सामान्य रूपवाद: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 31: | Line 31: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 25/05/2023]] | [[Category:Created On 25/05/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 12:10, 9 June 2023
श्रेणी सिद्धांत और गणित के लिए इसके अनुप्रयोगों में, सामान्य मोनोमोर्फिज्म या कॉन्नॉर्मल एपिमोर्फिज्म एक विशेष रूप से अच्छी प्रकार से व्यवहार किया जाने वाला रूपवाद है।
सामान्य श्रेणी एक ऐसी श्रेणी है जिसमें प्रत्येक मोनोमोर्फिज्म सामान्य होता है। असामान्य श्रेणी वह है जिसमें प्रत्येक एपिमोर्फिज्म असामान्य होता है।
परिभाषा
एक मोनोमोर्फिज्म सामान्य है यदि यह कुछ रूपवाद का कर्नेल (श्रेणी सिद्धांत) है, और एक एपिमोर्फिज्म सामान्य है यदि यह कुछ रूपवाद का कोकर्नेल (श्रेणी सिद्धांत) है।
श्रेणी C असामान्य है यदि यह सामान्य और असामान्य दोनों है।
किन्तु ध्यान दें कि कुछ लेखक सामान्य शब्द का उपयोग केवल यह निरुपित करने के लिए करते है कि C असामान्य है।[citation needed]
उदाहरण
समूहों की श्रेणी में, H से G तक मोनोमोर्फिज्म f सामान्य है यदि और केवल यदि इसकी छवि जी का सामान्य उपसमूह है। विशेष रूप से, यदि H G का उपसमूह है, तो H से G तक समावेशन माप i है मोनोमोर्फिज्म, और सामान्य होगा यदि और केवल यदि H, G का सामान्य उपसमूह है। वास्तविक में, यह मोनोमोर्फिज्म के लिए सामान्य शब्द का मूल है।[citation needed]
दूसरी ओर, समूहों की श्रेणी में प्रत्येक एपिमोर्फिज्म कॉन्नॉर्मल (चूंकि यह अपने स्वयं के कर्नेल का कोकर्नेल है) है, इसलिए यह श्रेणी सामान्य है।
एबेलियन श्रेणी में, प्रत्येक मोनोमोर्फिज्म इसके कोकर्नेल का कर्नेल है, और प्रत्येक एपिमोर्फिज्म इसके कर्नेल का कर्नेल है।
इस प्रकार, एबेलियन श्रेणियां सदैव असामान्य होती हैं।
एबेलियन समूहों की श्रेणी एबेलियन श्रेणी का मौलिक उदाहरण है, और इसके अनुसार एबेलियन समूह का प्रत्येक उपसमूह सामान्य उपसमूह है।
संदर्भ
- Section I.14 Mitchell, Barry (1965). Theory of categories. Pure and applied mathematics. Vol. 17. Academic Press. ISBN 978-0-124-99250-4. MR 0202787.