ट्रंकेशन त्रुटि: Difference between revisions
No edit summary |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 107: | Line 107: | ||
* {{Citation | last1=Atkinson | first1=Kendall E. | title=An Introduction to Numerical Analysis | publisher=[[John Wiley & Sons]] | location=New York | edition=2nd | isbn=978-0-471-50023-0 | year=1989 | page=20 }} | * {{Citation | last1=Atkinson | first1=Kendall E. | title=An Introduction to Numerical Analysis | publisher=[[John Wiley & Sons]] | location=New York | edition=2nd | isbn=978-0-471-50023-0 | year=1989 | page=20 }} | ||
* {{Citation | last1=Stoer | first1=Josef | last2=Bulirsch | first2=Roland | title=Introduction to Numerical Analysis | publisher=[[Springer-Verlag]] | location=Berlin, New York | edition=3rd | isbn=978-0-387-95452-3 | year=2002 | page=1 |url=https://books.google.com/books?id=1oDXWLb9qEkC&pg=PA1}}. | * {{Citation | last1=Stoer | first1=Josef | last2=Bulirsch | first2=Roland | title=Introduction to Numerical Analysis | publisher=[[Springer-Verlag]] | location=Berlin, New York | edition=3rd | isbn=978-0-387-95452-3 | year=2002 | page=1 |url=https://books.google.com/books?id=1oDXWLb9qEkC&pg=PA1}}. | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category:CS1 English-language sources (en)]] | |||
[[Category: | |||
[[Category:Created On 23/05/2023]] | [[Category:Created On 23/05/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:संख्यात्मक विश्लेषण]] |
Latest revision as of 12:17, 10 June 2023
संख्यात्मक विश्लेषण और वैज्ञानिक कंप्यूटिंग में, ट्रंकेशन त्रुटि गणितीय प्रक्रिया का अनुमान लगाने के कारण हुई त्रुटि है।[1][2]
उदाहरण
अनंत श्रृंखला
के लिए योग अनंत श्रृंखला द्वारा दिया जाता है
उदाहरण ए:
निम्नलिखित अनंत श्रृंखला को देखते हुए, x = 0.75 के लिए ट्रंकेशन त्रुटि ज्ञात की जाती है, यदि श्रृंखला के केवल पूर्व तीन शब्दों का उपयोग किया जाता है।
श्रंखला के केवल प्रथम तीन पदों का प्रयोग करने पर प्राप्त होता है, जो इस प्रकार है:
अवकलन
फलन के त्रुटिहीन व्युत्पन्न की परिभाषा द्वारा दी गई है
उदाहरण ए:
के प्रथम अवकलज की गणना में ट्रंकेशन ज्ञात कीजिए, के चरण आकार में का उपयोग करना:
समाधान:
का प्रथम व्युत्पन्न है:
समाकलन
किसी फलन के त्रुटिहीन अभिन्न की परिभाषा से को निम्नानुसार दिया गया है।
जहाँ अंतराल (गणित) शब्दावली पर परिभाषित फलन हो वास्तविक संख्याओं में से, , और
इसका तात्पर्य यह है कि अनंत आयतों का उपयोग करके वक्र के नीचे का क्षेत्रफल ज्ञात कर रहे हैं। चूँकि, यदि संख्यात्मक रूप से अभिन्न की गणना कर रहे हैं, तो केवल आयतों की सीमित संख्या का उपयोग कर सकते हैं। आयतों की अनंत संख्या के विपरीत परिमित संख्या के चयन के कारण होने वाली त्रुटि समाकलन की गणितीय प्रक्रिया में ट्रंकेशन त्रुटि है।
उदाहरण ए.
अभिन्न के लिए
समाधान
हमारे पास त्रुटिहीन मूल्य है
जोड़
ट्रंकेशन त्रुटि का कारण बन सकता है जब कंप्यूटर में क्योंकि (जैसा होना चाहिए), जबकि . यहाँ, ट्रंकेशन त्रुटि 1 के समान है। यह ट्रंकेशन त्रुटि इसलिए होती है क्योंकि कंप्यूटर अधिक बड़े पूर्णांक को कम से कम महत्वपूर्ण अंकों को संग्रहीत नहीं करते हैं।
यह भी देखें
संदर्भ
- ↑ Atkinson, Kendall E. (1989). संख्यात्मक विश्लेषण का एक परिचय (in English) (2nd ed.). New York: Wiley. p. 20. ISBN 978-0-471-62489-9. OCLC 803318878.
- ↑ Stoer, Josef; Bulirsch, Roland (2002), Introduction to Numerical Analysis (in English) (3rd ed.), Princeton, N.J.: Recording for the Blind & Dyslexic, OCLC 50556273, retrieved 2022-02-08
- Atkinson, Kendall E. (1989), An Introduction to Numerical Analysis (2nd ed.), New York: John Wiley & Sons, p. 20, ISBN 978-0-471-50023-0
- Stoer, Josef; Bulirsch, Roland (2002), Introduction to Numerical Analysis (3rd ed.), Berlin, New York: Springer-Verlag, p. 1, ISBN 978-0-387-95452-3.