबाव" नामक लागत फलन को कम करता है जो कि वर्गों का एक अवशिष्ट योग है:<blockquote><math>\text{Stress}_D(x_1,x_2,...,x_N)=\sqrt{\sum_{i\ne j=1,...,N}\bigl(d_{ij}-\|x_i-x_j\|\bigr)^2}.</math> | ||
स्तरीय मापांक दूरी के लिए उपयोगकर्ता-नियंत्रित घातांक <math display="inline">p</math>: <math display="inline">d_{ij}^p</math> और <math display="inline">-d_{ij}^{2p}</math> के साथ घात रूपांतरण का उपयोग करता है। उत्कृष्ट मापांक में <math display="inline">p=1</math> होता है। गैर-स्तरीय मापांक को आइसोटोनिक प्रतिगमन के उपयोग से परिभाषित किया जाता है ताकि गैर-प्रतिबंध रूप से असमानताओं के परिवर्तन का अनुमान लगाया जा सके। | |||
===गैर- | ===गैर-स्तरीय बहुआकारीय मापांक (NMDS)=== | ||
स्तरीय एमडीएस के विपरीत, गैर-स्तरीय एमडीएस, वस्तु और वस्तु मैट्रिक्स में असमानताओं और वस्तुओं के बीच यूक्लिडियन दूरी और निम्न-आकारीय स्थान में प्रत्येक वस्तु के स्थान के बीच एक [[गैर पैरामीट्रिक|प्रतिबंध]] [[मोनोटोनिक|आवृत्ति का]] संबंध प्राप्त करता है। संबंध सामान्यतौर पर [[आइसोटोनिक प्रतिगमन|समपरासारी प्रतिगमन]] का उपयोग करके प्राप्त किया जाता है: माना की, <math display="inline">x</math> निकटता के सदिश, <math display="inline">f(x)</math>, <math display="inline">x</math> का एक दोहरा परिवर्तन, और <math display="inline">d</math> बिंदु दूरी को निरूपित करता है; फिर तथाकथित दबाव को कम करने के लिए निर्देशांक खोजने होंगे; | |||
:<math>\text{Stress}=\sqrt{\frac{\sum\bigl(f(x)-d\bigr)^2}{\sum d^2}}.</math> | :<math>\text{Stress}=\sqrt{\frac{\sum\bigl(f(x)-d\bigr)^2}{\sum d^2}}.</math> | ||
इस लागत फलन के कुछ प्रकार उपलब्ध है। एमडीएस समाधान प्राप्त करने के लिए एमडीएस योजना स्वचालित रूप से दबाव को कम करते हैं। | इस लागत फलन के कुछ प्रकार उपलब्ध है। एमडीएस समाधान प्राप्त करने के लिए एमडीएस योजना स्वचालित रूप से दबाव को कम करते हैं। | ||
एक गैर- | एक गैर-स्तरीय एमडीएस एल्गोरिथम का मूल एक दोहरी अनुकूलन प्रक्रिया है। सबसे पहले समीपताओं का इष्टतम दोहरा परिवर्तन प्राप्त करना है। दूसरे, एक विन्यास के बिंदुओं को बेहतर ढंग से व्यवस्थित किया जाना चाहिए, ताकि उनकी दूरियां माप की गई निकटता से यथासंभव मेल खा सकें। एक गैर-स्तरीय एमडीएस एल्गोरिथम में मुख्य चरण हैं: | ||
:# बिंदुओं का एक अक्रमतः विन्यास खोजें, उदाहरण एक सामान्य वितरण से नमूनाकरण द्वारा। | :# बिंदुओं का एक अक्रमतः विन्यास खोजें, उदाहरण एक सामान्य वितरण से नमूनाकरण द्वारा। | ||
:# बिंदुओं के बीच की दूरी d की गणना करें। | :# बिंदुओं के बीच की दूरी d की गणना करें। | ||
Line 44: | Line 44: | ||
=== सामान्यीकृत बहुआकारीय मापांक (जीएमडी) === | === सामान्यीकृत बहुआकारीय मापांक (जीएमडी) === | ||
स्तरीय बहुआकारीय मापांक का एक विस्तार, जिसमें लक्षित स्थान एक एकपक्षीय समतल गैर-यूक्लिडियन स्थान है। ऐसे स्थितियों में जहां असमानताएं एक सतह पर दूरियां हैं और लक्षित स्थान दूसरी सतह है, जीएमडीएस एक सतह की दूसरी सतह में न्यूनतम-विरूपण अंतर्निहित खोजने की अनुमति देता है।<ref name="bron">{{cite journal |vauthors=Bronstein AM, Bronstein MM, Kimmel R |title=Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=103 |issue=5 |pages=1168–72 |date=January 2006 |pmid=16432211 |pmc=1360551 |doi=10.1073/pnas.0508601103 |bibcode=2006PNAS..103.1168B |doi-access=free }}</ref> | |||
Line 50: | Line 50: | ||
'''<big>विवरण</big>''' | '''<big>विवरण</big>''' | ||
विश्लेषण किए जाने वाले डेटा का एक संग्रह है <math>M</math> | विश्लेषण किए जाने वाले डेटा का एक संग्रह है <math>M</math> वस्तुओं (रंग, रूपरेखा, भंडार, ...) जिस पर एक दूरी फलन परिभाषित किया गया है, | ||
:<math>d_{i,j} :=</math> | :<math>d_{i,j} :=</math> <math>i</math>-वें और <math>j</math>-वीं वस्तुएं के बीच की दूरी। | ||
ये दूरियाँ असमानता मैट्रिक्स की प्रविष्टियाँ हैं | ये दूरियाँ असमानता मैट्रिक्स की प्रविष्टियाँ हैं | ||
Line 64: | Line 64: | ||
\end{pmatrix}. | \end{pmatrix}. | ||
</math> | </math> | ||
एमडीएस का लक्ष्य | एमडीएस का लक्ष्य <math>D</math> दिया गया है , <math>M</math> प्राप्त करने के लिए सदिश <math>x_1,\ldots,x_M \in \mathbb{R}^N</math> इस तरह | ||
:<math>\|x_i - x_j\| \approx d_{i,j}</math> सभी के लिए <math>i,j\in {1,\dots,M}</math>, | :<math>\|x_i - x_j\| \approx d_{i,j}</math> सभी के लिए <math>i,j\in {1,\dots,M}</math>, | ||
जहाँ <math>\|\cdot\|</math> एक गुणावली (गणित) है। उत्कृष्ट एमडीएस में, यह मानदंड यूक्लिडियन दूरी है, लेकिन, व्यापक अर्थों में, यह एक [[मीट्रिक (गणित)]] या एकपक्षीय ढंग से दूरी का कार्य हो सकता है।<ref name="Kruskal">[[Joseph Kruskal|Kruskal, J. B.]], and Wish, M. (1978), ''Multidimensional Scaling'', Sage University Paper series on Quantitative Application in the Social Sciences, 07-011. Beverly Hills and London: Sage Publications.</ref> | |||
दूसरे शब्दों में, एमडीएस | दूसरे शब्दों में, एमडीएस में इस तरह दूरियों को संरक्षित किया जाता है जैसे <math>M</math> वस्तुओं में <math>\mathbb{R}^N</math>से आलेखन खोजने का प्रयास करता है। यदि आकार <math>N</math> 2 या 3 चुना जाता है, तो हम <math>M</math> वस्तुओं के बीच समानता का एक दृश्य प्राप्त करने के लिए सदिशों <math>x_i</math> को आलेखित कर सकते हैं। ध्यान दें कि सदिश <math>x_i</math> अद्वितीय नहीं हैं: यूक्लिडियन दूरी के साथ, उन्हें एकपक्षीय ढंग से अनुवादित, घुमाया और प्रतिबिंबित किया जा सकता है, क्योंकि ये परिवर्तन जोड़ीदार दूरियों <math>\|x_i - x_j\|</math> को नहीं बदलते हैं . | ||
(नोट: प्रतीक <math>\mathbb{R}</math> [[वास्तविक संख्या]]ओं के समुच्चय और अंकन को इंगित करता है <math>\mathbb{R}^N</math> के कार्टेशियन उत्पाद को संदर्भित करता है <math>N</math> की प्रतियां <math>\mathbb{R}</math>, जो एक है <math>N</math>वास्तविक संख्याओं के क्षेत्र में आकारीय सदिश स्थान।) | (नोट: प्रतीक <math>\mathbb{R}</math> [[वास्तविक संख्या]]ओं के समुच्चय और अंकन को इंगित करता है <math>\mathbb{R}^N</math> के कार्टेशियन उत्पाद को संदर्भित करता है <math>N</math> की प्रतियां <math>\mathbb{R}</math>, जो एक है <math>N</math>वास्तविक संख्याओं के क्षेत्र में आकारीय सदिश स्थान।) | ||
Line 88: | Line 87: | ||
# निविष्ट डेटा प्राप्त करना - उदाहरण के लिए, :- उत्तरदाताओं से प्रश्नों की एक श्रृंखला पूछी जाती है। प्रत्येक उत्पाद जोड़ी के लिए, उन्हें समानता को रेट करने के लिए कहा जाता है (सामान्यतौर पर 7-पॉइंट [[ लाइकेर्ट स्केल ]] पर बहुत समान से बहुत भिन्न)। उदाहरण के लिए पहला प्रश्न कोक/पेप्सी के लिए हो सकता है, अगला प्रश्न कोक/हायर्स रूटबीयर के लिए, अगला प्रश्न पेप्सी/डॉ. पेपर के लिए, अगला प्रश्न डॉ. पेपर/हायर्स रूटबीयर आदि के लिए हो सकता है। प्रश्नों की संख्या प्रश्नों की संख्या का फलन है। ब्रांड और के रूप में गणना की जा सकती है <math>Q = N (N - 1) / 2</math> जहाँ Q प्रश्नों की संख्या है और N ब्रांडों की संख्या है। इस दृष्टिकोण को "धारणा डेटा: प्रत्यक्ष दृष्टिकोण" के रूप में जाना जाता है। दो अन्य दृष्टिकोण हैं। "धारणा डेटा: व्युत्पन्न दृष्टिकोण" है जिसमें उत्पादों को [[सिमेंटिक अंतर]] स्केल पर रेट किए गए गुणों में विघटित किया जाता है। दूसरा "वरीयता डेटा दृष्टिकोण" है जिसमें उत्तरदाताओं से समानता के बजाय उनकी वरीयता पूछी जाती है। | # निविष्ट डेटा प्राप्त करना - उदाहरण के लिए, :- उत्तरदाताओं से प्रश्नों की एक श्रृंखला पूछी जाती है। प्रत्येक उत्पाद जोड़ी के लिए, उन्हें समानता को रेट करने के लिए कहा जाता है (सामान्यतौर पर 7-पॉइंट [[ लाइकेर्ट स्केल ]] पर बहुत समान से बहुत भिन्न)। उदाहरण के लिए पहला प्रश्न कोक/पेप्सी के लिए हो सकता है, अगला प्रश्न कोक/हायर्स रूटबीयर के लिए, अगला प्रश्न पेप्सी/डॉ. पेपर के लिए, अगला प्रश्न डॉ. पेपर/हायर्स रूटबीयर आदि के लिए हो सकता है। प्रश्नों की संख्या प्रश्नों की संख्या का फलन है। ब्रांड और के रूप में गणना की जा सकती है <math>Q = N (N - 1) / 2</math> जहाँ Q प्रश्नों की संख्या है और N ब्रांडों की संख्या है। इस दृष्टिकोण को "धारणा डेटा: प्रत्यक्ष दृष्टिकोण" के रूप में जाना जाता है। दो अन्य दृष्टिकोण हैं। "धारणा डेटा: व्युत्पन्न दृष्टिकोण" है जिसमें उत्पादों को [[सिमेंटिक अंतर]] स्केल पर रेट किए गए गुणों में विघटित किया जाता है। दूसरा "वरीयता डेटा दृष्टिकोण" है जिसमें उत्तरदाताओं से समानता के बजाय उनकी वरीयता पूछी जाती है। | ||
# 'एमडीएस सांख्यिकीय कार्यक्रम चलाना' - प्रक्रिया को चलाने के लिए सॉफ्टवेयर कई सांख्यिकीय सॉफ्टवेयर पैकेजों में उपलब्ध है। अक्सर मेट्रिक एमडीएस (जो अंतराल या अनुपात स्तर डेटा से संबंधित होता है) और नॉनमेट्रिक एमडीएस के बीच एक विकल्प होता है<ref>{{cite journal|first1=J. B.|last1=Kruskal| author-link=Joseph Kruskal| title=एक गैर-मीट्रिक परिकल्पना के लिए फिट की अच्छाई का अनुकूलन करके बहुआयामी स्केलिंग|journal=Psychometrika|pages=1–27| volume=29| issue=1| year=1964| doi=10.1007/BF02289565|s2cid=48165675}}</ref> (जो क्रमिक डेटा से संबंधित है)। | # 'एमडीएस सांख्यिकीय कार्यक्रम चलाना' - प्रक्रिया को चलाने के लिए सॉफ्टवेयर कई सांख्यिकीय सॉफ्टवेयर पैकेजों में उपलब्ध है। अक्सर मेट्रिक एमडीएस (जो अंतराल या अनुपात स्तर डेटा से संबंधित होता है) और नॉनमेट्रिक एमडीएस के बीच एक विकल्प होता है<ref>{{cite journal|first1=J. B.|last1=Kruskal| author-link=Joseph Kruskal| title=एक गैर-मीट्रिक परिकल्पना के लिए फिट की अच्छाई का अनुकूलन करके बहुआयामी स्केलिंग|journal=Psychometrika|pages=1–27| volume=29| issue=1| year=1964| doi=10.1007/BF02289565|s2cid=48165675}}</ref> (जो क्रमिक डेटा से संबंधित है)। | ||
# | # आकार ों की संख्या तय करें - शोधकर्ता को यह तय करना होगा कि वे कितने आकार ों को कंप्यूटर बनाना चाहते हैं। एमडीएस समाधान की व्याख्या अक्सर महत्वपूर्ण होती है, और निम्न आकारीय समाधान सामान्यतौर पर व्याख्या और कल्पना करना आसान होगा। हालाँकि, आकार चयन भी अंडरफिटिंग और ओवरफिटिंग को संतुलित करने का एक मुद्दा है। असमानता डेटा के महत्वपूर्ण आकार ों को छोड़कर निम्न आकारीय समाधान कम हो सकते हैं। असमानता माप में शोर के लिए उच्च आकारीय समाधान अधिक हो सकते हैं। Akaike सूचना मानदंड, [[बायेसियन सूचना मानदंड]], [[बेयस कारक]], या [[क्रॉस-सत्यापन (सांख्यिकी)]] | क्रॉस-सत्यापन जैसे मॉडल चयन उपकरण इस प्रकार उस आकार का चयन करने के लिए उपयोगी हो सकते हैं जो अंडरफिटिंग और ओवरफिटिंग को संतुलित करता है। | ||
# परिणामों की आलेखन और | # परिणामों की आलेखन और आकार ों को परिभाषित करना - सांख्यिकीय कार्यक्रम (या संबंधित मॉड्यूल) परिणामों को मैप करेगा। नक्शा प्रत्येक उत्पाद को प्लॉट करेगा (सामान्यतौर पर द्वि-आकारीय अंतरिक्ष में)। उत्पादों की एक दूसरे से निकटता यह दर्शाती है कि वे कितने समान हैं या उन्हें कितना पसंद किया जाता है, यह इस बात पर निर्भर करता है कि किस दृष्टिकोण का उपयोग किया गया था। एम्बेडिंग के आकार वास्तव में सिस्टम व्यवहार के आकार ों के अनुरूप कैसे हैं, हालांकि, यह स्पष्ट नहीं है। यहां, पत्राचार के बारे में एक व्यक्तिपरक निर्णय किया जा सकता है ([[अवधारणात्मक मानचित्रण]] देखें)। | ||
# विश्वसनीयता और वैधता के लिए परिणामों का परीक्षण करें - यह निर्धारित करने के लिए [[आर चुकता]] की गणना करें कि स्केल किए गए डेटा के किस अनुपात का एमडीएस प्रक्रिया द्वारा हिसाब लगाया जा सकता है। 0.6 का एक आर-वर्ग न्यूनतम स्वीकार्य स्तर माना जाता है। 0.8 का एक आर-वर्ग मीट्रिक मापांक के लिए अच्छा माना जाता है और .9 गैर-मीट्रिक मापांक के लिए अच्छा माना जाता है। अन्य संभावित परीक्षण क्रुस्कल का दबाव, विभाजित डेटा परीक्षण, डेटा स्थिरता परीक्षण (यानी, एक ब्रांड को समाप्त करना), और परीक्षण-पुनः परीक्षण विश्वसनीयता हैं। | # विश्वसनीयता और वैधता के लिए परिणामों का परीक्षण करें - यह निर्धारित करने के लिए [[आर चुकता]] की गणना करें कि स्केल किए गए डेटा के किस अनुपात का एमडीएस प्रक्रिया द्वारा हिसाब लगाया जा सकता है। 0.6 का एक आर-वर्ग न्यूनतम स्वीकार्य स्तर माना जाता है। 0.8 का एक आर-वर्ग मीट्रिक मापांक के लिए अच्छा माना जाता है और .9 गैर-मीट्रिक मापांक के लिए अच्छा माना जाता है। अन्य संभावित परीक्षण क्रुस्कल का दबाव, विभाजित डेटा परीक्षण, डेटा स्थिरता परीक्षण (यानी, एक ब्रांड को समाप्त करना), और परीक्षण-पुनः परीक्षण विश्वसनीयता हैं। | ||
# परिणामों की व्यापक रूप से रिपोर्ट करें - आलेखन के साथ, कम से कम दूरी माप (जैसे, [[सोरेनसन इंडेक्स]], [[जैकार्ड इंडेक्स]]) और विश्वसनीयता (जैसे, दबाव मूल्य) दी जानी चाहिए। एल्गोरिदम (उदाहरण के लिए, क्रुस्कल, माथेर) देने की भी सलाह दी जाती है, जिसे अक्सर उपयोग किए जाने वाले प्रोग्राम द्वारा परिभाषित किया जाता है (कभी-कभी एल्गोरिथम रिपोर्ट की जगह), यदि आपने एक स्टार्ट कॉन्फ़िगरेशन दिया है या एक यादृच्छिक विकल्प है, तो रनों की संख्या , | # परिणामों की व्यापक रूप से रिपोर्ट करें - आलेखन के साथ, कम से कम दूरी माप (जैसे, [[सोरेनसन इंडेक्स]], [[जैकार्ड इंडेक्स]]) और विश्वसनीयता (जैसे, दबाव मूल्य) दी जानी चाहिए। एल्गोरिदम (उदाहरण के लिए, क्रुस्कल, माथेर) देने की भी सलाह दी जाती है, जिसे अक्सर उपयोग किए जाने वाले प्रोग्राम द्वारा परिभाषित किया जाता है (कभी-कभी एल्गोरिथम रिपोर्ट की जगह), यदि आपने एक स्टार्ट कॉन्फ़िगरेशन दिया है या एक यादृच्छिक विकल्प है, तो रनों की संख्या , आकार का मूल्यांकन[[मोंटे कार्लो विधि]] पद्धति के परिणाम, पुनरावृत्तियों की संख्या, स्थिरता का मूल्यांकन और प्रत्येक अक्ष (आर-स्क्वायर) का आनुपातिक विचरण। | ||
== कार्यान्वयन == | == कार्यान्वयन == |
Revision as of 22:12, 5 June 2023
बहुआकारीय मापांक (एमडीएस) डेटा समूह के अलग-अलग स्थितियों की समानता के स्तर को कल्पना करने का एक साधन है। एमडीएस का उपयोग, कार्टेशियन समन्वय प्रणाली में आलेख किए गए अंको के विन्यास के लिए व्यक्तियों या वस्तुओं की दो की जोड़ी के समूह के अंतराल की जानकारी को अनुवाद करने के लिए किया जाता है।[1]
अधिक तकनीकी रूप से, एमडीएस विशेष रूप से एक दूरी मैट्रिक्स में निहित जानकारी को प्रदर्शित करने के लिए काल्पनिक सूचना में उपयोग की जाने वाली संबंधित समन्वय तकनीकों के एक समूह को संदर्भित करता है। यह गैर-रैखिक आकारीय कमी का एक रूप है।
समूह में वस्तुओं की प्रत्येक जोड़ी के बीच की दूरी के साथ एक दूरी मैट्रिक्स और N आकारों की एक चुनी हुई संख्या को एमडीएस की कलन विधि द्वारा प्रत्येक वस्तु को N-आकारीय स्थान (एक निम्न-आकारीय प्रतिनिधित्व) में रखता है, जैसे कि वस्तु के बीच की दूरी यथासंभव संरक्षित हो। N = 1, 2 और 3 के लिए, परिणामी बिंदुओं को अस्त व्यस्त पृष्ठभूमि पर देखा जा सकता है।
एमडीएस में मुख्य सैद्धांतिक योगदान मैकगिल विश्वविद्यालय के जेम्स ओ रामसे द्वारा किया गया था, जिन्हें कार्यात्मक डेटा विश्लेषण के संस्थापक के रूप में भी माना जाता है।[2]
प्रकार
एमडीएस एल्गोरिदम निविष्ट मैट्रिक्स के अर्थ के आधार पर वर्गीकरण (सामान्य) में आते हैं:
उत्कृष्ट बहुआकारीय मापांक
इसे मुख्य निर्देशांक विश्लेषण (PCoA), टॉरगर्सन मापांक या टॉरगर्सन-गॉवर मापांक के रूप में भी जाना जाता है। यह एक निविष्ट मैट्रिक्स लेता है जो वस्तुओं के जोड़े और उत्पाद के बीच असमानता देता है। एक समन्वय मैट्रिक्स जिसका विन्यास हानि फलन को कम करता है उसे दबाव कहते है।[3]जो इस तरह दर्शाता है:
- उत्कृष्ट एमडीएस एल्गोरिथम के चरण:
- उत्कृष्ट एमडीएस इस तथ्य का उपयोग करता है कि समन्वय मैट्रिक्स से के वास्तविक मान द्वारा प्राप्त किया जा सकता है . और मैट्रिक्स दोहरे केंद्रीय का उपयोग करके निकटता मैट्रिक्स से गणना की जा सकती है।[4]
- समबाहु निकटता मैट्रिक्स स्थापित करें
- दोहरे केंद्रीय लागू करें: केंद्रित मैट्रिक्स का उपयोग करके , जहाँ वस्तुओं की संख्या है, समरूप मैट्रिक्स है, और सभी का एक मैट्रिक्स है।
- का सबसे बड़ा वास्तविक मान और संबंधित वास्तविक सदिश में निर्धारित करें (जहाँ उत्पाद के लिए वांछित आकारों की संख्या है)।
- अब, , जहाँ वास्तविक सदिश का मैट्रिक्स है के वास्तविक मान का विकर्ण मैट्रिक्स है।
- उत्कृष्ट एमडीएस यूक्लिडियन दूरी की दूरी मानता है। तो यह प्रत्यक्ष असमानता अनुपात के लिए लागू नहीं है।
स्तरीय बहुआकारीय मापांक (एमएमडीएस)
यह उत्कृष्ट एमडीएस का एक अधिसमुच्चय है जो विभिन्न प्रकार के हानि फलन और वजन के साथ ज्ञात दूरी के निविष्ट मैट्रिसेस के लिए अनुकूलन प्रक्रिया को सामान्यीकृत करता है। इस संदर्भ में उपयोगी हानि फलन को दबाव कहा जाता है, जिसे अक्सर दबाव प्रमुखता नामक प्रक्रिया का उपयोग करके कम किया जाता है। स्तरीय एमडीएस "दबाव" नामक लागत फलन को कम करता है जो कि वर्गों का एक अवशिष्ट योग है:
स्तरीय मापांक दूरी के लिए उपयोगकर्ता-नियंत्रित घातांक : और के साथ घात रूपांतरण का उपयोग करता है। उत्कृष्ट मापांक में होता है। गैर-स्तरीय मापांक को आइसोटोनिक प्रतिगमन के उपयोग से परिभाषित किया जाता है ताकि गैर-प्रतिबंध रूप से असमानताओं के परिवर्तन का अनुमान लगाया जा सके।
गैर-स्तरीय बहुआकारीय मापांक (NMDS)
स्तरीय एमडीएस के विपरीत, गैर-स्तरीय एमडीएस, वस्तु और वस्तु मैट्रिक्स में असमानताओं और वस्तुओं के बीच यूक्लिडियन दूरी और निम्न-आकारीय स्थान में प्रत्येक वस्तु के स्थान के बीच एक प्रतिबंध आवृत्ति का संबंध प्राप्त करता है। संबंध सामान्यतौर पर समपरासारी प्रतिगमन का उपयोग करके प्राप्त किया जाता है: माना की, निकटता के सदिश, , का एक दोहरा परिवर्तन, और बिंदु दूरी को निरूपित करता है; फिर तथाकथित दबाव को कम करने के लिए निर्देशांक खोजने होंगे;
इस लागत फलन के कुछ प्रकार उपलब्ध है। एमडीएस समाधान प्राप्त करने के लिए एमडीएस योजना स्वचालित रूप से दबाव को कम करते हैं।
एक गैर-स्तरीय एमडीएस एल्गोरिथम का मूल एक दोहरी अनुकूलन प्रक्रिया है। सबसे पहले समीपताओं का इष्टतम दोहरा परिवर्तन प्राप्त करना है। दूसरे, एक विन्यास के बिंदुओं को बेहतर ढंग से व्यवस्थित किया जाना चाहिए, ताकि उनकी दूरियां माप की गई निकटता से यथासंभव मेल खा सकें। एक गैर-स्तरीय एमडीएस एल्गोरिथम में मुख्य चरण हैं:
- बिंदुओं का एक अक्रमतः विन्यास खोजें, उदाहरण एक सामान्य वितरण से नमूनाकरण द्वारा।
- बिंदुओं के बीच की दूरी d की गणना करें।
- इष्टतम माप किए गए डेटा को प्राप्त करने के लिए निकटता के इष्टतम दोहरे परिवर्तन का पता लगाएं .
- बिंदुओं का एक नया विन्यास खोजकर इष्टतम रूप से मापे गए डेटा और दूरियों के बीच दबाव को कम करें।
- दबाव की तुलना किसी कसौटी से करें। यदि दबाव काफी छोटा है तो एल्गोरिथम से बाहर निकलें अन्यथा 2 पर लौटें।
लुई गुटमैन का सबसे छोटा अंतरिक्ष विश्लेषण (एसएसए) एक गैर-मीट्रिक एमडीएस प्रक्रिया का एक उदाहरण है।
सामान्यीकृत बहुआकारीय मापांक (जीएमडी)
स्तरीय बहुआकारीय मापांक का एक विस्तार, जिसमें लक्षित स्थान एक एकपक्षीय समतल गैर-यूक्लिडियन स्थान है। ऐसे स्थितियों में जहां असमानताएं एक सतह पर दूरियां हैं और लक्षित स्थान दूसरी सतह है, जीएमडीएस एक सतह की दूसरी सतह में न्यूनतम-विरूपण अंतर्निहित खोजने की अनुमति देता है।[5]
विवरण
विश्लेषण किए जाने वाले डेटा का एक संग्रह है वस्तुओं (रंग, रूपरेखा, भंडार, ...) जिस पर एक दूरी फलन परिभाषित किया गया है,
- -वें और -वीं वस्तुएं के बीच की दूरी।
ये दूरियाँ असमानता मैट्रिक्स की प्रविष्टियाँ हैं
एमडीएस का लक्ष्य दिया गया है , प्राप्त करने के लिए सदिश इस तरह
- सभी के लिए ,
जहाँ एक गुणावली (गणित) है। उत्कृष्ट एमडीएस में, यह मानदंड यूक्लिडियन दूरी है, लेकिन, व्यापक अर्थों में, यह एक मीट्रिक (गणित) या एकपक्षीय ढंग से दूरी का कार्य हो सकता है।[6]
दूसरे शब्दों में, एमडीएस में इस तरह दूरियों को संरक्षित किया जाता है जैसे वस्तुओं में से आलेखन खोजने का प्रयास करता है। यदि आकार 2 या 3 चुना जाता है, तो हम वस्तुओं के बीच समानता का एक दृश्य प्राप्त करने के लिए सदिशों को आलेखित कर सकते हैं। ध्यान दें कि सदिश अद्वितीय नहीं हैं: यूक्लिडियन दूरी के साथ, उन्हें एकपक्षीय ढंग से अनुवादित, घुमाया और प्रतिबिंबित किया जा सकता है, क्योंकि ये परिवर्तन जोड़ीदार दूरियों को नहीं बदलते हैं .
(नोट: प्रतीक वास्तविक संख्याओं के समुच्चय और अंकन को इंगित करता है के कार्टेशियन उत्पाद को संदर्भित करता है की प्रतियां , जो एक है वास्तविक संख्याओं के क्षेत्र में आकारीय सदिश स्थान।)
सदिश का निर्धारण करने के लिए विभिन्न दृष्टिकोण हैं . सामान्यतौर पर, एमडीएस को अनुकूलन (गणित) के रूप में तैयार किया जाता है, जहां उदाहरण के लिए, कुछ लागत फ़ंक्शन के न्यूनतमकर्ता के रूप में पाया जाता है,
एक समाधान तब संख्यात्मक अनुकूलन तकनीकों द्वारा पाया जा सकता है। कुछ विशेष रूप से चुने गए लागत कार्यों के लिए, मैट्रिक्स के मैट्रिक्स Eigedecomposition के संदर्भ में मिनिमाइज़र को विश्लेषणात्मक रूप से कहा जा सकता है।[3]
प्रक्रिया
एमडीएस अनुसंधान करने के कई चरण हैं:
- समस्या का निरूपण - आप किन चरों की तुलना करना चाहते हैं? आप कितने चरों की तुलना करना चाहते हैं? अध्ययन किस उद्देश्य के लिए किया जाना है?
- निविष्ट डेटा प्राप्त करना - उदाहरण के लिए, :- उत्तरदाताओं से प्रश्नों की एक श्रृंखला पूछी जाती है। प्रत्येक उत्पाद जोड़ी के लिए, उन्हें समानता को रेट करने के लिए कहा जाता है (सामान्यतौर पर 7-पॉइंट लाइकेर्ट स्केल पर बहुत समान से बहुत भिन्न)। उदाहरण के लिए पहला प्रश्न कोक/पेप्सी के लिए हो सकता है, अगला प्रश्न कोक/हायर्स रूटबीयर के लिए, अगला प्रश्न पेप्सी/डॉ. पेपर के लिए, अगला प्रश्न डॉ. पेपर/हायर्स रूटबीयर आदि के लिए हो सकता है। प्रश्नों की संख्या प्रश्नों की संख्या का फलन है। ब्रांड और के रूप में गणना की जा सकती है जहाँ Q प्रश्नों की संख्या है और N ब्रांडों की संख्या है। इस दृष्टिकोण को "धारणा डेटा: प्रत्यक्ष दृष्टिकोण" के रूप में जाना जाता है। दो अन्य दृष्टिकोण हैं। "धारणा डेटा: व्युत्पन्न दृष्टिकोण" है जिसमें उत्पादों को सिमेंटिक अंतर स्केल पर रेट किए गए गुणों में विघटित किया जाता है। दूसरा "वरीयता डेटा दृष्टिकोण" है जिसमें उत्तरदाताओं से समानता के बजाय उनकी वरीयता पूछी जाती है।
- 'एमडीएस सांख्यिकीय कार्यक्रम चलाना' - प्रक्रिया को चलाने के लिए सॉफ्टवेयर कई सांख्यिकीय सॉफ्टवेयर पैकेजों में उपलब्ध है। अक्सर मेट्रिक एमडीएस (जो अंतराल या अनुपात स्तर डेटा से संबंधित होता है) और नॉनमेट्रिक एमडीएस के बीच एक विकल्प होता है[7] (जो क्रमिक डेटा से संबंधित है)।
- आकार ों की संख्या तय करें - शोधकर्ता को यह तय करना होगा कि वे कितने आकार ों को कंप्यूटर बनाना चाहते हैं। एमडीएस समाधान की व्याख्या अक्सर महत्वपूर्ण होती है, और निम्न आकारीय समाधान सामान्यतौर पर व्याख्या और कल्पना करना आसान होगा। हालाँकि, आकार चयन भी अंडरफिटिंग और ओवरफिटिंग को संतुलित करने का एक मुद्दा है। असमानता डेटा के महत्वपूर्ण आकार ों को छोड़कर निम्न आकारीय समाधान कम हो सकते हैं। असमानता माप में शोर के लिए उच्च आकारीय समाधान अधिक हो सकते हैं। Akaike सूचना मानदंड, बायेसियन सूचना मानदंड, बेयस कारक, या क्रॉस-सत्यापन (सांख्यिकी) | क्रॉस-सत्यापन जैसे मॉडल चयन उपकरण इस प्रकार उस आकार का चयन करने के लिए उपयोगी हो सकते हैं जो अंडरफिटिंग और ओवरफिटिंग को संतुलित करता है।
- परिणामों की आलेखन और आकार ों को परिभाषित करना - सांख्यिकीय कार्यक्रम (या संबंधित मॉड्यूल) परिणामों को मैप करेगा। नक्शा प्रत्येक उत्पाद को प्लॉट करेगा (सामान्यतौर पर द्वि-आकारीय अंतरिक्ष में)। उत्पादों की एक दूसरे से निकटता यह दर्शाती है कि वे कितने समान हैं या उन्हें कितना पसंद किया जाता है, यह इस बात पर निर्भर करता है कि किस दृष्टिकोण का उपयोग किया गया था। एम्बेडिंग के आकार वास्तव में सिस्टम व्यवहार के आकार ों के अनुरूप कैसे हैं, हालांकि, यह स्पष्ट नहीं है। यहां, पत्राचार के बारे में एक व्यक्तिपरक निर्णय किया जा सकता है (अवधारणात्मक मानचित्रण देखें)।
- विश्वसनीयता और वैधता के लिए परिणामों का परीक्षण करें - यह निर्धारित करने के लिए आर चुकता की गणना करें कि स्केल किए गए डेटा के किस अनुपात का एमडीएस प्रक्रिया द्वारा हिसाब लगाया जा सकता है। 0.6 का एक आर-वर्ग न्यूनतम स्वीकार्य स्तर माना जाता है। 0.8 का एक आर-वर्ग मीट्रिक मापांक के लिए अच्छा माना जाता है और .9 गैर-मीट्रिक मापांक के लिए अच्छा माना जाता है। अन्य संभावित परीक्षण क्रुस्कल का दबाव, विभाजित डेटा परीक्षण, डेटा स्थिरता परीक्षण (यानी, एक ब्रांड को समाप्त करना), और परीक्षण-पुनः परीक्षण विश्वसनीयता हैं।
- परिणामों की व्यापक रूप से रिपोर्ट करें - आलेखन के साथ, कम से कम दूरी माप (जैसे, सोरेनसन इंडेक्स, जैकार्ड इंडेक्स) और विश्वसनीयता (जैसे, दबाव मूल्य) दी जानी चाहिए। एल्गोरिदम (उदाहरण के लिए, क्रुस्कल, माथेर) देने की भी सलाह दी जाती है, जिसे अक्सर उपयोग किए जाने वाले प्रोग्राम द्वारा परिभाषित किया जाता है (कभी-कभी एल्गोरिथम रिपोर्ट की जगह), यदि आपने एक स्टार्ट कॉन्फ़िगरेशन दिया है या एक यादृच्छिक विकल्प है, तो रनों की संख्या , आकार का मूल्यांकनमोंटे कार्लो विधि पद्धति के परिणाम, पुनरावृत्तियों की संख्या, स्थिरता का मूल्यांकन और प्रत्येक अक्ष (आर-स्क्वायर) का आनुपातिक विचरण।
कार्यान्वयन
- ELKI में दो एमडीएस कार्यान्वयन शामिल हैं।
- MATLAB में दो एमडीएस कार्यान्वयन शामिल हैं (क्रमशः उत्कृष्ट (cएमडीएसcale) और गैर-उत्कृष्ट (एमडीएसcale) एमडीएस के लिए)।
- R (प्रोग्रामिंग भाषा) कई एमडीएस कार्यान्वयन प्रदान करता है, उदा. आधार cmdscale फ़ंक्शन, पैकेज smacof[8] (एमएमडीएस और एनएमडीएस), और शाकाहारी (भारित एमडीएस)।
- स्किकिट-लर्न में फंक्शन होता है [http://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html sklearn.manifold.MDS]।
यह भी देखें
Wikimedia Commons has media related to Multidimensional scaling.
- डेटा क्लस्टरिंग
- कारक विश्लेषण
- विभेदक विश्लेषण
- आकारीयता में कमी
- दूरी ज्यामिति
- केली-मेंजर निर्धारक
- संपो की आलेखन
- सहसंबंधों की प्रतीकात्मकता
संदर्भ
- ↑ Mead, A (1992). "बहुआयामी स्केलिंग विधियों के विकास की समीक्षा". Journal of the Royal Statistical Society. Series D (The Statistician). 41 (1): 27–39. JSTOR 234863.
अमूर्त। बहुआयामी स्केलिंग विधियां अब साइकोफिज़िक्स और संवेदी विश्लेषण में एक सामान्य सांख्यिकीय उपकरण हैं। इन विधियों के विकास को व्यक्तिगत अंतर स्केलिंग और रामसे द्वारा प्रस्तावित अधिकतम संभावना विधियों के माध्यम से टोरगर्सन (मीट्रिक स्केलिंग), शेपर्ड और क्रुस्कल (गैर-मीट्रिक स्केलिंग) के मूल शोध से चार्ट किया गया है।- ↑ Genest, Christian; Nešlehová, Johanna G.; Ramsay, James O. (2014). "जेम्स ओ रामसे के साथ बातचीत". International Statistical Review / Revue Internationale de Statistique. 82 (2): 161–183. JSTOR 43299752. Retrieved 30 June 2021.
- ↑ 3.0 3.1 Cite error: Invalid
<ref>
tag; no text was provided for refs namedborg
- ↑ Wickelmaier, Florian. "An introduction to MDS." Sound Quality Research Unit, Aalborg University, Denmark (2003): 46
- ↑ Bronstein AM, Bronstein MM, Kimmel R (January 2006). "Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching". Proc. Natl. Acad. Sci. U.S.A. 103 (5): 1168–72. Bibcode:2006PNAS..103.1168B. doi:10.1073/pnas.0508601103. PMC 1360551. PMID 16432211.
- ↑ Kruskal, J. B., and Wish, M. (1978), Multidimensional Scaling, Sage University Paper series on Quantitative Application in the Social Sciences, 07-011. Beverly Hills and London: Sage Publications.
- ↑ Kruskal, J. B. (1964). "एक गैर-मीट्रिक परिकल्पना के लिए फिट की अच्छाई का अनुकूलन करके बहुआयामी स्केलिंग". Psychometrika. 29 (1): 1–27. doi:10.1007/BF02289565. S2CID 48165675.
- ↑ Leeuw, Jan de; Mair, Patrick (2009). "Multidimensional Scaling Using Majorization: SMACOF in R". Journal of Statistical Software (in English). 31 (3). doi:10.18637/jss.v031.i03. ISSN 1548-7660.
ग्रन्थसूची
- Cox, T.F.; Cox, M.A.A. (2001). Multidimensional Scaling. Chapman and Hall.
- Coxon, Anthony P.M. (1982). The User's Guide to Multidimensional Scaling. With special reference to the MDS(X) library of Computer Programs. London: Heinemann Educational Books.
- Green, P. (January 1975). "Marketing applications of MDS: Assessment and outlook". Journal of Marketing. 39 (1): 24–31. doi:10.2307/1250799. JSTOR 1250799.
- McCune, B. & Grace, J.B. (2002). Analysis of Ecological Communities. Oregon, Gleneden Beach: MjM Software Design. ISBN 978-0-9721290-0-8.
- Young, Forrest W. (1987). Multidimensional scaling: History, theory, and applications. Lawrence Erlbaum Associates. ISBN 978-0898596632.
- Torgerson, Warren S. (1958). Theory & Methods of Scaling. New York: Wiley. ISBN 978-0-89874-722-5.