आइसोबार (न्यूक्लाइड): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 3: Line 3:
{{Nuclear physics|cTopic=न्यूक्लाइड्स का वर्गीकरण}}
{{Nuclear physics|cTopic=न्यूक्लाइड्स का वर्गीकरण}}


[[File:NuclideMap stitched small preview.png|thumb|right|300px|न्यूक्लाइड्स के इस चार्ट में, समदाब रेखाएँ निचले दाएँ से ऊपरी बाएँ तक चलने वाली विकर्ण रेखाओं के साथ होती हैं। [[बीटा स्थिरता की रेखा]] में काले रंग में दिखाए गए पर्यवेक्षणीय रूप से स्थिर नाभिक सम्मिलित हैं; डिस्कनेक्ट किए गए 'द्वीप' [[मैटाच आइसोबार नियम|मैटाच समदाब नियम]] का परिणाम हैं।]]समदाब विभिन्न [[रासायनिक तत्व]] के परमाणु ([[न्यूक्लाइड|नाभिक]]) होते हैं | जिनमें समान संख्या में [[न्यूक्लियॉन]] होते हैं। इसके विपरीत, समदाब [[परमाणु संख्या]] (या [[प्रोटॉन]] की संख्या) में भिन्न होते हैं | किन्तु उनकी द्रव्यमान संख्या समान होती है। समदाब रेखाओं की एक श्रृंखला का उदाहरण <sup>40</sup>S, <sup>40</sup>Cl, <sup>40</sup>Ar, <sup>40</sup>K, और <sup>40</sup>Ca है। जबकि इन न्यूक्लाइड्स के सभी नाभिकों में 40 न्यूक्लियॉन होते हैं, उनमें प्रोटॉन और न्यूट्रॉन की अलग-अलग संख्या होती है।<ref>[[#refSprawls1993|Sprawls (1993)]]</ref>
[[File:NuclideMap stitched small preview.png|thumb|right|300px|न्यूक्लाइड्स के इस चार्ट में, समदाब रेखाएँ निचले दाएँ से ऊपरी बाएँ तक चलने वाली विकर्ण रेखाओं के साथ होती हैं। [[बीटा स्थिरता की रेखा]] में काले रंग में दिखाए गए पर्यवेक्षणीय रूप से स्थिर नाभिक सम्मिलित हैं; डिस्कनेक्ट किए गए 'द्वीप' [[मैटाच आइसोबार नियम|मैटाच समदाब नियम]] का परिणाम हैं।]]समदाब विभिन्न [[रासायनिक तत्व]] के परमाणु ([[न्यूक्लाइड|नाभिक]]) होते हैं | जिनमें समान संख्या में [[न्यूक्लियॉन]] होते हैं। इसके विपरीत, समदाब [[परमाणु संख्या]] (या [[प्रोटॉन]] की संख्या) में भिन्न होते हैं | किन्तु उनकी द्रव्यमान संख्या समान होती है। समदाब रेखाओं की श्रृंखला का उदाहरण <sup>40</sup>S, <sup>40</sup>Cl, <sup>40</sup>Ar, <sup>40</sup>K, और <sup>40</sup>Ca है। जबकि इन न्यूक्लाइड्स के सभी नाभिकों में 40 न्यूक्लियॉन होते हैं, उनमें प्रोटॉन और न्यूट्रॉन की अलग-अलग संख्या होती है।<ref>[[#refSprawls1993|Sprawls (1993)]]</ref>
1918 में [[अल्फ्रेड वाल्टर स्टीवर्ट]] द्वारा न्यूक्लाइड्स के लिए आइसोबार्स (मूल रूप से आइसोबर्स) शब्द का सुझाव दिया गया था।<ref>{{Cite journal |last=Brucer |first=Marshall |date=June 1978 |title=न्यूक्लियर मेडिसिन की शुरुआत बोआ कंस्ट्रिक्टर से होती है|url=https://jnm.snmjournals.org/content/jnumed/19/6/581.full.pdf |department=History |journal=[[Journal of Nuclear Medicine]] |volume=19 |issue=6 |pages=581–598 |issn=0161-5505 |pmid=351151}}</ref> यह [[ग्रीक भाषा]] के शब्द आइसोस से लिया गया है। जिसका अर्थ है समान और बारोस, जिसका अर्थ वजन है।<ref>[http://www.etymonline.com/index.php?term=isobar Etymology Online]</ref>
1918 में [[अल्फ्रेड वाल्टर स्टीवर्ट]] द्वारा न्यूक्लाइड्स के लिए आइसोबार्स (मूल रूप से आइसोबर्स) शब्द का सुझाव दिया गया था।<ref>{{Cite journal |last=Brucer |first=Marshall |date=June 1978 |title=न्यूक्लियर मेडिसिन की शुरुआत बोआ कंस्ट्रिक्टर से होती है|url=https://jnm.snmjournals.org/content/jnumed/19/6/581.full.pdf |department=History |journal=[[Journal of Nuclear Medicine]] |volume=19 |issue=6 |pages=581–598 |issn=0161-5505 |pmid=351151}}</ref> यह [[ग्रीक भाषा]] के शब्द आइसोस से लिया गया है। जिसका अर्थ है समान और बारोस, जिसका अर्थ वजन है।<ref>[http://www.etymonline.com/index.php?term=isobar Etymology Online]</ref>


Line 9: Line 9:
समान द्रव्यमान संख्या का तात्पर्य न तो [[परमाणु नाभिक]] के समान [[अपरिवर्तनीय द्रव्यमान]] से है, न ही संबंधित न्यूक्लाइड्स के समान परमाणु द्रव्यमान से है। द्रव्यमान सूत्र से नाभिक के द्रव्यमान के लिए वीज़स्कर सूत्र से:<math>m(A,Z) = Z m_p + N m_n - a_{V} A + a_{S} A^{2/3} + a_{C} \frac{Z^2}{A^{1/3}} + a_{A} \frac{(N - Z)^{2}}{A} - \delta(A,Z)</math>
समान द्रव्यमान संख्या का तात्पर्य न तो [[परमाणु नाभिक]] के समान [[अपरिवर्तनीय द्रव्यमान]] से है, न ही संबंधित न्यूक्लाइड्स के समान परमाणु द्रव्यमान से है। द्रव्यमान सूत्र से नाभिक के द्रव्यमान के लिए वीज़स्कर सूत्र से:<math>m(A,Z) = Z m_p + N m_n - a_{V} A + a_{S} A^{2/3} + a_{C} \frac{Z^2}{A^{1/3}} + a_{A} \frac{(N - Z)^{2}}{A} - \delta(A,Z)</math>


जहां द्रव्यमान संख्या {{mvar|A}} परमाणु संख्या {{mvar|Z}} के योग के समान है और न्यूट्रॉन की संख्या {{mvar|N}}, और {{mvar|m<sub>p</sub>}}, {{mvar|m<sub>n</sub>}}, {{mvar|a<sub>V</sub>}}, {{mvar|a<sub>S</sub>}}, {{mvar|a<sub>C</sub>}}, {{mvar|a<sub>A</sub>}} नियतांक हैं, कोई देख सकता है कि द्रव्यमान {{mvar|Z}} और {{mvar|N}} गैर-रैखिक रूप से, पर निर्भर करता है। यहां तक ​​कि निरंतर द्रव्यमान संख्या के लिए भी [[विषम संख्या]] {{mvar|A}} के लिए, यह माना जाता है कि {{math|1=''δ'' = 0}} और {{mvar|Z}} बड़े मापदंड पर निर्भरता उत्तल कार्य है (या प्रारंभ {{mvar|N}} या {{math|''N'' − ''Z''}}, यह स्थिरांक {{mvar|A}} के लिए मायने नहीं रखता ). यह बताता है कि न्यूट्रॉन-समृद्ध न्यूक्लाइड्स के लिए [[बीटा क्षय]] ऊर्जावान रूप से अनुकूल है, और [[पॉज़िट्रॉन क्षय]] अत्यधिक [[न्यूट्रॉन युक्त]] वाले न्यूक्लाइड्स के लिए अनुकूल है। दोनों [[क्षय मोड]] द्रव्यमान संख्या को नहीं बदलते हैं | इसलिए एक मूल नाभिक और उसके [[क्षय उत्पाद]] नाभिक समदाब होते हैं। उपर्युक्त दोनों स्थितियों में, एक भारी नाभिक अपने हल्के समदाब में क्षय हो जाता है।
जहां द्रव्यमान संख्या {{mvar|A}} परमाणु संख्या {{mvar|Z}} के योग के समान है और न्यूट्रॉन की संख्या {{mvar|N}}, और {{mvar|m<sub>p</sub>}}, {{mvar|m<sub>n</sub>}}, {{mvar|a<sub>V</sub>}}, {{mvar|a<sub>S</sub>}}, {{mvar|a<sub>C</sub>}}, {{mvar|a<sub>A</sub>}} नियतांक हैं, कोई देख सकता है कि द्रव्यमान {{mvar|Z}} और {{mvar|N}} गैर-रैखिक रूप से, पर निर्भर करता है। यहां तक ​​कि निरंतर द्रव्यमान संख्या के लिए भी [[विषम संख्या]] {{mvar|A}} के लिए, यह माना जाता है कि {{math|1=''δ'' = 0}} और {{mvar|Z}} बड़े मापदंड पर निर्भरता उत्तल कार्य है (या प्रारंभ {{mvar|N}} या {{math|''N'' − ''Z''}}, यह स्थिरांक {{mvar|A}} के लिए मायने नहीं रखता ). यह बताता है कि न्यूट्रॉन-समृद्ध न्यूक्लाइड्स के लिए [[बीटा क्षय]] ऊर्जावान रूप से अनुकूल है, और [[पॉज़िट्रॉन क्षय]] अत्यधिक [[न्यूट्रॉन युक्त]] वाले न्यूक्लाइड्स के लिए अनुकूल है। दोनों [[क्षय मोड]] द्रव्यमान संख्या को नहीं बदलते हैं | इसलिए मूल नाभिक और उसके [[क्षय उत्पाद]] नाभिक समदाब होते हैं। उपर्युक्त दोनों स्थितियों में, भारी नाभिक अपने हल्के समदाब में क्षय हो जाता है।




Line 17: Line 17:


== स्थिरता ==
== स्थिरता ==
मटौच समदाब नियम कहता है कि यदि आवर्त सारणी पर दो आसन्न तत्वों में समान द्रव्यमान संख्या के समस्थानिक हैं, तो इनमें से कम से कम एक समदाब [[रेडियोन्यूक्लाइड]] (रेडियोधर्मी) होना चाहिए। अनुक्रमिक तत्वों के तीन समदाब के स्थितियों में जहां पहले और आखिरी स्थिर होते हैं (यह अधिकांशतः सम-सम नाभिक के लिए स्थिति होता है, और ए भी देखें), मध्य समदाब का शाखित क्षय हो सकता है। उदाहरण के लिए, रेडियोधर्मी [[आयोडीन-126]] में दो क्षय विधियों के लिए लगभग समान संभावनाएँ हैं | [[पॉज़िट्रॉन उत्सर्जन]], जो [[टेल्यूरियम-126]] की ओर ले जाता है, और [[बीटा उत्सर्जन]], जिसके कारण [[क्सीनन-126]] होता है।
मटौच समदाब नियम कहता है कि यदि आवर्त सारणी पर दो आसन्न तत्वों में समान द्रव्यमान संख्या के समस्थानिक हैं, तो इनमें से कम से कम समदाब [[रेडियोन्यूक्लाइड]] (रेडियोधर्मी) होना चाहिए। अनुक्रमिक तत्वों के तीन समदाब के स्थितियों में जहां पहले और आखिरी स्थिर होते हैं (यह अधिकांशतः सम-सम नाभिक के लिए स्थिति होता है, और ए भी देखें), मध्य समदाब का शाखित क्षय हो सकता है। उदाहरण के लिए, रेडियोधर्मी [[आयोडीन-126]] में दो क्षय विधियों के लिए लगभग समान संभावनाएँ हैं | [[पॉज़िट्रॉन उत्सर्जन]], जो [[टेल्यूरियम-126]] की ओर ले जाता है, और [[बीटा उत्सर्जन]], जिसके कारण [[क्सीनन-126]] होता है।




द्रव्यमान संख्या 5 ([[हीलियम -4]] प्लस एक प्रोटॉन या [[न्यूट्रॉन]] में क्षय), 8 (दो हीलियम-4 नाभिक में क्षय), 147, 151, साथ ही साथ 209 और उससे अधिक के लिए कोई स्थिर स्थिर समदाब उपस्थित नहीं है। 36, 40, 46, 50, 54, 58, 64, 70, 74, 80, 84, 86, 92, 94, 96, 98, 102, 104, 106, 108, 110, 112 के लिए दो प्रेक्षणात्मक रूप से स्थिर समदाब उपस्थित हैं। 114, 120, 122, 123, 124, 126, 132, 134, 136, 138, 142, 154, 156, 158, 160, 162, 164, 168, 170, 176, 192, 196, 198 और 204 है।<ref>via [[stable isotope]]; [[observationally stable]]; [[primordial radionuclide]] (some of whose radioactivity was discovered within the last two decades)</ref>
द्रव्यमान संख्या 5 ([[हीलियम -4]] प्लस प्रोटॉन या [[न्यूट्रॉन]] में क्षय), 8 (दो हीलियम-4 नाभिक में क्षय), 147, 151, साथ ही साथ 209 और उससे अधिक के लिए कोई स्थिर स्थिर समदाब उपस्थित नहीं है। 36, 40, 46, 50, 54, 58, 64, 70, 74, 80, 84, 86, 92, 94, 96, 98, 102, 104, 106, 108, 110, 112 के लिए दो प्रेक्षणात्मक रूप से स्थिर समदाब उपस्थित हैं। 114, 120, 122, 123, 124, 126, 132, 134, 136, 138, 142, 154, 156, 158, 160, 162, 164, 168, 170, 176, 192, 196, 198 और 204 है।<ref>via [[stable isotope]]; [[observationally stable]]; [[primordial radionuclide]] (some of whose radioactivity was discovered within the last two decades)</ref>





Revision as of 17:33, 6 June 2023

न्यूक्लाइड्स के इस चार्ट में, समदाब रेखाएँ निचले दाएँ से ऊपरी बाएँ तक चलने वाली विकर्ण रेखाओं के साथ होती हैं। बीटा स्थिरता की रेखा में काले रंग में दिखाए गए पर्यवेक्षणीय रूप से स्थिर नाभिक सम्मिलित हैं; डिस्कनेक्ट किए गए 'द्वीप' मैटाच समदाब नियम का परिणाम हैं।

समदाब विभिन्न रासायनिक तत्व के परमाणु (नाभिक) होते हैं | जिनमें समान संख्या में न्यूक्लियॉन होते हैं। इसके विपरीत, समदाब परमाणु संख्या (या प्रोटॉन की संख्या) में भिन्न होते हैं | किन्तु उनकी द्रव्यमान संख्या समान होती है। समदाब रेखाओं की श्रृंखला का उदाहरण 40S, 40Cl, 40Ar, 40K, और 40Ca है। जबकि इन न्यूक्लाइड्स के सभी नाभिकों में 40 न्यूक्लियॉन होते हैं, उनमें प्रोटॉन और न्यूट्रॉन की अलग-अलग संख्या होती है।[1]

1918 में अल्फ्रेड वाल्टर स्टीवर्ट द्वारा न्यूक्लाइड्स के लिए आइसोबार्स (मूल रूप से आइसोबर्स) शब्द का सुझाव दिया गया था।[2] यह ग्रीक भाषा के शब्द आइसोस से लिया गया है। जिसका अर्थ है समान और बारोस, जिसका अर्थ वजन है।[3]

द्रव्यमान

समान द्रव्यमान संख्या का तात्पर्य न तो परमाणु नाभिक के समान अपरिवर्तनीय द्रव्यमान से है, न ही संबंधित न्यूक्लाइड्स के समान परमाणु द्रव्यमान से है। द्रव्यमान सूत्र से नाभिक के द्रव्यमान के लिए वीज़स्कर सूत्र से:

जहां द्रव्यमान संख्या A परमाणु संख्या Z के योग के समान है और न्यूट्रॉन की संख्या N, और mp, mn, aV, aS, aC, aA नियतांक हैं, कोई देख सकता है कि द्रव्यमान Z और N गैर-रैखिक रूप से, पर निर्भर करता है। यहां तक ​​कि निरंतर द्रव्यमान संख्या के लिए भी विषम संख्या A के लिए, यह माना जाता है कि δ = 0 और Z बड़े मापदंड पर निर्भरता उत्तल कार्य है (या प्रारंभ N या NZ, यह स्थिरांक A के लिए मायने नहीं रखता ). यह बताता है कि न्यूट्रॉन-समृद्ध न्यूक्लाइड्स के लिए बीटा क्षय ऊर्जावान रूप से अनुकूल है, और पॉज़िट्रॉन क्षय अत्यधिक न्यूट्रॉन युक्त वाले न्यूक्लाइड्स के लिए अनुकूल है। दोनों क्षय मोड द्रव्यमान संख्या को नहीं बदलते हैं | इसलिए मूल नाभिक और उसके क्षय उत्पाद नाभिक समदाब होते हैं। उपर्युक्त दोनों स्थितियों में, भारी नाभिक अपने हल्के समदाब में क्षय हो जाता है।


सम संख्या A के लिए δ पद का रूप है।

जहाँ aP एक और नियतांक है। उपरोक्त द्रव्यमान अभिव्यक्ति से घटाया गया यह शब्द सम-विषम नाभिकों के लिए धनात्मक और विषम-विषम नाभिकों के लिए ऋणात्मक है। इसका कारण यह है कि सम-सम नाभिक, जिनमें न्यूट्रॉन की अधिकता या न्यूट्रॉन की कमी नहीं होती है। उनके विषम-विषम समदाब निकटतम की तुलना में उच्च परमाणु बाध्यकारी ऊर्जा होती है। इसका तात्पर्य है कि सम-सम नाभिक (अपेक्षाकृत) हल्का और अधिक स्थिर होता है। अंतर विशेष रूप से छोटे A के लिए शक्तिशाली है। इस प्रभाव की पूर्नुवामान (गुणात्मक रूप से) अन्य परमाणु मॉडल द्वारा भी की जाती है और इसके महत्वपूर्ण परिणाम होते हैं।

स्थिरता

मटौच समदाब नियम कहता है कि यदि आवर्त सारणी पर दो आसन्न तत्वों में समान द्रव्यमान संख्या के समस्थानिक हैं, तो इनमें से कम से कम समदाब रेडियोन्यूक्लाइड (रेडियोधर्मी) होना चाहिए। अनुक्रमिक तत्वों के तीन समदाब के स्थितियों में जहां पहले और आखिरी स्थिर होते हैं (यह अधिकांशतः सम-सम नाभिक के लिए स्थिति होता है, और ए भी देखें), मध्य समदाब का शाखित क्षय हो सकता है। उदाहरण के लिए, रेडियोधर्मी आयोडीन-126 में दो क्षय विधियों के लिए लगभग समान संभावनाएँ हैं | पॉज़िट्रॉन उत्सर्जन, जो टेल्यूरियम-126 की ओर ले जाता है, और बीटा उत्सर्जन, जिसके कारण क्सीनन-126 होता है।


द्रव्यमान संख्या 5 (हीलियम -4 प्लस प्रोटॉन या न्यूट्रॉन में क्षय), 8 (दो हीलियम-4 नाभिक में क्षय), 147, 151, साथ ही साथ 209 और उससे अधिक के लिए कोई स्थिर स्थिर समदाब उपस्थित नहीं है। 36, 40, 46, 50, 54, 58, 64, 70, 74, 80, 84, 86, 92, 94, 96, 98, 102, 104, 106, 108, 110, 112 के लिए दो प्रेक्षणात्मक रूप से स्थिर समदाब उपस्थित हैं। 114, 120, 122, 123, 124, 126, 132, 134, 136, 138, 142, 154, 156, 158, 160, 162, 164, 168, 170, 176, 192, 196, 198 और 204 है।[4]


सिद्धांत रूप में, किन्हीं भी दो स्थिर नाभिकों की द्रव्यमान संख्या समान नहीं होती है (चूँकि समान द्रव्यमान संख्या वाले दो न्यूक्लाइड्स बीटा क्षय और दोहरे बीटा क्षय दोनों के लिए स्थिर नहीं होते हैं), और द्रव्यमान संख्या 5, 8, 143-155 के लिए कोई स्थिर नाभिक उपस्थित नहीं होते हैं। , 160–162, और ≥ 165, चूंकि सैद्धांतिक रूप से, इन द्रव्यमान संख्याओं के लिए बीटा-क्षय स्थिर नाभिक अल्फा क्षय से निकल सकते हैं।

यह भी देखें

ग्रन्थसूची

Sprawls, Perry (1993). "5 – Characteristics and Structure of Matter". Physical Principles of Medical Imaging (2 ed.). Madison, WI: Medical Physics Publishing. ISBN 0-8342-0309-X. Retrieved 28 April 2010.

संदर्भ