उत्पाद माप: Difference between revisions
(→उदाहरण) |
m (added Category:Vigyan Ready using HotCat) |
||
Line 45: | Line 45: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 25/05/2023]] | [[Category:Created On 25/05/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 08:42, 9 June 2023
गणित में, दो मापने योग्य रिक्त स्थान और उन पर माप दिए जाने पर, कोई उत्पाद मापने योग्य स्थान और उस स्थान पर उत्पाद माप प्राप्त कर सकता है। संकल्पनात्मक रूप से, यह समुच्चय के कार्टेशियन उत्पाद और दो टोपोलॉजिकल रिक्त स्थान के उत्पाद टोपोलॉजी को परिभाषित करने के समान होता है, अतिरिक्त इसके कि उत्पाद माप के लिए कई प्राकृतिक विकल्प हो सकते है।
मान लेते है और दो मापने योग्य स्थान है, अर्थात, और सिग्मा बीजगणित प्रारंभ है और क्रमशः, और और इन स्थानों पर उपाय करता है। इनके द्वारा निरूपित करता है कार्टेशियन उत्पाद पर सिग्मा बीजगणित प्रपत्र के सबसमुच्चय द्वारा उत्पन्न है , जहाँ और इस सिग्मा बीजगणित को उत्पाद स्थान पर टेंसर-उत्पाद σ-बीजगणित कहा जाता है।
एक उत्पाद उपाय (द्वारा भी दर्शाया गया है कई लेखकों द्वारा) मापने योग्य स्थान पर एक उपाय के रूप में परिभाषित किया गया है संपत्ति को संतुष्ट करता है
सभी के लिए
- .
गुणन के उपायों में, जिनमें से कुछ अनंत होते है, हम उत्पाद को शून्य के रूप में परिभाषित करते है यदि कोई कारक शून्य होता है।
वास्तव में, जब रिक्त स्थान होते है -परिमित, उत्पाद माप विशिष्ट रूप से परिभाषित किया जाता है, और प्रत्येक मापने योग्य समुच्चय E के लिए,
जहाँ और , जो दोनों मापने योग्य समुच्चय होते है।
इस उपाय के अस्तित्व की गारंटी हैन-कोल्मोगोरोव प्रमेय द्वारा दी गई है। उत्पाद माप की विशिष्टता की गारंटी केवल तभी दी जाती है जब दोनों और σ-परिमित होते है।
यूक्लिडियन स्थान Rn पर बोरेल मापता है वास्तविक रेखा 'R' पर बोरेल उपायों की n प्रतियों के उत्पाद के रूप में प्राप्त किया जाता है।
यदि उत्पाद स्थान के दो कारक पूर्ण माप होते है, तो उसका उत्पाद स्थान नहीं हो सकता है। परिणाम स्वरूप, बोरेल माप को लेबेसेग माप में विस्तारित करने के लिए, या उत्पाद स्थान पर लेबेसेग माप देने के लिए दो लेबेसेग उपायों के उत्पाद का विस्तार करने के लिए पूर्णता प्रक्रिया की आवश्यकता होती है।
दो उपायों के उत्पाद के गठन के विपरीत निर्माण विघटन प्रमेय होते है, जो कुछ अर्थों में उपायों के निकट में दिए गए माप को विभाजित करता है जिसे मूल माप देने के लिए एकीकृत किया जाता है।
उदाहरण
- दो माप स्थानों को देखते हुए, हमेशा एक अद्वितीय अधिकतम उत्पाद माप μmax होता है उनके उत्पाद पर, इस संपत्ति के साथ यदि μmax(A) कुछ मापने योग्य समुच्चय A के लिए परिमित होता है, फिर μmax(A) = μ (A) किसी भी उत्पाद उपाय μ के लिए होता है। विशेष रूप से किसी भी मापने योग्य समुच्चय पर इसका मूल्य कम से कम किसी अन्य उत्पाद माप का होता है। यह कैराथियोडोरी विस्तार प्रमेय द्वारा निर्मित माप होता है।
- कभी-कभी μmin, given by μmin(S) = supA⊂S, μmax(A) परिमित μmax(A) द्वारा दिया गया एक अद्वितीय न्यूनतम उत्पाद माप भी होता है, जहां A और S को मापने योग्य माना जाता है।
- यहां एक उदाहरण दिया गया है जहां एक उत्पाद के एक से अधिक उत्पाद माप होते है गुणनफल X×Y लिया जाता है, जहां X लेबेस्गु माप के साथ इकाई अंतराल होता है, और Y गणना माप के साथ इकाई अंतराल होता है और सभी समुच्चय मापने योग्य होते है। तब न्यूनतम उत्पाद माप के लिए एक समुच्चय का माप उसके क्षैतिज वर्गों के उपायों का योग होता है, जबकि अधिकतम उत्पाद माप के लिए एक समुच्चय में माप अनंत होता है जब तक कि यह प्रपत्र A के समुच्चयों की एक गणनीय संख्या के मिलन में निहित नही होता है। जहां या तो A के पास लेबेस्ग का माप 0 होता है या B एक बिंदु होती है। इस स्थिति में माप परिमित या अनंत हो सकती है। विशेष रूप से, न्यूनतम उत्पाद माप के लिए विकर्ण का माप 0 होता है और अधिकतम उत्पाद माप के लिए माप अनंत होती है।
यह भी देखें
- फ़ुबिनी की प्रमेय
संदर्भ
- Loève, Michel (1977). "8.2. Product measures and iterated integrals". Probability Theory vol. I (4th ed.). Springer. pp. 135–137. ISBN 0-387-90210-4.
- Halmos, Paul (1974). "35. Product measures". Measure theory. Springer. pp. 143–145. ISBN 0-387-90088-8.