असतत मूल्यांकन: Difference between revisions
From Vigyanwiki
No edit summary |
No edit summary |
||
Line 23: | Line 23: | ||
== उदाहरण == | == उदाहरण == | ||
* निश्चित [[अभाज्य संख्या]] के लिए <math>p</math> एवं किसी भी तत्व के लिए <math>x \in \mathbb{Q}</math> शून्य लेखन से भिन्न <math>x = p^j\frac{a}{b}</math> साथ <math>j, a,b \in \Z</math> ऐसा है कि <math>p</math> विभाजित नहीं करता <math>a,b</math>. तब <math>\nu(x) = j</math> असतत मूल्यांकन है <math>\Q</math>, जिसे पी-एडिक मूल्यांकन कहा जाता है। | * निश्चित [[अभाज्य संख्या]] के लिए <math>p</math> एवं किसी भी तत्व के लिए <math>x \in \mathbb{Q}</math> शून्य लेखन से भिन्न <math>x = p^j\frac{a}{b}</math> साथ <math>j, a,b \in \Z</math> ऐसा है कि <math>p</math> विभाजित नहीं करता <math>a,b</math>. तब <math>\nu(x) = j</math> असतत मूल्यांकन है <math>\Q</math>, जिसे पी-एडिक मूल्यांकन कहा जाता है। | ||
* [[रीमैन सतह]] को देखते हुए <math>X</math>, हम क्षेत्र पर विचार कर सकते हैं <math>K=M(X)</math> | * [[रीमैन सतह]] को देखते हुए <math>X</math>, हम क्षेत्र पर विचार कर सकते हैं [[मेरोमॉर्फिक फ़ंक्शन|मेरोमॉर्फिक कार्यों]] की <math>K=M(X)</math> <math>X\to\Complex\cup\{\infin\}</math> निश्चित बिंदु के लिए <math>p\in X</math>, हम असतत मूल्यांकन को परिभाषित करते हैं, <math>K</math> निम्नलिखित नुसार: <math>\nu(f)=j</math> यदि केवल <math>j</math> सबसे बड़ा पूर्णांक है जैसे कि फंक्शन <math>f(z)/(z-p)^j</math> पर [[होलोमॉर्फिक फ़ंक्शन]] तक बढ़ाया जा सकता है, <math>p</math>. इसका अर्थ है: यदि <math>\nu(f)=j>0</math> तब <math>f</math> के पास आदेश की जड़ है, <math>j</math> बिंदु पर <math>p</math>; अगर <math>\nu(f)=j<0</math> तब <math>f</math> के पास आदेश का ध्रुव (जटिल विश्लेषण) <math>-j</math> पर <math>p</math> है, इसी प्रकार, प्रत्येक नियमित बिंदु के लिए [[बीजगणितीय वक्र]] के बीजगणितीय विविधता के कार्य क्षेत्र पर असतत मूल्यांकन को भी परिभाषित करता है। | ||
असतत मूल्यांकन के | <math>p</math> वक्र के असतत मूल्यांकन के रिंग पर लेख में अधिक उदाहरण मिल सकते हैं। | ||
==उद्धरण== | ==उद्धरण== |
Revision as of 11:03, 24 May 2023
गणित में, असतत मूल्यांकन क्षेत्र (गणित) K पर पूर्णांक मूल्यांकन (बीजगणित) होता है। वह है, कार्य (गणित):[1]
कथनो को सम्पूर्ण करना:
सभी के लिए .
ध्यान दें कि प्रायः तुच्छ मूल्यांकन जो केवल मूल्यों पर होता है स्पष्ट रूप से बहिष्कृत है।
गैर-तुच्छ असतत मूल्यांकन वाले क्षेत्र को असतत मूल्यांकन क्षेत्र कहा जाता है।
असतत मूल्यांकन के रिंग्स एवं क्षेत्रों पर मूल्यांकन
प्रत्येक क्षेत्र को असतत मूल्यांकन के साथ हम सबरिंग को युग्मित कर सकते हैं।
का जो असतत मूल्यांकन रिंग है। इसके विपरीत, मूल्यांकन असतत मूल्यांकन रिंग पर भागफल क्षेत्र पर असतत मूल्यांकन के लिए को दृढ प्रविधि से बढ़ाया जा सकता है।
उदाहरण ; संबद्ध असतत मूल्यांकन रिंग है।
उदाहरण
- निश्चित अभाज्य संख्या के लिए एवं किसी भी तत्व के लिए शून्य लेखन से भिन्न साथ ऐसा है कि विभाजित नहीं करता . तब असतत मूल्यांकन है , जिसे पी-एडिक मूल्यांकन कहा जाता है।
- रीमैन सतह को देखते हुए , हम क्षेत्र पर विचार कर सकते हैं मेरोमॉर्फिक कार्यों की निश्चित बिंदु के लिए , हम असतत मूल्यांकन को परिभाषित करते हैं, निम्नलिखित नुसार: यदि केवल सबसे बड़ा पूर्णांक है जैसे कि फंक्शन पर होलोमॉर्फिक फ़ंक्शन तक बढ़ाया जा सकता है, . इसका अर्थ है: यदि तब के पास आदेश की जड़ है, बिंदु पर ; अगर तब के पास आदेश का ध्रुव (जटिल विश्लेषण) पर है, इसी प्रकार, प्रत्येक नियमित बिंदु के लिए बीजगणितीय वक्र के बीजगणितीय विविधता के कार्य क्षेत्र पर असतत मूल्यांकन को भी परिभाषित करता है।
वक्र के असतत मूल्यांकन के रिंग पर लेख में अधिक उदाहरण मिल सकते हैं।
उद्धरण
- ↑ Cassels & Fröhlich 1967, p. 2.
संदर्भ
- Cassels, J.W.S.; Fröhlich, Albrecht, eds. (1967), Algebraic Number Theory, Academic Press, Zbl 0153.07403
- Fesenko, Ivan B.; Vostokov, Sergei V. (2002), Local fields and their extensions, Translations of Mathematical Monographs, vol. 121 (Second ed.), Providence, RI: American Mathematical Society, ISBN 978-0-8218-3259-2, MR 1915966