स्लेटर निर्धारक: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 4: Line 4:
स्लेटर निर्धारक इलेक्ट्रॉनों के संग्रह के लिए एक तरंग फलन के विचार से उत्पन्न होता है, प्रत्येक स्पिन-ऑर्बिटल <math>\chi(\mathbf{x})</math> के रूप में जाना जाने वाला तरंग फलन होता है, जहां <math>\mathbf{x}</math> एक इलेक्ट्रॉन की स्थिति और स्पिन को दर्शाता है। एक ही स्पिन ऑर्बिटल के साथ दो इलेक्ट्रॉनों वाला एक स्लेटर निर्धारक एक लहर समारोह के अनुरूप होगा जो हर जगह शून्य है।
स्लेटर निर्धारक इलेक्ट्रॉनों के संग्रह के लिए एक तरंग फलन के विचार से उत्पन्न होता है, प्रत्येक स्पिन-ऑर्बिटल <math>\chi(\mathbf{x})</math> के रूप में जाना जाने वाला तरंग फलन होता है, जहां <math>\mathbf{x}</math> एक इलेक्ट्रॉन की स्थिति और स्पिन को दर्शाता है। एक ही स्पिन ऑर्बिटल के साथ दो इलेक्ट्रॉनों वाला एक स्लेटर निर्धारक एक लहर समारोह के अनुरूप होगा जो हर जगह शून्य है।


स्लेटर निर्धारक का नाम जॉन सी. स्लेटर के नाम पर रखा गया है, जिन्होंने 1929 में निर्धारक को कई-इलेक्ट्रॉन तरंग कार्यों की एंटीसिमेट्री सुनिश्चित करने के साधन के रूप में पेश किया था,<ref>{{cite journal |last1=Slater |first1=J. |title=कॉम्प्लेक्स स्पेक्ट्रा का सिद्धांत|journal=Physical Review |volume=34 |issue=2 |pages=1293–1322 |year=1929  |doi=10.1103/PhysRev.34.1293 |bibcode = 1929PhRv...34.1293S }}</ref> हालांकि तरंग फलन को पहले निर्धारक रूप में वर्णित किया गया था, हाइजेनबर्ग <ref>{{cite journal |last1 = Heisenberg |first1 = W. |title = Mehrkörperproblem und Resonanz in der Quantenmechanik |journal = Zeitschrift für Physik |year = 1926 |volume = 38 |issue = 6–7 |pages = 411–426 |doi= 10.1007/BF01397160 |bibcode = 1926ZPhy...38..411H |s2cid = 186238286 }}</ref> और डिराक <ref>{{cite journal |last1 = Dirac |first1 = P. A. M. |title = क्वांटम यांत्रिकी के सिद्धांत पर|journal = Proceedings of the Royal Society A |year = 1926 |volume = 112 |issue = 762 |pages = 661–677 |doi= 10.1098/rspa.1926.0133 |bibcode = 1926RSPSA.112..661D |doi-access = free }}</ref> के लेखों में तीन साल पहले स्वतंत्र रूप से उपयोग किया गया था।
स्लेटर निर्धारक का नाम जॉन सी. स्लेटर के नाम पर रखा गया है, जिन्होंने 1929 में निर्धारक को कई-इलेक्ट्रॉन तरंग कार्यों की विषमता सुनिश्चित करने के साधन के रूप में प्रस्तुत किया था,<ref>{{cite journal |last1=Slater |first1=J. |title=कॉम्प्लेक्स स्पेक्ट्रा का सिद्धांत|journal=Physical Review |volume=34 |issue=2 |pages=1293–1322 |year=1929  |doi=10.1103/PhysRev.34.1293 |bibcode = 1929PhRv...34.1293S }}</ref> हालांकि तरंग फलन को पहले निर्धारक रूप में वर्णित किया गया था, हाइजेनबर्ग <ref>{{cite journal |last1 = Heisenberg |first1 = W. |title = Mehrkörperproblem und Resonanz in der Quantenmechanik |journal = Zeitschrift für Physik |year = 1926 |volume = 38 |issue = 6–7 |pages = 411–426 |doi= 10.1007/BF01397160 |bibcode = 1926ZPhy...38..411H |s2cid = 186238286 }}</ref> और डिराक <ref>{{cite journal |last1 = Dirac |first1 = P. A. M. |title = क्वांटम यांत्रिकी के सिद्धांत पर|journal = Proceedings of the Royal Society A |year = 1926 |volume = 112 |issue = 762 |pages = 661–677 |doi= 10.1098/rspa.1926.0133 |bibcode = 1926RSPSA.112..661D |doi-access = free }}</ref> के लेखों में तीन साल पहले स्वतंत्र रूप से उपयोग किया गया था।


== परिभाषा ==
== परिभाषा ==
Line 28: Line 28:
\end{aligned}
\end{aligned}
</math>
</math>
जहां गुणांक [[सामान्यीकरण कारक|सामान्यीकरण]] का [[सामान्यीकरण कारक|कारक]] है। यह तरंग फलन अब एंटीसिमेट्रिक है और अब फ़र्मियन के बीच अंतर नहीं करता है (अर्थात, कोई विशिष्ट कण के लिए क्रमिक संख्या का संकेत नहीं दे सकता है, और दिए गए सूचकांक विनिमेय हैं)। इसके अलावा, यह भी शून्य हो जाता है यदि दो फर्मों के दो स्पिन ऑर्बिटल्स समान हों। यह पाउली के बहिष्करण सिद्धांत को संतुष्ट करने के बराबर है।
जहां गुणांक [[सामान्यीकरण कारक|सामान्यीकरण]] का [[सामान्यीकरण कारक|कारक]] है। यह तरंग फलन अब प्रतिसममित है और अब फ़र्मियन के बीच अंतर नहीं करता है (अर्थात, कोई विशिष्ट कण के लिए क्रमिक संख्या का संकेत नहीं दे सकता है, और दिए गए सूचकांक विनिमेय हैं)। इसके अलावा, यह भी शून्य हो जाता है यदि दो फर्मों के दो स्पिन ऑर्बिटल्स समान हों। यह पाउली के बहिष्करण सिद्धांत को संतुष्ट करने के बराबर है।


=== बहु-कण स्थिति ===
=== बहु-कण स्थिति ===
Line 52: Line 52:
\end{aligned}
\end{aligned}
</math>
</math>
जहां अंतिम दो भाव स्लेटर निर्धारकों के लिए एक आशुलिपि का उपयोग करते हैं: सामान्यीकरण स्थिरांक संख्या N को ध्यान में रखते हुए निहित होता है, और केवल एक-कण तरंग फलन (प्रथम आशुलिपि) या फ़र्मियन निर्देशांक (दूसरा आशुलिपि) के लिए सूचकांक नीचे लिखे जाते हैं। सभी छोड़े गए लेबल आरोही क्रम में व्यवहार करने के लिए निहित हैं। दो-कण वाले मामले के लिए हार्ट्री उत्पादों का रैखिक संयोजन N = 2 के लिए स्लेटर निर्धारक के समान है। स्लेटर निर्धारकों का उपयोग प्रारम्भ में असममित फलन सुनिश्चित करता है। उसी तरह, स्लेटर निर्धारकों का उपयोग पाउली सिद्धांत के अनुरूप होना सुनिश्चित करता है। दरअसल, स्लेटर निर्धारक गायब हो जाता है यदि सेट <math>\{\chi_i\}</math> रेखीय रूप से निर्भर है। विशेष रूप से, यह मामला तब होता है जब दो (या अधिक) स्पिन ऑर्बिटल्स समान होते हैं। रसायन विज्ञान में इस तथ्य को यह कहते हुए व्यक्त किया जाता है कि एक ही स्पिन के साथ कोई भी दो इलेक्ट्रॉन एक ही स्थानिक कक्षा में नहीं रह सकते हैं।
जहां अंतिम दो अभिव्यक्तियां स्लेटर निर्धारकों के लिए एक आशुलिपि का उपयोग करती हैं: सामान्यीकरण स्थिरांक संख्या N को ध्यान में रखते हुए निहित होता है, और केवल एक-कण तरंग फलन (प्रथम आशुलिपि) या फ़र्मियन निर्देशांक (दूसरा आशुलिपि) के लिए सूचकांक नीचे लिखे जाते हैं। सभी छोड़े गए लेबल आरोही क्रम में व्यवहार करने के लिए निहित हैं। दो-कण वाले मामले के लिए हार्ट्री उत्पादों का रैखिक संयोजन N = 2 के लिए स्लेटर निर्धारक के समान है। स्लेटर निर्धारकों का उपयोग प्रारम्भ में असममित फलन सुनिश्चित करता है। उसी तरह, स्लेटर निर्धारकों का उपयोग पाउली सिद्धांत के अनुरूप होना सुनिश्चित करता है। दरअसल, स्लेटर निर्धारक गायब हो जाता है यदि सेट <math>\{\chi_i\}</math> रेखीय रूप से निर्भर है। विशेष रूप से, यह मामला तब होता है जब दो (या अधिक) स्पिन ऑर्बिटल्स समान होते हैं। रसायन विज्ञान में इस तथ्य को यह कहते हुए व्यक्त किया जाता है कि एक ही स्पिन के साथ कोई भी दो इलेक्ट्रॉन एक ही स्थानिक कक्षा में नहीं रह सकते हैं।


== उदाहरण: कई इलेक्ट्रॉन समस्या में आव्यूह अवयव ==
== उदाहरण: कई इलेक्ट्रॉन समस्या में आव्यूह अवयव ==

Revision as of 07:35, 5 June 2023

क्वांटम यांत्रिकी में, स्लेटर निर्धारक एक अभिव्यक्ति है जो एक बहु-फर्मियोनिक प्रणाली के तरंग फलन का वर्णन करता है। यह दो इलेक्ट्रॉनों (या अन्य फरमिओन्स) के आदान-प्रदान पर हस्ताक्षर बदलकर, और फलस्वरूप पाउली सिद्धांत को बदलकर, विरोधी समरूपता आवश्यकताओं को पूरा करता है।[1] सभी संभव फर्मीओनिक तरंग फलनों का केवल एक छोटा सा उपसमुच्चय एकल स्लेटर निर्धारक के रूप में लिखा जा सकता है, लेकिन अपनी सरलता के कारण वे एक महत्वपूर्ण और उपयोगी उपसमूह बनाते हैं।

स्लेटर निर्धारक इलेक्ट्रॉनों के संग्रह के लिए एक तरंग फलन के विचार से उत्पन्न होता है, प्रत्येक स्पिन-ऑर्बिटल के रूप में जाना जाने वाला तरंग फलन होता है, जहां एक इलेक्ट्रॉन की स्थिति और स्पिन को दर्शाता है। एक ही स्पिन ऑर्बिटल के साथ दो इलेक्ट्रॉनों वाला एक स्लेटर निर्धारक एक लहर समारोह के अनुरूप होगा जो हर जगह शून्य है।

स्लेटर निर्धारक का नाम जॉन सी. स्लेटर के नाम पर रखा गया है, जिन्होंने 1929 में निर्धारक को कई-इलेक्ट्रॉन तरंग कार्यों की विषमता सुनिश्चित करने के साधन के रूप में प्रस्तुत किया था,[2] हालांकि तरंग फलन को पहले निर्धारक रूप में वर्णित किया गया था, हाइजेनबर्ग [3] और डिराक [4] के लेखों में तीन साल पहले स्वतंत्र रूप से उपयोग किया गया था।

परिभाषा

दो-कण का स्थिति

बहु-कण प्रणाली के तरंग फलन का अनुमान लगाने का सबसे आसान तरीका अलग-अलग कणों के उचित रूप से चुने गए ऑर्थोगोनल तरंग कार्यों के उत्पाद को लेना है। निर्देशांक और वाले दो-कणों वाले केस के लिए, हमारे पास है

इस अभिव्यक्ति का उपयोग हार्ट्री पद्धति में कई-कण तरंग समारोह के लिए ansatz (अंसतज़) के रूप में किया जाता है और इसे हार्ट्री उत्पाद के रूप में जाना जाता है। हालांकि, यह फरमिओन्स के लिए संतोषजनक नहीं है क्योंकि उपरोक्त तरंग फलन किसी भी दो फरमिओन्स के आदान-प्रदान के तहत प्रतिसममित नहीं है, जैसा कि पाउली अपवर्जन सिद्धांत के अनुसार होना चाहिए। प्रतिसममित तरंग फलन को गणितीय रूप से इस प्रकार वर्णित किया जा सकता है:

यह हार्ट्री उत्पाद के लिए मान्य नहीं है, जो इसलिए पाउली सिद्धांत को संतुष्ट नहीं करता है। दो हार्ट्री उत्पादों के रैखिक संयोजन से इस समस्या को दूर किया जा सकता है:

जहां गुणांक सामान्यीकरण का कारक है। यह तरंग फलन अब प्रतिसममित है और अब फ़र्मियन के बीच अंतर नहीं करता है (अर्थात, कोई विशिष्ट कण के लिए क्रमिक संख्या का संकेत नहीं दे सकता है, और दिए गए सूचकांक विनिमेय हैं)। इसके अलावा, यह भी शून्य हो जाता है यदि दो फर्मों के दो स्पिन ऑर्बिटल्स समान हों। यह पाउली के बहिष्करण सिद्धांत को संतुष्ट करने के बराबर है।

बहु-कण स्थिति

व्यंजक को निर्धारक के रूप में लिखकर किसी भी संख्या में फ़र्मियन के लिए सामान्यीकृत किया जा सकता है। N-इलेक्ट्रॉन प्रणाली के लिए, स्लेटर निर्धारक को के रूप में परिभाषित किया गया है।[1][5]

जहां अंतिम दो अभिव्यक्तियां स्लेटर निर्धारकों के लिए एक आशुलिपि का उपयोग करती हैं: सामान्यीकरण स्थिरांक संख्या N को ध्यान में रखते हुए निहित होता है, और केवल एक-कण तरंग फलन (प्रथम आशुलिपि) या फ़र्मियन निर्देशांक (दूसरा आशुलिपि) के लिए सूचकांक नीचे लिखे जाते हैं। सभी छोड़े गए लेबल आरोही क्रम में व्यवहार करने के लिए निहित हैं। दो-कण वाले मामले के लिए हार्ट्री उत्पादों का रैखिक संयोजन N = 2 के लिए स्लेटर निर्धारक के समान है। स्लेटर निर्धारकों का उपयोग प्रारम्भ में असममित फलन सुनिश्चित करता है। उसी तरह, स्लेटर निर्धारकों का उपयोग पाउली सिद्धांत के अनुरूप होना सुनिश्चित करता है। दरअसल, स्लेटर निर्धारक गायब हो जाता है यदि सेट रेखीय रूप से निर्भर है। विशेष रूप से, यह मामला तब होता है जब दो (या अधिक) स्पिन ऑर्बिटल्स समान होते हैं। रसायन विज्ञान में इस तथ्य को यह कहते हुए व्यक्त किया जाता है कि एक ही स्पिन के साथ कोई भी दो इलेक्ट्रॉन एक ही स्थानिक कक्षा में नहीं रह सकते हैं।

उदाहरण: कई इलेक्ट्रॉन समस्या में आव्यूह अवयव

स्लेटर निर्धारक के कई गुण एक गैर-सापेक्षवादी कई इलेक्ट्रॉन समस्या में उदाहरण के साथ जीवंत हो जाते हैं।[6]

  • हैमिल्टनियन का एक कण शब्द उसी तरह से योगदान देगा जैसे कि साधारण हार्ट्री उत्पाद के लिए, अर्थात् ऊर्जा का योग है और अवस्था स्वतंत्र हैं।
  • हैमिल्टनियन के बहु-कण शब्द, यानी विनिमय की शर्तें, आइजेनस्टेट्स की ऊर्जा को कम करने का परिचय देंगी।

हैमिल्टनियन से प्रारम्भ करना:

जहाँ इलेक्ट्रॉन हैं और नाभिक हैं और

सादगी के लिए हम नाभिक को एक स्थिति में संतुलन में जमा देते हैं और हमारे पास साधारण हैमिल्टनियन रह जाता है

जहाँ

और जहां हम हैमिल्टनियन में परिस्थितियों के पहले सेट के बीच के रूप में अंतर करेंगे ("1" कण शब्द) और अंतिम शब्द जो "2" कण शब्द या विनिमय अवधि है

स्लेटर नियतात्मक तरंग फलन के साथ इंटरैक्ट करने पर दो भाग अलग तरह से व्यवहार करेंगे। हम अपेक्षा मूल्यों की गणना करना प्रारम्भ करते हैं

उपरोक्त अभिव्यक्ति में, हम बाईं ओर में निर्धारक में समान क्रमचय का चयन कर सकते हैं, क्योंकि अन्य सभी N! − 1 क्रमचय वही परिणाम देगा जो चयनित है। हम इस प्रकार N को रद्द कर सकते हैं! भाजक पर

स्पिन-ऑर्बिटल्स की ऑर्थोनॉर्मलिटी के कारण यह भी स्पष्ट है कि ऊपर दिए गए समान मैट्रिक्स तत्व के दाईं ओर केवल निर्धारक ही क्रमचय से बचे रहते हैं

इस परिणाम से पता चलता है कि उत्पाद के प्रति-समरूपता का एकल कण शब्दों के लिए कोई निहितार्थ नहीं है और सामान्य हार्ट्री उत्पाद के मामले में व्यवहार करता है।

और अंत में हम एकल कण हैमिल्टनियन पर निशान के साथ रह गए हैं

जो हमें बताता है कि एक कण की सीमा तक इलेक्ट्रॉनों की तरंग क्रियाएं एक दूसरे से स्वतंत्र होती हैं और ऊर्जा एकल कणों की ऊर्जाओं के योग द्वारा दी जाती है।

बदले में विनिमय भाग

यदि हम किसी विनिमय शब्द की क्रिया को देखते हैं तो यह केवल वेव फ़ंक्शन का आदान-प्रदान करेगा

और अंत में

जो इसके बजाय एक मिश्रण शब्द है, पहले योगदान को "कूलम्ब" शब्द कहा जाता है और दूसरा "विनिमय" शब्द है जिसे या का उपयोग करके लिखा जा सकता है, चूंकि कूलम्ब और विनिमय योगदान एक दूसरे को के लिए बिल्कुल रद्द करते हैं।

यह स्पष्ट रूप से नोटिस करना महत्वपूर्ण है कि इलेक्ट्रॉन-इलेक्ट्रॉन प्रतिकर्षण ऊर्जा स्पिन-ऑर्बिटल्स के असममित उत्पाद पर समान स्पिन-ऑर्बिटल्स के साधारण हार्ट्री उत्पाद पर इलेक्ट्रॉन-इलेक्ट्रॉन प्रतिकारक ऊर्जा से हमेशा कम होता है .

अंतर को स्व-बातचीत शर्तों के बिना दाएं हाथ की ओर दूसरे पद द्वारा दर्शाया गया है। चूंकि विनिमय बायइलेक्ट्रॉनिक इंटीग्रल धनात्मक मात्राएं हैं, केवल समानांतर स्पिन वाले स्पिन-ऑर्बिटल्स के लिए शून्य से अलग, हम ऊर्जा में कमी को भौतिक तथ्य से जोड़ते हैं कि समानांतर स्पिन वाले इलेक्ट्रॉनों को स्लेटर निर्धारक राज्यों में वास्तविक स्थान से अलग रखा जाता है।

एक अनुमान के रूप में

अधिकांश फ़र्मोनिक तरंगों को स्लेटर निर्धारक के रूप में नहीं दर्शाया जा सकता है। किसी दिए गए फ़र्मोनिक वेव फ़ंक्शन के लिए सबसे अच्छा स्लेटर सन्निकटन को एक के रूप में परिभाषित किया जा सकता है जो स्लेटर निर्धारक और लक्ष्य तरंग फलन के बीच अतिव्यापन को अधिकतम करता है।[7] अधिक से अधिक अतिव्याप्ति फरमिओन्स के बीच उलझाव का ज्यामितीय माप है।

हार्ट्री-फॉक सिद्धांत में इलेक्ट्रॉनिक तरंग फलन के सन्निकटन के रूप में एकल स्लेटर निर्धारक का उपयोग किया जाता है। अधिक सटीक सिद्धांतों (जैसे विन्यास अन्योन्यक्रिया और एमसीएससीएफ) में, स्लेटर निर्धारकों का रैखिक संयोजन आवश्यक है।

चर्चा

शब्द "डेटर" का प्रस्ताव एसएफ बॉयज़ द्वारा ऑर्थोनॉर्मल ऑर्बिटल्स के स्लेटर निर्धारक के संदर्भ में दिया गया था,[8] लेकिन इस शब्द का प्रयोग शायद ही कभी किया जाता है।

पाउली बहिष्करण सिद्धांत के अधीन होने वाले फ़र्मियन के विपरीत, दो या दो से अधिक बोसोन एक ही कण-कण क्वांटम अवस्था को अधिकृत कर सकते हैं। समान बोसोन की प्रणालियों का वर्णन करने वाले तरंग फलन कणों के आदान-प्रदान के तहत सममित होते हैं और स्थायी के रूप में विस्तारित किए जा सकते हैं।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Molecular Quantum Mechanics Parts I and II: An Introduction to QUANTUM CHEMISTRY (Volume 1), P. W. Atkins, Oxford University Press, 1977, ISBN 0-19-855129-0.
  2. Slater, J. (1929). "कॉम्प्लेक्स स्पेक्ट्रा का सिद्धांत". Physical Review. 34 (2): 1293–1322. Bibcode:1929PhRv...34.1293S. doi:10.1103/PhysRev.34.1293.
  3. Heisenberg, W. (1926). "Mehrkörperproblem und Resonanz in der Quantenmechanik". Zeitschrift für Physik. 38 (6–7): 411–426. Bibcode:1926ZPhy...38..411H. doi:10.1007/BF01397160. S2CID 186238286.
  4. Dirac, P. A. M. (1926). "क्वांटम यांत्रिकी के सिद्धांत पर". Proceedings of the Royal Society A. 112 (762): 661–677. Bibcode:1926RSPSA.112..661D. doi:10.1098/rspa.1926.0133.
  5. Szabo, A.; Ostlund, N. S. (1996). Modern Quantum Chemistry. Mineola, New York: Dover Publishing. ISBN 0-486-69186-1.
  6. Solid State Physics - Grosso Parravicini - 2nd edition pp.140-143
  7. Zhang, J. M.; Kollar, Marcus (2014). "एक N-फर्मियन वेव फंक्शन का ऑप्टिमल मल्टीकॉन्फ़िगरेशन सन्निकटन". Physical Review A. 89 (1): 012504. arXiv:1309.1848. Bibcode:2014PhRvA..89a2504Z. doi:10.1103/PhysRevA.89.012504. S2CID 17241999.
  8. Boys, S. F. (1950). "इलेक्ट्रॉनिक तरंग कार्य I. किसी भी आणविक प्रणाली की स्थिर अवस्थाओं के लिए गणना की एक सामान्य विधि". Proceedings of the Royal Society. A200 (1063): 542. Bibcode:1950RSPSA.200..542B. doi:10.1098/rspa.1950.0036. S2CID 122709395.


बाहरी संबंध