अस्थिर-क्षेत्र हॉपिंग: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 5: Line 5:


== मोट अस्थिर-क्षेत्र होपिंग ==
== मोट अस्थिर-क्षेत्र होपिंग ==
मोट अस्थिरवाहनी का अस्थिर विस्तार नियम नीचे तापमान पर प्रतिस्थिति हुए सक्रिय विकिरण प्रणालियों में कमजोरी से व्यापक आवेश वाहक अवस्थाओं के साथ निर्देशांक द्वारा संयोजित किए गए होते हैं। इसमें एक विशेष तापमान आवंटन होता है।<ref>{{cite journal | last=Mott | first=N. F. | title=गैर-क्रिस्टलीय सामग्री में चालन| journal=Philosophical Magazine | publisher=Informa UK Limited | volume=19 | issue=160 | year=1969 | issn=0031-8086 | doi=10.1080/14786436908216338 | pages=835–852| bibcode=1969PMag...19..835M }}</ref> और इसकी एक विशिष्ट तापमान निर्भरता है
मॉट वेरिएबल-रेंज हॉपिंग कम तापमान में सशक्त अव्यवस्थित प्रणालियों में स्थानांतरित चार्ज-कर्यकर्ता अवस्थाओं के साथ निम्न-तापमान प्रवाह का वर्णन करता है। इसका चरित्रिक तापमान अवधारणा है


:<math>\sigma= \sigma_0e^{-(T_0/T)^{1/4}}</math>
:<math>\sigma= \sigma_0e^{-(T_0/T)^{1/4}}</math>
त्रि-आयामी चालकता के लिए (के साथ <math>\beta</math> = 1/4), और d-आयामों के लिए सामान्यीकृत समीकरण निम्नलिखित है
त्रि-आयामी चालकता के लिए (जहां β = 1/4 होता है), और यह d-आयामों के लिए सामान्यीकृत होता है।


:<math>\sigma= \sigma_0e^{-(T_0/T)^{1/(d+1)}}</math>.
:<math>\sigma= \sigma_0e^{-(T_0/T)^{1/(d+1)}}</math>.
Line 16: Line 16:


=== व्युत्पत्ति ===
=== व्युत्पत्ति ===
मूल एमओटी लेख ने एक सरल धारणा प्रस्तुत की है कि होपिंग ऊर्जा हूपिंग दूरी के घन के व्युत्क्रमानुपाती होती है। बाद में यह दिखाया गया कि यह धारणा अनावश्यक थी, और इस प्रमाण का यहाँ पालन किया गया है।<ref>{{cite journal | last1=Apsley | first1=N. | last2=Hughes | first2=H. P. | title=अव्यवस्थित प्रणालियों में होपिंग चालन का तापमान-और क्षेत्र-निर्भरता| journal=Philosophical Magazine | publisher=Informa UK Limited | volume=30 | issue=5 | year=1974 | issn=0031-8086 | doi=10.1080/14786437408207250 | pages=963–972| bibcode=1974PMag...30..963A }}</ref> मूल पेपर में, दिए गए तापमान पर हॉपिंग प्रायोजन्यता को दो पैरामीटरों, R (स्थानिक अलगाव स्थानों के बीच) और W (उनके ऊर्जा अलगाव) पर निर्भर होते हुए देखा गया। अपस्ले और ह्यूजेस ने अभिलेखित किया कि वास्तव में अनाकार प्रणाली में, ये अस्थिर यादृच्छिक और स्वतंत्र होते हैं और इसलिए इन्हें एक मापदंड में श्रेणी <math>\textstyle\mathcal{R}</math> दो साइटों के बीच जोड़ा जा सकता है,  जो उनके बीच होपिंग की संभावना निर्धारित करता है।
मूल मॉट पेपर में एक सरलीकृत मान्यता पेश की गई थी कि हॉपिंग ऊर्जा तीन-आयामी मामले में हॉपिंग दूरी के घन के उलट पर निर्भर होती है। बाद में सिद्ध हुआ कि यह मान्यता अनावश्यक थी, और यहां उस सिद्धांत का पालन किया जाता है। और इस प्रमाण का यहाँ पालन किया गया है।<ref>{{cite journal | last1=Apsley | first1=N. | last2=Hughes | first2=H. P. | title=अव्यवस्थित प्रणालियों में होपिंग चालन का तापमान-और क्षेत्र-निर्भरता| journal=Philosophical Magazine | publisher=Informa UK Limited | volume=30 | issue=5 | year=1974 | issn=0031-8086 | doi=10.1080/14786437408207250 | pages=963–972| bibcode=1974PMag...30..963A }}</ref> मूल पेपर में, दिए गए तापमान पर हॉपिंग प्रायोजन्यता को दो पैरामीटरों, R और W पर निर्भर होते हुए देखा गया। अपस्ले और ह्यूजेस ने अभिलेखित किया कि वास्तव में अनाकार प्रणाली में, ये अस्थिर यादृच्छिक और स्वतंत्र होते हैं और इसलिए इन्हें एक मापदंड में श्रेणी <math>\textstyle\mathcal{R}</math> दो साइटों के मध्य जोड़ा जा सकता है,  जो उनके मध्य होपिंग की संभावना निर्धारित करता है।


मोट ने दिखाया कि स्थानिक पृथक्करण के दो स्थितियों के मध्य होपिंग की संभावना <math>\textstyle R</math> और ऊर्जा पृथक्करण W का रूप है:
मोट ने दिखाया कि स्थानिक पृथक्करण के दो स्थितियों के मध्य होपिंग की संभावना <math>\textstyle R</math> और ऊर्जा पृथक्करण W का रूप है:
Line 52: Line 52:
{{See also|कूलम्ब दूरी}}
{{See also|कूलम्ब दूरी}}


एफ़्रोस-शक्लोव्स्की अस्थिर विस्तार होपिंग एक चालन प्रारूप है, जो [[कूलम्ब गैप|कूलम्ब दूरी]] के लिए उत्तरदायी है, स्थानीयकृत इलेक्ट्रॉनों के बीच परस्पर क्रिया के कारण [[फर्मी स्तर]] के पास अस्थिरणों के घनत्व में एक छोटी सी छलांग उत्तरदायी है।<ref name=":0">{{Cite journal|last1=Efros|first1=A. L.|last2=Shklovskii|first2=B. I.|date=1975|title=अव्यवस्थित प्रणालियों की कूलम्ब गैप और कम तापमान चालकता|url=http://stacks.iop.org/0022-3719/8/i=4/a=003|journal=Journal of Physics C: Solid State Physics|language=en|volume=8|issue=4|pages=L49|doi=10.1088/0022-3719/8/4/003|bibcode=1975JPhC....8L..49E |issn=0022-3719}}</ref> इसका नाम एलेक्सी एल. एफ्रोस और [[बोरिस श्लोकोवस्की]] के नाम पर रखा गया था जिन्होंने 1975 में इसे प्रस्तावित किया था।<ref name=":0" />
एफ्रोस-श्क्लोव्स्की (ES) वेरियबल-रेंज हॉपिंग एक चालना प्रारूप है जो कुलंब गैप को सम्मिलित करता है, जो स्थानांतरित इलेक्ट्रॉन्स के बीच संविलिता के कारण फर्मी स्तर के पास गुणसंख्या के छोटे स्कूट पर उत्पन्न होता है।।<ref name=":0">{{Cite journal|last1=Efros|first1=A. L.|last2=Shklovskii|first2=B. I.|date=1975|title=अव्यवस्थित प्रणालियों की कूलम्ब गैप और कम तापमान चालकता|url=http://stacks.iop.org/0022-3719/8/i=4/a=003|journal=Journal of Physics C: Solid State Physics|language=en|volume=8|issue=4|pages=L49|doi=10.1088/0022-3719/8/4/003|bibcode=1975JPhC....8L..49E |issn=0022-3719}}</ref> इसका नाम एलेक्सी एल. एफ्रोस और [[बोरिस श्लोकोवस्की]] के नाम पर रखा गया था जिन्होंने 1975 में इसे प्रस्तावित किया था।<ref name=":0" />


कूलम्ब दूरी के विचार से तापमान की निर्भरता प्रतिस्थापित हों जाती है
कूलम्ब दूरी के विचार से तापमान की निर्भरता प्रतिस्थापित हों जाती है

Revision as of 10:50, 8 June 2023

अस्थिर-क्षेत्र हॉपिंग एक प्रारूप है जिसका उपयोग विस्तारित तापमान क्षेत्र में होपिंग द्वारा अव्यवस्थित सेमीकंडक्टर या अस्थिर ठोस में बाधित कार्यकर परिवहन का वर्णन करने के लिए लिए किया जाता है, जिसमें एक विस्तारित तापमान सीमा में हॉपिंग किया जाता है।

जहाँ चालकता है और विचाराधीन प्रारूप पर निर्भर एक मापदण्ड है।

मोट अस्थिर-क्षेत्र होपिंग

मॉट वेरिएबल-रेंज हॉपिंग कम तापमान में सशक्त अव्यवस्थित प्रणालियों में स्थानांतरित चार्ज-कर्यकर्ता अवस्थाओं के साथ निम्न-तापमान प्रवाह का वर्णन करता है। इसका चरित्रिक तापमान अवधारणा है ।

त्रि-आयामी चालकता के लिए (जहां β = 1/4 होता है), और यह d-आयामों के लिए सामान्यीकृत होता है।

.

यदि अर्धचालक उद्योग एकल-स्फटिक उपकरणों को कांच की परतों के साथ परिवर्तन में सक्षम थे, तो बचत के कारण कम तापमान पर होपिंग चालन अत्यधिक उपयोगी है।[1]


व्युत्पत्ति

मूल मॉट पेपर में एक सरलीकृत मान्यता पेश की गई थी कि हॉपिंग ऊर्जा तीन-आयामी मामले में हॉपिंग दूरी के घन के उलट पर निर्भर होती है। बाद में सिद्ध हुआ कि यह मान्यता अनावश्यक थी, और यहां उस सिद्धांत का पालन किया जाता है। और इस प्रमाण का यहाँ पालन किया गया है।[2] मूल पेपर में, दिए गए तापमान पर हॉपिंग प्रायोजन्यता को दो पैरामीटरों, R और W पर निर्भर होते हुए देखा गया। अपस्ले और ह्यूजेस ने अभिलेखित किया कि वास्तव में अनाकार प्रणाली में, ये अस्थिर यादृच्छिक और स्वतंत्र होते हैं और इसलिए इन्हें एक मापदंड में श्रेणी दो साइटों के मध्य जोड़ा जा सकता है, जो उनके मध्य होपिंग की संभावना निर्धारित करता है।

मोट ने दिखाया कि स्थानिक पृथक्करण के दो स्थितियों के मध्य होपिंग की संभावना और ऊर्जा पृथक्करण W का रूप है:

जहां α−1 हाइड्रोजन जैसे स्थानीय तरंग-कार्य के लिए क्षीणन लंबाई है। वे यह मानते है कि उच्च ऊर्जा वाले अस्थिरण में रूकावट दर सीमित करने की प्रक्रिया है।

अब हम अर्थात दो अस्थिरणों के बीच की सीमा को परिभाषित करते हैं, इसलिए . अस्थिरणों को अस्थिर-आयामी यादृच्छिक सरणी में बिंदुओं के रूप में माना जा सकता है, उनके बीच की दूरी सीमा द्वारा दी गई है .

चालन इस अस्थिर-आयामी सरणी के माध्यम से हॉप्स की कई श्रृंखलाओं का परिणाम है और शॉर्टक्षेत्र हॉप्स के पक्षधर हैं, यह अस्थिरणों के बीच औसत निकटतम दूरी है जो समग्र चालकता को निर्धारित करता है। इस प्रकार चालकता का रूप है

जहाँ औसत निकटतम सीमा है। इसलिए मूल समस्या इस मात्रा की गणना करने की है।

समाधान प्राप्त करने के लिए पहला अस्थिरण है , एक सीमा के भीतर अस्थिरणों की कुल संख्या फर्मी स्तर पर कुछ प्रारंभिक अवस्था में प्रदर्शित की जाती है। डी-आयामों के लिए, और विशेष धारणाओं के अंतर्गत यह निम्नलिखित समीकरण द्वारा प्रदर्शित्र की जाती है

जहाँ .

विशेष धारणाएं बस यही हैं कि बैंड-चौड़ाई से काफी कम है और सरलता से अंतर आणविक दूरी से बड़ा है।

फिर संभावना है कि एक अस्थिरण श्रेणी के साथ चार-आयामी स्थान में निकटतम है या सामान्यतः (d+1)-आयामी स्थान है

निकटतम वितरण।

डी-आयामी स्थितियों के लिए

.

गामा समारोह में इसका सरल प्रतिस्थापन करके इसका मूल्यांकन किया जा सकता है , कुछ बीजगणित के बाद यह देता है

और इसलिए वह

.

अस्थिरणों का गैर-निरंतर घनत्व

जब अवस्थाओं का घनत्व स्थिर नहीं होता, मोट चालकता भी पुनः प्राप्त होती है, जैसा कि इस लेख में प्रदर्शित किया गया है।

एफ़्रोस-शक्लोव्स्की अस्थिर विस्तार होपिंग

एफ्रोस-श्क्लोव्स्की (ES) वेरियबल-रेंज हॉपिंग एक चालना प्रारूप है जो कुलंब गैप को सम्मिलित करता है, जो स्थानांतरित इलेक्ट्रॉन्स के बीच संविलिता के कारण फर्मी स्तर के पास गुणसंख्या के छोटे स्कूट पर उत्पन्न होता है।।[3] इसका नाम एलेक्सी एल. एफ्रोस और बोरिस श्लोकोवस्की के नाम पर रखा गया था जिन्होंने 1975 में इसे प्रस्तावित किया था।[3]

कूलम्ब दूरी के विचार से तापमान की निर्भरता प्रतिस्थापित हों जाती है

सभी आयामों के लिए (अर्थात = 1/2).[4][5]


यह भी देखें

टिप्पणियाँ

  1. P.V.E. McClintock, D.J. Meredith, J.K. Wigmore. Matter at Low Temperatures. Blackie. 1984 ISBN 0-216-91594-5.
  2. Apsley, N.; Hughes, H. P. (1974). "अव्यवस्थित प्रणालियों में होपिंग चालन का तापमान-और क्षेत्र-निर्भरता". Philosophical Magazine. Informa UK Limited. 30 (5): 963–972. Bibcode:1974PMag...30..963A. doi:10.1080/14786437408207250. ISSN 0031-8086.
  3. 3.0 3.1 Efros, A. L.; Shklovskii, B. I. (1975). "अव्यवस्थित प्रणालियों की कूलम्ब गैप और कम तापमान चालकता". Journal of Physics C: Solid State Physics (in English). 8 (4): L49. Bibcode:1975JPhC....8L..49E. doi:10.1088/0022-3719/8/4/003. ISSN 0022-3719.
  4. Li, Zhaoguo (2017). et. al. "Transition between Efros–Shklovskii and Mott variable-range hopping conduction in polycrystalline germanium thin films". Semiconductor Science and Technology. 32 (3): 035010. Bibcode:2017SeScT..32c5010L. doi:10.1088/1361-6641/aa5390. S2CID 99091706.
  5. Rosenbaum, Ralph (1991). "InxOy फिल्मों में Mott से Efros-Shklovskii वेरिएबल-रेंज-होपिंग कंडक्टिविटी तक क्रॉसओवर". Physical Review B. 44 (8): 3599–3603. Bibcode:1991PhRvB..44.3599R. doi:10.1103/physrevb.44.3599. ISSN 0163-1829. PMID 9999988.

[Category:Electrical resistance and conductan