भौतिक गुण (थर्मोडायनामिक्स): Difference between revisions
(Created page with "{{Thermodynamics|cTopic='''Material properties'''}} सामग्रियों के थर्मोडायनामिक गुण गहन थर्मोडाय...") |
No edit summary |
||
Line 10: | Line 10: | ||
::<math>\kappa_S=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_S | ::<math>\kappa_S=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_S | ||
\quad = -\frac{1}{V}\,\frac{\partial^2 H}{\partial P^2}</math> | \quad = -\frac{1}{V}\,\frac{\partial^2 H}{\partial P^2}</math> | ||
* [[विशिष्ट ऊष्मा]] (ध्यान दें - [[व्यापक संपत्ति]] अनुरूप ताप क्षमता है) | * [[विशिष्ट ऊष्मा]] (ध्यान दें - [[व्यापक संपत्ति|व्यापक प्रॉपर्टी]] अनुरूप ताप क्षमता है) | ||
:* स्थिर दाब पर विशिष्ट ऊष्मा | :* स्थिर दाब पर विशिष्ट ऊष्मा | ||
::<math>c_P=\frac{T}{N}\left(\frac{\partial S}{\partial T}\right)_P | ::<math>c_P=\frac{T}{N}\left(\frac{\partial S}{\partial T}\right)_P | ||
Line 28: | Line 28: | ||
:<math>c_P=c_V+\frac{TV\alpha^2}{N\kappa_T}</math> | :<math>c_P=c_V+\frac{TV\alpha^2}{N\kappa_T}</math> | ||
:<math>\kappa_T=\kappa_S+\frac{TV\alpha^2}{Nc_P}</math> | :<math>\kappa_T=\kappa_S+\frac{TV\alpha^2}{Nc_P}</math> | ||
तीन मानक गुण वास्तव में तापमान और दबाव के संबंध में [[गिब्स मुक्त ऊर्जा]] के तीन संभावित दूसरे डेरिवेटिव हैं। इसके | तीन मानक गुण वास्तव में तापमान और दबाव के संबंध में [[गिब्स मुक्त ऊर्जा]] के तीन संभावित दूसरे डेरिवेटिव हैं। इसके अतिरिक्त, डेरिवेटिव जैसे विचार करना <math>\frac{\partial^3 G}{\partial P \partial T^2}</math> और संबंधित श्वार्ट्ज संबंधों से पता चलता है कि गुण त्रिक स्वतंत्र नहीं है। वास्तव में, एक संपत्ति फलन को संदर्भ स्थिति मान तक दो अन्य की अभिव्यक्ति के रूप में दिया जा सकता है।<ref name="Benjelloun">S. Benjelloun, "Thermodynamic identities and thermodynamic consistency of Equation of States", [https://arxiv.org/abs/2105.04845 Link to Archiv e-print] [https://hal.archives-ouvertes.fr/hal-03216379/ Link to Hal e-print]</ref> | ||
ऊष्मप्रवैगिकी के दूसरे सिद्धांत में कुछ ऊष्मप्रवैगिकी गुणों जैसे इज़ोटेर्माल संपीड्यता के संकेत पर प्रभाव पड़ता है।<ref name="Benjelloun"/><ref name="Israel">Israel, R. (1979). Convexity in the Theory of Lattice Gases. Princeton, New Jersey: Princeton | |||
ऊष्मप्रवैगिकी के दूसरे सिद्धांत में कुछ ऊष्मप्रवैगिकी गुणों जैसे इज़ोटेर्माल संपीड्यता के संकेत पर प्रभाव पड़ता है।<ref name="Benjelloun" /><ref name="Israel">Israel, R. (1979). Convexity in the Theory of Lattice Gases. Princeton, New Jersey: Princeton | |||
University Press. doi:10.2307/j.ctt13x1c8g</ref> | University Press. doi:10.2307/j.ctt13x1c8g</ref> | ||
Revision as of 22:40, 2 June 2023
थर्मोडायनामिक्स |
---|
सामग्रियों के थर्मोडायनामिक गुण गहन थर्मोडायनामिक पैरामीटर हैं जो किसी दिए गए सामग्री के लिए विशिष्ट हैं। प्रत्येक थर्मोडायनामिक क्षमता के दूसरे क्रम के अंतर से सीधे संबंधित है। सरल 1-घटक प्रणाली के उदाहरण हैं:
- संपीड्यता (या इसके व्युत्क्रम, थोक मापांक)
- इज़ोटेर्माल संपीड्यता
- रुद्धोष्म संपीड्यता
- विशिष्ट ऊष्मा (ध्यान दें - व्यापक प्रॉपर्टी अनुरूप ताप क्षमता है)
- स्थिर दाब पर विशिष्ट ऊष्मा
- स्थिर आयतन पर विशिष्ट ऊष्मा
- ताप विस्तार प्रसार गुणांक
जहां P दबाव है, V आयतन (थर्मोडायनामिक्स) है, T तापमान है, S एन्ट्रापी है, और N कण संख्या है।
एकल घटक प्रणाली के लिए, अन्य सभी व्युत्पन्न करने के लिए केवल तीन सेकंड डेरिवेटिव की आवश्यकता होती है, और इसलिए अन्य सभी को प्राप्त करने के लिए केवल तीन भौतिक गुणों की आवश्यकता होती है। एकल घटक प्रणाली के लिए, मानक तीन पैरामीटर इज़ोटेर्माल संपीड्यता हैं , निरंतर दबाव पर विशिष्ट गर्मी , और थर्मल विस्तार का गुणांक .
उदाहरण के लिए, निम्नलिखित समीकरण सत्य हैं:
तीन मानक गुण वास्तव में तापमान और दबाव के संबंध में गिब्स मुक्त ऊर्जा के तीन संभावित दूसरे डेरिवेटिव हैं। इसके अतिरिक्त, डेरिवेटिव जैसे विचार करना और संबंधित श्वार्ट्ज संबंधों से पता चलता है कि गुण त्रिक स्वतंत्र नहीं है। वास्तव में, एक संपत्ति फलन को संदर्भ स्थिति मान तक दो अन्य की अभिव्यक्ति के रूप में दिया जा सकता है।[1]
ऊष्मप्रवैगिकी के दूसरे सिद्धांत में कुछ ऊष्मप्रवैगिकी गुणों जैसे इज़ोटेर्माल संपीड्यता के संकेत पर प्रभाव पड़ता है।[1][2]
यह भी देखें
- सामग्री गुणों की सूची#थर्मल गुण|सामग्री गुणों की सूची (थर्मल गुण)
- ताप क्षमता अनुपात
- सांख्यिकीय यांत्रिकी
- थर्मोडायनामिक समीकरण
- शुद्ध पदार्थों के लिए थर्मोडायनामिक डेटाबेस
- गर्मी हस्तांतरण गुणांक
- अव्यक्त गर्मी
- संलयन की तापीय धारिता (संलयन की तापीय धारिता)
- वाष्पीकरण की तापीय धारिता (वाष्पीकरण की तापीय धारिता)
- थर्मल द्रव्यमान
बाहरी संबंध
- The Dortmund Data Bank is a factual data bank for thermodynamic and thermophysical data.
संदर्भ
- ↑ 1.0 1.1 S. Benjelloun, "Thermodynamic identities and thermodynamic consistency of Equation of States", Link to Archiv e-print Link to Hal e-print
- ↑ Israel, R. (1979). Convexity in the Theory of Lattice Gases. Princeton, New Jersey: Princeton University Press. doi:10.2307/j.ctt13x1c8g
- Callen, Herbert B. (1985). Thermodynamics and an Introduction to Thermostatistics (2nd ed.). New York: John Wiley & Sons. ISBN 0-471-86256-8.