संक्रियात्मक प्रवर्धक (ऑपरेशनल एंप्लीफायर): Difference between revisions
(Created page with "{{short description|High-gain voltage amplifier with a differential input}} {{Infobox electronic component |name = Operational amplifier |image = Ua7...") |
(Minor errors) |
||
Line 18: | Line 18: | ||
| symbol_caption = Circuit diagram symbol for an op amp. Pins are labeled as listed above. | | symbol_caption = Circuit diagram symbol for an op amp. Pins are labeled as listed above. | ||
}} | }} | ||
एक ऑपरेशनल एम्पलीफायर ( | एक ऑपरेशनल एम्पलीफायर (संक्षिप्त में op amp या opamp) एक डीसी-युग्मित उच्च-लाभ(हाई गेन) वाले इलेक्ट्रॉनिक वोल्टेज एम्पलीफायर है जिसमें एक अंतर इनपुट(डिफरेंशियल इनपुट) होता है और आमतौर पर, एक सिंगल-एंड आउटपुट होता है।<ref>{{cite web |url=http://www.maxim-ic.com/appnotes.cfm/an_pk/1108 |id=Maxim Application Note 1108 |title=Understanding Single-Ended, Pseudo-Differential and {{Sic|hide=y|Fully|-}}Differential ADC Inputs |archive-url=https://web.archive.org/web/20070626153413/http://www.maxim-ic.com/appnotes.cfm/an_pk/1108 |archive-date=2007-06-26 |access-date=November 10, 2007}}</ref> इस कॉन्फ़िगरेशन में, एक op amp एक आउटपुट क्षमता (सर्किट ग्राउंड के सापेक्ष) का उत्पादन करता है जो आमतौर पर अपने इनपुट टर्मिनलों के बीच संभावित अंतर से 100,000 गुना बड़ा होता है। ऑपरेशनल एम्पलीफायरों की उत्पत्ति एनालॉग कंप्यूटरों में हुई थी, जहां उनका उपयोग रैखिक, गैर-रैखिक और आवृत्ति-निर्भर सर्किट में गणितीय संचालन करने के लिए किया गया था। | ||
एनालॉग सर्किट में एक बिल्डिंग ब्लॉक के रूप में | एनालॉग सर्किट में एक बिल्डिंग ब्लॉक के रूप में op amp की लोकप्रियता इसकी बहुमुखी प्रतिभा के कारण है। नकारात्मक प्रतिक्रिया का उपयोग करके, एक op-amp सर्किट, इसके लाभ, इनपुट और आउटपुट प्रतिबाधा( आउटपुट इम्पीडेन्स), बैंडविड्थ आदि की विशेषताओं को बाहरी घटकों द्वारा निर्धारित किया जाता है और op amp में तापमान गुणांक या इंजीनियरिंग सहिष्णुता(इंजीनियरिंग टॉलरेंस) पर बहुत कम निर्भरता होती है। | ||
op amps का उपयोग आज इलेक्ट्रॉनिक उपकरणों में व्यापक रूप से किया जाता है, जिसमें उपभोक्ता, औद्योगिक और वैज्ञानिक उपकरणों की एक विस्तृत श्रृंखला शामिल है। कई मानक IC op amps की लागत केवल कुछ सेंटहोती है; हालांकि, विशेष प्रदर्शन विनिर्देशों के साथ कुछ एकीकृत या हाइब्रिड परिचालन एम्पलीफायरों की लागत {{Currency|amount=100|code=US}} हो सकती है।<ref>{{cite web|title=Apex OP PA98 |url=http://www.digikey.com/product-detail/en/PA98/598-1337-ND/1761961 |access-date=8 November 2015 |quote=APEX PA98 Op Amp Modules, Selling Price: $207.51 |url-status=live |archive-url=https://web.archive.org/web/20160101094650/http://www.digikey.com/product-detail/en/PA98/598-1337-ND/1761961|archive-date=1 January 2016}}</ref> op amps को घटकों के रूप में पैक किया जा सकता है या अधिक जटिल एकीकृत सर्किट के तत्वों के रूप में उपयोग किया जा सकता है। | |||
op amp एक प्रकार का डिफरेंशियल एम्पलीफायर है। अन्य प्रकार के डिफरेंशियल एम्पलीफायर में पूरी तरह से डिफरेंशियल एम्पलीफायर (op amp के समान, लेकिन दो आउटपुट के साथ), इंस्ट्रूमेंटेशन एम्पलीफायर (आमतौर पर तीन op amps से निर्मित), आइसोलेशन एम्पलीफायर (इंस्ट्रूमेंटेशन एम्पलीफायर के समान लेकिन सिंगल कॉमन-मोड वोल्टेज के प्रति टॉलरेंस के साथ जो एक साधारण op amp को नष्ट कर सकता है), और नेगेटिव-फीडबैक एम्पलीफायर (आमतौर पर एक या एक से अधिक op amps और एक प्रतिरोधक प्रतिक्रिया नेटवर्क से निर्मित)। | |||
== ऑपरेशन == | == ऑपरेशन == | ||
[[Image:Op-amp open-loop 1.svg|thumb|नकारात्मक प्रतिक्रिया के बिना एक ओपी amp (एक तुलनित्र)]] | [[Image:Op-amp open-loop 1.svg|thumb|नकारात्मक प्रतिक्रिया के बिना एक ओपी amp (एक तुलनित्र)]] | ||
एम्पलीफायर के अंतर इनपुट में | एम्पलीफायर के अंतर इनपुट में एक गैर-इनवर्टिंग इनपुट (+) वोल्टेज V''<sub>+</sub>'' के साथ होता है और एक इनवर्टिंग इनपुट (−) वोल्टेज V<sub>−</sub>; आदर्श रूप से op amp दोनों के बीच वोल्टेज में केवल अंतर को बढ़ाता है, जिसे विभेदक(डिफरेंशियल) इनपुट वोल्टेज कहा जाता है। op amp v का आउटपुट वोल्टेज<sub>out</sub> समीकरण द्वारा दिया गया है | ||
:<math>V_\text{out} = A_\text{OL} (V_+ - V_-),</math> | :<math>V_\text{out} = A_\text{OL} (V_+ - V_-),</math> | ||
जहाँ एक<sub>OL</sub> एम्पलीफायर का ओपन-लूप लाभ है (ओपन-लूप शब्द आउटपुट से इनपुट से एक बाहरी प्रतिक्रिया लूप की अनुपस्थिति को संदर्भित करता है)। | जहाँ एक<sub>OL</sub> एम्पलीफायर का ओपन-लूप लाभ है (ओपन-लूप शब्द आउटपुट से इनपुट से एक बाहरी प्रतिक्रिया लूप की अनुपस्थिति को संदर्भित करता है)। |
Revision as of 22:35, 25 August 2022
![]() A μA741 integrated circuit, one of the most successful operational amplifiers | |
प्रकार | Discrete circuit Integrated circuit |
---|---|
आविष्कार किया | Karl D. Swartzel Jr. |
First production | 1967 |
Pin configuration | |
Electronic symbol | |
![]() Circuit diagram symbol for an op amp. Pins are labeled as listed above. |
एक ऑपरेशनल एम्पलीफायर (संक्षिप्त में op amp या opamp) एक डीसी-युग्मित उच्च-लाभ(हाई गेन) वाले इलेक्ट्रॉनिक वोल्टेज एम्पलीफायर है जिसमें एक अंतर इनपुट(डिफरेंशियल इनपुट) होता है और आमतौर पर, एक सिंगल-एंड आउटपुट होता है।[1] इस कॉन्फ़िगरेशन में, एक op amp एक आउटपुट क्षमता (सर्किट ग्राउंड के सापेक्ष) का उत्पादन करता है जो आमतौर पर अपने इनपुट टर्मिनलों के बीच संभावित अंतर से 100,000 गुना बड़ा होता है। ऑपरेशनल एम्पलीफायरों की उत्पत्ति एनालॉग कंप्यूटरों में हुई थी, जहां उनका उपयोग रैखिक, गैर-रैखिक और आवृत्ति-निर्भर सर्किट में गणितीय संचालन करने के लिए किया गया था।
एनालॉग सर्किट में एक बिल्डिंग ब्लॉक के रूप में op amp की लोकप्रियता इसकी बहुमुखी प्रतिभा के कारण है। नकारात्मक प्रतिक्रिया का उपयोग करके, एक op-amp सर्किट, इसके लाभ, इनपुट और आउटपुट प्रतिबाधा( आउटपुट इम्पीडेन्स), बैंडविड्थ आदि की विशेषताओं को बाहरी घटकों द्वारा निर्धारित किया जाता है और op amp में तापमान गुणांक या इंजीनियरिंग सहिष्णुता(इंजीनियरिंग टॉलरेंस) पर बहुत कम निर्भरता होती है।
op amps का उपयोग आज इलेक्ट्रॉनिक उपकरणों में व्यापक रूप से किया जाता है, जिसमें उपभोक्ता, औद्योगिक और वैज्ञानिक उपकरणों की एक विस्तृत श्रृंखला शामिल है। कई मानक IC op amps की लागत केवल कुछ सेंटहोती है; हालांकि, विशेष प्रदर्शन विनिर्देशों के साथ कुछ एकीकृत या हाइब्रिड परिचालन एम्पलीफायरों की लागत US$100 हो सकती है।[2] op amps को घटकों के रूप में पैक किया जा सकता है या अधिक जटिल एकीकृत सर्किट के तत्वों के रूप में उपयोग किया जा सकता है।
op amp एक प्रकार का डिफरेंशियल एम्पलीफायर है। अन्य प्रकार के डिफरेंशियल एम्पलीफायर में पूरी तरह से डिफरेंशियल एम्पलीफायर (op amp के समान, लेकिन दो आउटपुट के साथ), इंस्ट्रूमेंटेशन एम्पलीफायर (आमतौर पर तीन op amps से निर्मित), आइसोलेशन एम्पलीफायर (इंस्ट्रूमेंटेशन एम्पलीफायर के समान लेकिन सिंगल कॉमन-मोड वोल्टेज के प्रति टॉलरेंस के साथ जो एक साधारण op amp को नष्ट कर सकता है), और नेगेटिव-फीडबैक एम्पलीफायर (आमतौर पर एक या एक से अधिक op amps और एक प्रतिरोधक प्रतिक्रिया नेटवर्क से निर्मित)।
ऑपरेशन
एम्पलीफायर के अंतर इनपुट में एक गैर-इनवर्टिंग इनपुट (+) वोल्टेज V+ के साथ होता है और एक इनवर्टिंग इनपुट (−) वोल्टेज V−; आदर्श रूप से op amp दोनों के बीच वोल्टेज में केवल अंतर को बढ़ाता है, जिसे विभेदक(डिफरेंशियल) इनपुट वोल्टेज कहा जाता है। op amp v का आउटपुट वोल्टेजout समीकरण द्वारा दिया गया है
जहाँ एकOL एम्पलीफायर का ओपन-लूप लाभ है (ओपन-लूप शब्द आउटपुट से इनपुट से एक बाहरी प्रतिक्रिया लूप की अनुपस्थिति को संदर्भित करता है)।
ओपन-लूप एम्पलीफायर
की परिमाणOL आम तौर पर बहुत बड़ा है (एकीकृत सर्किट ऑप एम्प्स के लिए 100,000 या अधिक), और इसलिए वी के बीच काफी छोटा अंतर भी है+ और वी− एम्पलीफायर को क्लिपिंग या संतृप्ति में चलाता है।की परिमाणOL विनिर्माण प्रक्रिया द्वारा अच्छी तरह से नियंत्रित नहीं है, और इसलिए यह एक स्टैंड-अलोन अंतर एम्पलीफायर के रूप में एक ओपन-लूप एम्पलीफायर का उपयोग करना अव्यावहारिक है।
नकारात्मक प्रतिक्रिया के बिना, और पुनर्जनन के लिए वैकल्पिक रूप से सकारात्मक प्रतिक्रिया, एक ओपी एएमपी एक तुलनित्र के रूप में कार्य करता है।यदि इनवर्टिंग इनपुट जमीन (0 & nbsp; v), और इनपुट वोल्टेज v पर आयोजित किया जाता हैin गैर-इनवर्टिंग इनपुट पर लागू सकारात्मक है, आउटपुट अधिकतम सकारात्मक होगा;अगर वीin नकारात्मक है, आउटपुट अधिकतम नकारात्मक होगा।क्योंकि आउटपुट से या तो इनपुट के लिए कोई प्रतिक्रिया नहीं है, यह एक तुलनित्र के रूप में कार्य करने वाला एक ओपन-लूप सर्किट है।
बंद-लूप एम्पलीफायर
यदि अनुमानित ऑपरेशन वांछित है, तो इनवर्टिंग इनपुट पर आउटपुट वोल्टेज के एक हिस्से को लागू करके, नकारात्मक प्रतिक्रिया का उपयोग किया जाता है।बंद-लूप प्रतिक्रिया सर्किट के लाभ को बहुत कम करती है।जब नकारात्मक प्रतिक्रिया का उपयोग किया जाता है, तो सर्किट के समग्र लाभ और प्रतिक्रिया को मुख्य रूप से फीडबैक नेटवर्क द्वारा निर्धारित किया जाता है, बजाय ओपी-एएमपी विशेषताओं के।यदि फीडबैक नेटवर्क ओपी एएमपी के इनपुट प्रतिबाधा के सापेक्ष छोटे मूल्यों के साथ घटकों से बना है, तो ओपी एएमपी के ओपन-लूप प्रतिक्रिया का मूल्य एOL सर्किट के प्रदर्शन को गंभीरता से प्रभावित नहीं करता है।इस संदर्भ में, इनपुट टर्मिनलों पर उच्च इनपुट प्रतिबाधा और आउटपुट टर्मिनल (एस) पर कम आउटपुट प्रतिबाधा एक ओपी एएमपी की विशेष रूप से उपयोगी विशेषताएं हैं।
एक इनपुट के लिए अपने इनपुट, आउटपुट और फीडबैक सर्किट के साथ ओपी-एएमपी सर्किट की प्रतिक्रिया एक स्थानांतरण फ़ंक्शन द्वारा गणितीय रूप से विशेषता है;एक वांछित हस्तांतरण समारोह के लिए एक ऑप-एम्प सर्किट को डिजाइन करना इलेक्ट्रिकल इंजीनियरिंग के दायरे में है।ट्रांसफर फ़ंक्शन ओपी एम्प्स के अधिकांश अनुप्रयोगों में महत्वपूर्ण हैं, जैसे कि एनालॉग कंप्यूटर में।
दाईं ओर गैर-इनवर्टिंग एम्पलीफायर में, वोल्टेज डिवाइडर आर के माध्यम से नकारात्मक प्रतिक्रिया की उपस्थितिf, आरg बंद लूप लाभ को निर्धारित करता हैCL& nbsp; = Vout / Vin।V होने पर संतुलन स्थापित किया जाएगाout V के रूप में एक ही वोल्टेज के लिए इनवर्टिंग इनपुट को खींचने के लिए पर्याप्त हैin।पूरे सर्किट का वोल्टेज लाभ इस प्रकार है 1 + Rf / Rg।एक साधारण उदाहरण के रूप में, यदि vin& nbsp; = 1 & nbsp; v और rf& nbsp; = rg, वीout 2 & nbsp; v, बिल्कुल v रखने के लिए आवश्यक राशि होगी− 1 & nbsp; v पर।आर द्वारा प्रदान की गई प्रतिक्रिया के कारणf, आरg नेटवर्क, यह एक बंद लूप सर्किट है।
इस सर्किट का विश्लेषण करने का एक और तरीका निम्नलिखित (आमतौर पर मान्य) मान्यताओं को बनाकर:[3]
- जब एक ओपी amp रैखिक (यानी, संतृप्त नहीं) मोड में संचालित होता है, तो गैर-इनवर्टिंग (+) और इनवर्टिंग (& माइनस;) पिन के बीच वोल्टेज में अंतर लापरवाही से छोटा होता है।
- (+) और (& माइनस;) पिन का इनपुट प्रतिबाधा सर्किट में अन्य प्रतिरोधों की तुलना में बहुत बड़ा है।
इनपुट सिग्नल वीin दोनों (+) और (& माइनस;) पिन प्रति धारणा 1 पर दिखाई देता है, जिसके परिणामस्वरूप मैं आर के माध्यम से एक करंट हूंg के बराबर Vin / Rg:
ओपी-एम्पी विशेषताएँ
आदर्श ऑप amps
एक आदर्श ऑप amp को आमतौर पर निम्नलिखित विशेषताएं माना जाता है:[4][5]
- अनंत ओपन-लूप लाभ g = vout / वीin
- अनंत इनपुट प्रतिबाधा आरin, और इसलिए शून्य इनपुट करंट
- शून्य इनपुट ऑफसेट वोल्टेज
- अनंत आउटपुट वोल्टेज रेंज
- शून्य चरण शिफ्ट और अनंत स्लीव दर के साथ अनंत बैंडविड्थ
- शून्य आउटपुट प्रतिबाधा आरout, और इसलिए अनंत आउटपुट वर्तमान सीमा
- शून्य शोर
- अनंत सामान्य-मोड अस्वीकृति अनुपात (CMRR)
- अनंत बिजली आपूर्ति अस्वीकृति अनुपात।
इन आदर्शों को दोनों द्वारा संक्षेपित किया जा सकता है golden rules:
- एक बंद लूप में आउटपुट इनपुट शून्य के बीच वोल्टेज अंतर बनाने के लिए जो कुछ भी आवश्यक है, करने का प्रयास करता है।
- इनपुट कोई करंट नहीं बनाते हैं।[6]: 177
पहला नियम केवल सामान्य मामले में लागू होता है जहां ओपी amp का उपयोग एक बंद-लूप डिज़ाइन (नकारात्मक प्रतिक्रिया, जहां आउटपुट से इनवर्टिंग इनपुट तक वापस खिलाने का एक संकेत पथ होता है) में किया जाता है।इन नियमों का उपयोग आमतौर पर ऑप-एम्प सर्किट के विश्लेषण या डिजाइन करने के लिए एक अच्छे पहले सन्निकटन के रूप में किया जाता है।[6]: 177 इन आदर्शों में से कोई भी पूरी तरह से महसूस नहीं किया जा सकता है।एक वास्तविक ओपी amp को ओपी-एएमपी मॉडल में समकक्ष प्रतिरोधों और कैपेसिटर का उपयोग करके गैर-इनफिनाइट या गैर-शून्य मापदंडों के साथ मॉडल किया जा सकता है।डिजाइनर तब इन प्रभावों को अंतिम सर्किट के समग्र प्रदर्शन में शामिल कर सकता है।कुछ पैरामीटर अंतिम डिजाइन पर नगण्य प्रभाव डाल सकते हैं, जबकि अन्य अंतिम प्रदर्शन की वास्तविक सीमाओं का प्रतिनिधित्व करते हैं जिनका मूल्यांकन किया जाना चाहिए।
असली ऑप amps
रियल ऑप एम्प्स विभिन्न पहलुओं में आदर्श मॉडल से भिन्न होते हैं।
- परिमित लाभ
- ओपन-लूप लाभ आदर्श परिचालन एम्पलीफायर में अनंत है, लेकिन वास्तविक परिचालन एम्पलीफायरों में परिमित है। विशिष्ट उपकरण 100,000 से अधिक के ओपन-लूप डीसी लाभ का प्रदर्शन करते हैं। जब तक लूप लाभ (यानी, ओपन-लूप और फीडबैक लाभ का उत्पाद) बहुत बड़ा है, तब तक बंद-लूप लाभ पूरी तरह से नकारात्मक प्रतिक्रिया की मात्रा से निर्धारित किया जाएगा (यानी, यह ओपन-लूप लाभ से स्वतंत्र होगा )। उन अनुप्रयोगों में जहां बंद-लूप लाभ बहुत अधिक होना चाहिए, प्रतिक्रिया लाभ बहुत कम होगा और इन मामलों में कम लूप लाभ सर्किट से गैर-आदर्श व्यवहार का कारण बनता है।
- गैर-शून्य आउटपुट प्रतिबाधा
- कम आउटपुट प्रतिबाधा कम-प्रतिबाधा भार के लिए महत्वपूर्ण है; इन भारों के लिए, आउटपुट प्रतिबाधा में वोल्टेज ड्रॉप प्रभावी रूप से ओपन-लूप लाभ को कम करता है। वोल्टेज-सेंसिंग नकारात्मक प्रतिक्रिया के साथ कॉन्फ़िगरेशन में, एम्पलीफायर के आउटपुट प्रतिबाधा को प्रभावी रूप से कम किया जाता है; इस प्रकार, रैखिक अनुप्रयोगों में, ओपी-एम्प सर्किट आमतौर पर एक बहुत कम आउटपुट प्रतिबाधा प्रदर्शित करते हैं।
- कम-प्रतिबाधा आउटपुट में आमतौर पर आउटपुट चरण में उच्च quiescent (यानी, निष्क्रिय) वर्तमान की आवश्यकता होती है और यह अधिक शक्ति को भंग कर देगा, इसलिए कम-शक्ति वाले डिज़ाइन जानबूझकर कम आउटपुट प्रतिबाधा का त्याग कर सकते हैं।
- परिमित इनपुट प्रतिबाधा
- परिचालन एम्पलीफायर के अंतर इनपुट प्रतिबाधा को इसके दो इनपुट के बीच प्रतिबाधा के रूप में परिभाषित किया गया है; सामान्य-मोड इनपुट प्रतिबाधा प्रत्येक इनपुट से जमीन पर प्रतिबाधा है। MOSFET- इनपुट ऑपरेशनल एम्पलीफायरों में अक्सर सुरक्षा सर्किट होते हैं जो प्रभावी रूप से किसी भी इनपुट अंतर को एक छोटी सीमा से अधिक शॉर्ट सर्किट करते हैं, इसलिए इनपुट प्रतिबाधा कुछ परीक्षणों में बहुत कम दिखाई दे सकता है। हालांकि, जब तक इन परिचालन एम्पलीफायरों का उपयोग एक विशिष्ट उच्च-लाभ नकारात्मक प्रतिक्रिया अनुप्रयोग में किया जाता है, तब तक ये सुरक्षा सर्किट निष्क्रिय हो जाएंगे। नीचे वर्णित इनपुट पूर्वाग्रह और रिसाव धाराएं विशिष्ट परिचालन एम्पलीफायर अनुप्रयोगों के लिए एक अधिक महत्वपूर्ण डिजाइन पैरामीटर हैं।
- इनपुट समाई
- परजीवी समाई के कारण अतिरिक्त इनपुट प्रतिबाधा उच्च आवृत्ति संचालन के लिए एक महत्वपूर्ण मुद्दा हो सकता है जहां यह इनपुट प्रतिबाधा को कम करता है और चरण बदलाव का कारण बन सकता है।
- आगत बहाव
- पूर्वाग्रह आवश्यकताओं या रिसाव के कारण, वर्तमान की एक छोटी राशि[nb 2] इनपुट में बहती है।जब उच्च आउटपुट प्रतिबाधा वाले उच्च प्रतिरोध या स्रोत सर्किट में उपयोग किए जाते हैं, तो ये छोटी धाराएं वोल्टेज बूंदों का उत्पादन कर सकती हैं।यदि इनपुट धाराओं का मिलान किया जाता है, और दोनों इनपुट से बाहर देखने वाले प्रतिबाधा का मिलान किया जाता है, तो प्रत्येक इनपुट पर उत्पादित वोल्टेज समान होंगे।क्योंकि परिचालन एम्पलीफायर अपने इनपुट के बीच अंतर पर काम करता है, इन मिलान किए गए वोल्टेज का कोई प्रभाव नहीं होगा। इनपुट धाराओं के लिए थोड़ा बेमेल होना अधिक सामान्य है।अंतर को इनपुट ऑफसेट करंट कहा जाता है, और यहां तक कि मिलान किए गए प्रतिरोधों के साथ एक छोटा ऑफसेट वोल्टेज (नीचे इनपुट ऑफसेट वोल्टेज से अलग) का उत्पादन किया जा सकता है।यह ऑफसेट वोल्टेज ऑपरेशनल एम्पलीफायर में ऑफ़सेट या ड्रिफ्टिंग बना सकता है।
- निवेश समायोजन विद्युत संचालन शक्ति
- यह वोल्टेज, जो कि आउटपुट वोल्टेज को शून्य पर चलाने के लिए ओपी एएमपी के इनपुट टर्मिनलों में आवश्यक है।[7][nb 3] सही एम्पलीफायर में, कोई इनपुट ऑफसेट वोल्टेज नहीं होगा।हालांकि, यह ओपी एम्प्स के अंतर एम्पलीफायर इनपुट चरण में खामियों के कारण मौजूद है।इनपुट ऑफसेट वोल्टेज दो समस्याएं पैदा करता है: सबसे पहले, एम्पलीफायर के उच्च वोल्टेज लाभ के कारण, यह वास्तव में आश्वस्त करता है कि एम्पलीफायर आउटपुट संतृप्ति में चला जाएगा यदि यह नकारात्मक प्रतिक्रिया के बिना संचालित होता है, तब भी जब इनपुट टर्मिनलों को एक साथ वायर्ड किया जाता है।दूसरा, एक बंद लूप में, नकारात्मक प्रतिक्रिया कॉन्फ़िगरेशन में, इनपुट ऑफसेट वोल्टेज को सिग्नल के साथ -साथ प्रवर्धित किया जाता है और यह एक समस्या पैदा कर सकता है यदि उच्च परिशुद्धता डीसी प्रवर्धन की आवश्यकता होती है या यदि इनपुट सिग्नल बहुत छोटा है।[nb 4]
- कॉमन-मोड गेन
- एक आदर्श परिचालन एम्पलीफायर अपने दो इनपुटों के बीच केवल वोल्टेज अंतर को बढ़ाता है, पूरी तरह से सभी वोल्टेज को अस्वीकार करता है जो दोनों के लिए सामान्य हैं। हालांकि, एक परिचालन एम्पलीफायर का विभेदक इनपुट चरण कभी भी सही नहीं होता है, जिससे इन सामान्य वोल्टेज के प्रवर्धन को कुछ हद तक बढ़ाया जाता है। इस दोष के मानक माप को कॉमन-मोड अस्वीकृति अनुपात (CMRR) कहा जाता है। सामान्य-मोड लाभ का न्यूनतमकरण #नॉन-इनवर्टिंग एम्पलीफायर में महत्वपूर्ण है। गैर-इनवर्टिंग एम्पलीफायरों में जो उच्च लाभ पर काम करते हैं।
- शक्ति-आपूर्ति अस्वीकृति
- एक आदर्श परिचालन एम्पलीफायर का उत्पादन बिजली की आपूर्ति वोल्टेज में उतार -चढ़ाव से स्वतंत्र होगा। प्रत्येक वास्तविक परिचालन एम्पलीफायर में एक परिमित बिजली आपूर्ति अस्वीकृति अनुपात (PSRR) होता है जो दर्शाता है कि ओपी एएमपी अपने आपूर्ति वोल्टेज में परिवर्तन को कितनी अच्छी तरह से अस्वीकार कर सकता है।
- तापमान प्रभाव
- एम्पलीफायर का प्रदर्शन आमतौर पर तापमान में परिवर्तन के साथ, कुछ हद तक बदलता है। इनपुट ऑफसेट वोल्टेज का तापमान बहाव विशेष रूप से महत्वपूर्ण है।
- बहाव
- रियल ऑप-एम्प पैरामीटर समय के साथ धीमी गति से परिवर्तन के अधीन हैं और तापमान, इनपुट स्थितियों, आदि में परिवर्तन के साथ।
- परिमित बैंडविड्थ
- सभी एम्पलीफायरों में परिमित बैंडविड्थ है। पहले सन्निकटन के लिए, ओपी amp में लाभ के साथ एक इंटीग्रेटर की आवृत्ति प्रतिक्रिया होती है। यही है, एक विशिष्ट ऑप amp का लाभ आवृत्ति के विपरीत आनुपातिक है और इसके लाभ -Bandwidth उत्पाद (GBWP) की विशेषता है। उदाहरण के लिए, 1 & nbsp; mHz के GBWP के साथ एक op amp; 200 & nbsp; kHz पर 5 का लाभ होगा, और 1 & nbsp; MHz पर 1 का लाभ होगा। ओपी amp के बहुत उच्च डीसी लाभ के साथ युग्मित इस गतिशील प्रतिक्रिया से यह डीसी लाभ द्वारा विभाजित GBWP द्वारा दी गई बहुत अधिक डीसी लाभ और कम कटऑफ आवृत्ति के साथ पहले-क्रम कम-पास फिल्टर की विशेषताएं देता है।एक ऑप amp की परिमित बैंडविड्थ कई समस्याओं का स्रोत हो सकती है, जिसमें शामिल हैं:
- Stability
- Associated with the bandwidth limitation is a phase difference between the input signal and the amplifier output that can lead to oscillation in some feedback circuits. For example, a sinusoidal output signal meant to interfere destructively with an input signal of the same frequency will interfere constructively if delayed by 180 degrees forming positive feedback. In these cases, the feedback circuit can be stabilized by means of frequency compensation, which increases the gain or phase margin of the open-loop circuit. The circuit designer can implement this compensation externally with a separate circuit component. Alternatively, the compensation can be implemented within the operational amplifier with the addition of a dominant pole that sufficiently attenuates the high-frequency gain of the operational amplifier. The location of this pole may be fixed internally by the manufacturer or configured by the circuit designer using methods specific to the op amp. In general, dominant-pole frequency compensation reduces the bandwidth of the op amp even further. When the desired closed-loop gain is high, op-amp frequency compensation is often not needed because the requisite open-loop gain is sufficiently low; consequently, applications with high closed-loop gain can make use of op amps with higher bandwidths.
- Distortion, and other effects
- Limited bandwidth also results in lower amounts of feedback at higher frequencies, producing higher distortion, and output impedance as the frequency increases.
- शोर
- एम्पलीफायर्स आउटपुट शोर भी जब कोई संकेत लागू नहीं होता है।यह डिवाइस के आंतरिक थर्मल शोर और झिलमिलाहट शोर के कारण हो सकता है।उच्च लाभ या उच्च बैंडविड्थ वाले अनुप्रयोगों के लिए, शोर एक महत्वपूर्ण विचार बन जाता है और प्रदर्शन आवश्यकताओं को पूरा करने के लिए एक कम-शोर एम्पलीफायर की आवश्यकता हो सकती है।
- शक्ति-आपूर्ति अस्वीकृति
- बढ़ती आवृत्ति के साथ बिजली-आपूर्ति अस्वीकृति आमतौर पर खराब हो जाती है।इसलिए उच्च आवृत्ति लहरों और संकेतों की आपूर्ति को साफ रखना महत्वपूर्ण हो सकता है, उदा।बाईपास कैपेसिटर के उपयोग से।
गैर-रैखिक खामियां
- संतृप्ति
- आउटपुट वोल्टेज बिजली की आपूर्ति वोल्टेज के करीब न्यूनतम और अधिकतम मूल्य तक सीमित है।[nb 5] पुराने ओपी एम्प्स का उत्पादन आपूर्ति रेल के एक या दो वोल्ट के भीतर पहुंच सकता है।तथाकथित का उत्पादनrail-to-rail कम आउटपुट धाराओं को प्रदान करते समय ओपी एम्प्स आपूर्ति रेल के मिलिवोल्ट्स के भीतर पहुंच सकते हैं।[8]; स्लीविंग
- एम्पलीफायर का आउटपुट वोल्टेज अपने परिवर्तन की अधिकतम दर तक पहुंचता है, स्लीव दर, आमतौर पर वोल्ट प्रति माइक्रोसेकंड (v/μs) में निर्दिष्ट होता है।जब स्लीविंग होता है, तो इनपुट सिग्नल में और वृद्धि आउटपुट के परिवर्तन की दर पर कोई प्रभाव नहीं पड़ता है।स्लीविंग आमतौर पर इनपुट चरण संतृप्त होने के कारण होता है;परिणाम एक निरंतर वर्तमान है i एक समाई ड्राइविंग C एम्पलीफायर में (विशेष रूप से उन कैपेसिटेंस का उपयोग इसकी आवृत्ति मुआवजे को लागू करने के लिए किया जाता है);स्लीव दर सीमित है dv/dt = i/C. स्लीविंग एक ओपी amp के बड़े-सिग्नल प्रदर्शन के साथ जुड़ा हुआ है।उदाहरण के लिए, एक ओपी amp को 10. के लाभ के लिए कॉन्फ़िगर किया गया है। V, 100 & nbsp; kHz Sawtooth Wave।अर्थात्, आयाम 1 है V और अवधि 10 माइक्रोसेकंड है।तदनुसार, इनपुट का परिवर्तन (यानी, ढलान) की दर 0.1 & nbsp; v प्रति माइक्रोसेकंड है।10 × प्रवर्धन के बाद, आउटपुट 10 होना चाहिए V, 100 & nbsp; khz sawtooth, 1 की एक समान दर की दर के साथ V प्रति माइक्रोसेकंड।हालांकि, क्लासिक 741 ओपी amp में 0.5 है V प्रति माइक्रोसेकंड स्लीव रेट स्पेसिफिकेशन, ताकि इसका आउटपुट 5 से अधिक न हो जाए V Sawtooth 10 माइक्रोसेकंड अवधि में।इस प्रकार, यदि कोई आउटपुट को मापने के लिए था, तो यह 5 होगा V, 100 & nbsp; khz sawtooth, एक 10 के बजाय V, 100 & nbsp; khz sawtooth।इसके बाद एक ही एम्पलीफायर और 100 & nbsp; kHz sawtooth पर विचार करें, लेकिन अब इनपुट आयाम 100 है 1 के बजाय एमवी वी। 10 × प्रवर्धन के बाद आउटपुट 1 है V, 100 & nbsp; khz sawtooth 0.1 की एक समान स्लीव दर के साथ V प्रति माइक्रोसेकंड।इस उदाहरण में, 741 इसके 0.5 के साथ V प्रति माइक्रोसेकंड स्लीव दर इनपुट को ठीक से बढ़ाएगी। आधुनिक हाई स्पीड ऑप एम्प्स में 5,000 से अधिक की दरें हो सकती हैं V प्रति माइक्रोसेकंड।हालांकि, ओपी एम्प्स के लिए यह अधिक आम है कि 5-100 रेंज में दरें हैं V प्रति माइक्रोसेकंड।उदाहरण के लिए, सामान्य उद्देश्य TL081 OP amp की दर 13 की है V प्रति माइक्रोसेकंड।एक सामान्य नियम के रूप में, कम शक्ति और छोटे बैंडविड्थ ओपी एम्प्स में कम स्लीव दर होती है।एक उदाहरण के रूप में, LT1494 micropower op amp 1.5 माइक्रोएएमपी की खपत करता है, लेकिन एक 2.7 & nbsp; kHz Gain-Bandwidth उत्पाद और 0.001 है V प्रति माइक्रोसेकंड स्लीव दर।
- गैर-रैखिक इनपुट-आउटपुट संबंध
- आउटपुट वोल्टेज इनपुट वोल्टेज के बीच अंतर के लिए सटीक आनुपातिक नहीं हो सकता है।इसे आमतौर पर विरूपण कहा जाता है जब इनपुट सिग्नल एक तरंग है।यह प्रभाव एक व्यावहारिक सर्किट में बहुत छोटा होगा जहां पर्याप्त नकारात्मक प्रतिक्रिया का उपयोग किया जाता है।
- चरण उलट
- कुछ एकीकृत ओपी एम्प्स में, जब प्रकाशित सामान्य मोड वोल्टेज का उल्लंघन किया जाता है (जैसे, आपूर्ति वोल्टेज में से एक के लिए इनपुट में से एक द्वारा), आउटपुट सामान्य संचालन में अपेक्षित रूप से विपरीत ध्रुवीयता को मार सकता है।[9][10] ऐसी शर्तों के तहत, नकारात्मक प्रतिक्रिया सकारात्मक हो जाती है, संभावना है कि सर्किट उस अवस्था में बंद हो जाता है।
पावर विचार
- सीमित आउटपुट करंट
- आउटपुट करंट परिमित होना चाहिए।व्यवहार में, अधिकांश ओपी एम्प्स को आउटपुट करंट को सीमित करने के लिए डिज़ाइन किया गया है ताकि एक निर्दिष्ट स्तर से अधिक न हो - लगभग 25 & nbsp; एक प्रकार 741 आईसी ओपी एएमपी के लिए एमए - इस प्रकार ओपी amp और संबंधित सर्किटरी को क्षति से बचाता है।आधुनिक डिजाइन इलेक्ट्रॉनिक रूप से पहले के कार्यान्वयन की तुलना में अधिक बीहड़ हैं और कुछ नुकसान के बिना अपने आउटपुट पर प्रत्यक्ष लघु सर्किट बनाए रख सकते हैं।
- सीमित आउटपुट वोल्टेज
- आउटपुट वोल्टेज ओपी amp को आपूर्ति की गई बिजली की आपूर्ति वोल्टेज से अधिक नहीं हो सकता है।अधिकांश ओपी एम्प्स का अधिकतम आउटपुट आउटपुट सर्किटरी की सीमाओं के कारण कुछ राशि से कम हो जाता है।विशेष रेल-से-रेल ओपी एम्प्स को अधिकतम आउटपुट स्तर के लिए डिज़ाइन किया गया है।[8]
- आउटपुट सिंक करंट
- आउटपुट सिंक करंट आउटपुट चरण में डूबने की अनुमति अधिकतम करंट है।कुछ निर्माता आउटपुट वोल्टेज बनाम आउटपुट सिंक करंट प्लॉट दिखाते हैं, जो आउटपुट वोल्टेज का एक विचार देता है जब यह आउटपुट पिन में किसी अन्य स्रोत से करंट डूब रहा होता है।
- सीमित विघटित शक्ति
- आउटपुट करंट ओपी एएमपी के आंतरिक आउटपुट प्रतिबाधा के माध्यम से बहता है, जिससे गर्मी उत्पन्न होती है जिसे विघटित किया जाना चाहिए।यदि ओपी amp बहुत अधिक शक्ति को नष्ट कर देता है, तो इसका तापमान कुछ सुरक्षित सीमा से ऊपर बढ़ जाएगा।ओपी amp थर्मल शटडाउन में प्रवेश कर सकता है, या इसे नष्ट किया जा सकता है।
आधुनिक एकीकृत FET या MOSFET OP amps द्विध्रुवी IC की तुलना में आदर्श op amp को अधिक निकटता से अनुमानित करता है जब यह इनपुट प्रतिबाधा और इनपुट पूर्वाग्रह धाराओं की बात आती है।जब इनपुट वोल्टेज ऑफसेट की बात आती है, तो बिपोलर आम तौर पर बेहतर होते हैं, और अक्सर शोर कम होता है।आम तौर पर, कमरे के तापमान पर, काफी बड़े सिग्नल के साथ, और सीमित बैंडविड्थ, FET और MOSFET OP एम्प्स अब बेहतर प्रदर्शन प्रदान करते हैं।
आंतरिक सर्किटरी 741-टाइप ओपी amp
कई निर्माताओं द्वारा, और कई समान उत्पादों में, एक द्विध्रुवी ट्रांजिस्टर ऑपरेशनल एम्पलीफायर का एक उदाहरण है 741 एकीकृत सर्किट है जिसे 1968 में बॉब विडलर के LM301 एकीकृत सर्किट डिजाइन के बाद फेयरचाइल्ड सेमीकंडक्टर में डेविड फुलगर द्वारा डिज़ाइन किया गया था।[11] इस चर्चा में, हम एक ट्रांजिस्टर के छोटे-सिग्नल, ग्राउंडेड एमिटर विशेषताओं को चिह्नित करने के लिए हाइब्रिड-पीआई मॉडल के मापदंडों का उपयोग करते हैं।इस मॉडल में, एक ट्रांजिस्टर का वर्तमान लाभ एच को दर्शाया गया हैfe, अधिक आमतौर पर β कहा जाता है।[12]
वास्तुकला
एक छोटे पैमाने पर एकीकृत सर्किट, 741 ओपी एएमपी शेयरों के साथ अधिकांश ओपी एम्प्स एक आंतरिक संरचना जिसमें तीन लाभ चरण होते हैं:[13]
- डिफरेंशियल एम्पलीफायर (उल्लिखित डार्क ब्लू)-सामान्य-मोड सिग्नल, कम शोर, उच्च इनपुट प्रतिबाधा, और ड्राइव ए की अस्वीकृति के साथ उच्च अंतर प्रवर्धन (लाभ) प्रदान करता है
- वोल्टेज एम्पलीफायर (उल्लिखित मैजेंटा)-उच्च वोल्टेज लाभ, एक एकल-पोल आवृत्ति रोल-ऑफ, और बदले में ड्राइव करता है
- आउटपुट एम्पलीफायर (उल्लिखित सियान और ग्रीन)-आउटपुट करंट लिमिटिंग और आउटपुट शॉर्ट-सर्किट प्रोटेक्शन के साथ उच्च वर्तमान लाभ (कम आउटपुट प्रतिबाधा) प्रदान करता है।
इसके अतिरिक्त, इसमें वर्तमान दर्पण (उल्लिखित लाल) पूर्वाग्रह सर्किटरी और मुआवजा संधारित्र (30 & nbsp; पीएफ) शामिल हैं।
अंतर एम्पलीफायर
इनपुट चरण में एक कैस्केड डिफरेंशियल एम्पलीफायर (नीले रंग में उल्लिखित) होता है, इसके बाद एक वर्तमान-मिरर सक्रिय लोड होता है।यह एक ट्रांसकॉन्डक्शन एम्पलीफायर का गठन करता है, जो Q1, Q2 के आधारों पर एक अंतर वोल्टेज सिग्नल को Q15 के आधार में एक वर्तमान संकेत में बदल देता है।
यह परस्पर विरोधी आवश्यकताओं को पूरा करते हुए, दो कैस्केड ट्रांजिस्टर जोड़े को लुभाता है। पहले चरण में मिलान किए गए एनपीएन एमिटर फॉलोअर जोड़ी Q1, Q2 शामिल हैं जो उच्च इनपुट प्रतिबाधा प्रदान करते हैं।दूसरा मिलान पीएनपी कॉमन-बेस जोड़ी Q3, Q4 है जो अवांछनीय मिलर प्रभाव को समाप्त करता है;यह एक सक्रिय लोड Q7 प्लस मिलान जोड़ी Q5, Q6 चलाता है।
उस सक्रिय लोड को एक संशोधित विल्सन वर्तमान दर्पण के रूप में लागू किया जाता है;इसकी भूमिका परिचर 50% नुकसान के बिना (अंतर) इनपुट वर्तमान सिग्नल को एकल-समाप्त सिग्नल में परिवर्तित करने के लिए है (ओपी एएमपी के ओपन-लूप लाभ को 3 & एनबीएसपी; डीबी द्वारा बढ़ाना)।[nb 6] इस प्रकार, Q3 बनाम Q4 में एक छोटा-सिग्नल अंतर वर्तमान Q15 के आधार पर, वोल्टेज लाभ चरण का इनपुट (दोगुना) दिखाई देता है।
वोल्टेज एम्पलीफायर
(क्लास-ए) वोल्टेज गेन स्टेज (मैजेंटा में उल्लिखित) में दो एनपीएन ट्रांजिस्टर Q15/Q19 शामिल हैं जो डार्लिंगटन कॉन्फ़िगरेशन में जुड़े हैं और अपने कलेक्टर (डायनेमिक) लोड के रूप में वर्तमान मिरर Q12/Q13 के आउटपुट पक्ष का उपयोग करते हैं।वोल्टेज बढ़ना।आउटपुट सिंक ट्रांजिस्टर Q20 Q15 और Q19 के सामान्य कलेक्टरों से अपना बेस ड्राइव प्राप्त करता है;स्तर-शिफ्टर Q16 आउटपुट स्रोत ट्रांजिस्टर Q14 के लिए बेस ड्राइव प्रदान करता है। ट्रांजिस्टर Q22 इस चरण को Q20 को अत्यधिक वर्तमान देने से रोकता है और इस प्रकार आउटपुट सिंक करंट को सीमित करता है।
आउटपुट एम्पलीफायर
आउटपुट चरण (Q14, Q20, CYAN में उल्लिखित) एक वर्ग AB पूरक-समरूपता एम्पलीफायर है।यह ~ 50 के प्रतिबाधा के साथ एक आउटपुट ड्राइव प्रदान करता है ,, संक्षेप में, वर्तमान लाभ। ट्रांजिस्टर Q16 (हरे रंग में उल्लिखित) आउटपुट ट्रांजिस्टर के लिए quiescent वर्तमान प्रदान करता है, और Q17 आउटपुट वर्तमान सीमित प्रदान करता है।
बायसिंग सर्किट
ओपी amp के प्रत्येक चरण के लिए उपयुक्त quiescent वर्तमान प्रदान करें।
रोकनेवाला (39 & nbsp; k k)) (डायोड-कनेक्टेड) Q11 और Q12 को जोड़ने वाला, और दिया गया आपूर्ति वोल्टेज (v (vS+& nbsp; - & nbsp; vS−), वर्तमान दर्पणों में वर्तमान का निर्धारण करें, (जोड़े जोड़े) Q10/Q11 और Q12/Q13।Q11 का कलेक्टर वर्तमान, मैं11 × 39 & nbsp; kω = vS+ - वीS− - 2 वीBE।ठेठ वी के लिएS = ± 20 & nbsp; v, Q11/Q12 में स्थायी वर्तमान (साथ ही Q13 में) ~ 1 & nbsp; ma होगा।लगभग 2 & nbsp के एक ठेठ 741 के लिए एक आपूर्ति वर्तमान; MA इस धारणा से सहमत है कि ये दो पूर्वाग्रह धाराएँ quiescent आपूर्ति वर्तमान पर हावी हैं। ट्रांजिस्टर Q11 और Q10 एक Widlar वर्तमान दर्पण बनाते हैं, Q10 I में quiescent वर्तमान के साथ10 ऐसा कि एलएन (मैं)11 / मैं10) = मैं10 × 5 & nbsp; kω / 28 & nbsp; mv, जहाँ 5 & nbsp; kω q10 के एमिटर रेसिस्टर का प्रतिनिधित्व करता है, और 28 & nbsp; mv v हैT, कमरे के तापमान पर थर्मल वोल्टेज।इस मामले में मैं10 And 20 & nbsp; μA।
अंतर एम्पलीफायर
इस चरण के पूर्वाग्रह सर्किट को एक प्रतिक्रिया लूप द्वारा सेट किया गया है जो Q10 और Q9 (लगभग) मैच के कलेक्टर धाराओं को मजबूर करता है।इन धाराओं में छोटा अंतर Q3/Q4 के सामान्य आधार के लिए ड्राइव प्रदान करता है (ध्यान दें कि इनपुट ट्रांजिस्टर Q1/Q2 के लिए बेस ड्राइव इनपुट पूर्वाग्रह वर्तमान है और इसे बाहरी रूप से खट्टा किया जाना चाहिए)।Q1/Q3 Plus Q2/Q4 की अभिव्यक्त quiescent धाराओं को Q8 से Q9 में मिरर किया गया है, जहां इसे Q10 में कलेक्टर करंट के साथ अभिव्यक्त किया गया है, परिणाम Q3/Q4 के ठिकानों पर लागू किया जा रहा है।
Q1/Q3 (resp।, Q2/Q4) की quiescent धाराएं1 इस प्रकार मैं आधा हो जाएगा10, आदेश ~ 10 & nbsp; μA।Q1 (Resp। Q2) के आधार के लिए इनपुट पूर्वाग्रह वर्तमान मैं की राशि देगा1 / β;आमतौर पर ~ 50 & nbsp; na, एक वर्तमान लाभ एच को लागू करनाfe ≈ 200 Q1 (Q2) के लिए।
यह फीडबैक सर्किट Q3/Q4 के सामान्य आधार नोड को एक वोल्टेज V तक खींचता हैcom - 2 वीBE, जहां वीcom इनपुट कॉमन-मोड वोल्टेज है।इसी समय, quiescent वर्तमान का परिमाण घटकों की विशेषताओं के लिए अपेक्षाकृत असंवेदनशील है Q1 -Q4, जैसे कि Hfe, यह अन्यथा तापमान निर्भरता या भाग-से-भाग भिन्नता का कारण होगा।
ट्रांजिस्टर Q7 Q5 और Q6 को उनके (समान) कलेक्टर धाराओं तक चालन में ड्राइव करता है, जो Q1/Q3 और Q2/Q4 से मेल नहीं खाता है।Q7 में quiescent वर्तमान v हैBE / 50 & nbsp; kω, लगभग 35 & nbsp; μA, जैसा कि Q15 में quiescent वर्तमान है, इसके मिलान ऑपरेटिंग बिंदु के साथ।इस प्रकार, quiescent धाराओं को Q1/Q2, Q3/Q4, Q5/Q6, और Q7/Q15 में मिलान किया जाता है।
वोल्टेज एम्पलीफायर
Q16 और Q19 में quiescent धाराएं वर्तमान मिरर Q12/Q13 द्वारा निर्धारित की गई हैं, जो ~ 1 & nbsp; ma पर चल रही है।कुछ के माध्यम से[vague] तंत्र, Q19 में कलेक्टर वर्तमान जो वर्तमान में खड़े होते हैं।
आउटपुट एम्पलीफायर
Q16 से जुड़े सर्किट में (विभिन्न नाम से रबर डायोड या वीBE गुणक), 4.5 & nbsp; k these रोकनेवाला को Q16 V के साथ लगभग 100 & nbsp; μA का संचालन करना चाहिएBE मोटे तौर पर 700 & nbsp; mv।फिर वीCB लगभग 0.45 & nbsp; v और v होना चाहिएCE लगभग 1.0 & nbsp; v।क्योंकि Q16 कलेक्टर एक वर्तमान स्रोत द्वारा संचालित होता है और Q16 एमिटर Q19 कलेक्टर वर्तमान सिंक में ड्राइव करता है, Q16 ट्रांजिस्टर Q14 बेस और Q20 आधार ~ 1 & nbsp; v के बीच एक वोल्टेज अंतर स्थापित करता है, भले ही Q14 के सामान्य-मोड वोल्टेज की परवाह किए बिना/Q20 आधार।Q14 / Q20 में स्टैंडिंग करंट एक कारक EXP (100 & nbsp; mv / v) होगाT) And 36 1 & nbsp से छोटा; Ma quiessent current current इन क्लास ए के एक हिस्से में।आउटपुट ट्रांजिस्टर में यह (छोटा) स्टैंडिंग करंट क्लास एबी ऑपरेशन में आउटपुट स्टेज स्थापित करता है और इस चरण के क्रॉसओवर विरूपण को कम करता है।
छोटा-सिग्नल डिफरेंशियल मोड
एक छोटा अंतर इनपुट वोल्टेज सिग्नल वर्तमान प्रवर्धन के कई चरणों के माध्यम से, आउटपुट पर एक बहुत बड़े वोल्टेज सिग्नल के लिए वृद्धि देता है।
इनपुट प्रतिबाधा
Q1 और Q3 के साथ इनपुट चरण एक एमिटर-युग्मित जोड़ी (लंबी पूंछ वाली जोड़ी) के समान है, जिसमें Q2 और Q4 कुछ पतित प्रतिबाधा जोड़ते हैं।Q1-Q4 के माध्यम से छोटे धारा के कारण इनपुट प्रतिबाधा अपेक्षाकृत अधिक है।एक विशिष्ट 741 ओपी amp में लगभग 2 M and का अंतर इनपुट प्रतिबाधा है। सामान्य मोड इनपुट प्रतिबाधा और भी अधिक है, क्योंकि इनपुट चरण अनिवार्य रूप से निरंतर वर्तमान में काम करता है।
अंतर एम्पलीफायर
एक अंतर वोल्टेज vin ओपी amp इनपुट्स (क्रमशः 3 और 2, पिन 3 और 2) Q1 और Q2 के आधारों में एक छोटे से अंतर को जन्म देता हैin ≈ Vin / (ए।iehfe)।यह अंतर आधार वर्तमान मैं द्वारा प्रत्येक पैर में अंतर कलेक्टर वर्तमान में परिवर्तन का कारण बनता हैinhfe।Q1, जी के ट्रांसकॉन्डक्शन का परिचयm = एचfe / एचie, Q15 के आधार पर (छोटे-संकेत) वर्तमान (वोल्टेज लाभ चरण का इनपुट) v हैingm / 2।
ओपी amp का यह हिस्सा चतुराई से Q15 के आधार पर एकल-समाप्त सिग्नल के लिए OP amp इनपुट में एक अंतर संकेत को बदल देता है, और एक तरह से जो किसी भी पैर में सिग्नल को बर्बाद करने से बचता है। यह देखने के लिए कि कैसे, ध्यान दें कि इनवर्टिंग इनपुट (Q2 बेस) में वोल्टेज में एक छोटा सा नकारात्मक परिवर्तन इसे चालन से बाहर ले जाता है, और वर्तमान में यह वृद्धिशील कमी सीधे Q4 कलेक्टर से इसके एमिटर तक होती है, जिसके परिणामस्वरूप Q15 के लिए बेस ड्राइव में कमी आती है । दूसरी ओर, नॉन-इनवर्टिंग इनपुट (Q1 बेस) में वोल्टेज में एक छोटा सा सकारात्मक परिवर्तन इस ट्रांजिस्टर को चालन में चलाता है, जो Q3 के कलेक्टर में वर्तमान में वृद्धि में परिलक्षित होता है। यह वर्तमान Q7 को चालन में और आगे बढ़ाता है, जो वर्तमान दर्पण Q5/Q6 पर बदल जाता है। इस प्रकार, Q3 एमिटर करंट में वृद्धि Q6 कलेक्टर करंट में वृद्धि में प्रतिबिंबित होती है; बढ़ी हुई कलेक्टर धाराएं कलेक्टर नोड से अधिक शंट करती हैं और परिणामस्वरूप Q15 के लिए बेस ड्राइव करंट में कमी आती है। यहां 3 & nbsp; डीबी को बर्बाद करने से बचने के अलावा, यह तकनीक सामान्य-मोड लाभ और बिजली की आपूर्ति के शोर को कम करती है।
वोल्टेज एम्पलीफायर
Q15 के आधार पर एक वर्तमान सिग्नल I ऑर्डर I, के Q19 में एक करंट को जन्म देता है2 (एच का उत्पादfe Q15 और Q19 में से प्रत्येक, जो डार्लिंगटन जोड़ी में जुड़े हुए हैं)।यह वर्तमान संकेत एच के लिए आनुपातिक आउटपुट ट्रांजिस्टर Q14/Q20 के आधार पर एक वोल्टेज विकसित करता हैie संबंधित ट्रांजिस्टर की।
आउटपुट एम्पलीफायर
आउटपुट ट्रांजिस्टर Q14 और Q20 प्रत्येक को एक एमिटर फॉलोअर के रूप में कॉन्फ़िगर किया गया है, इसलिए वहां कोई वोल्टेज लाभ नहीं होता है;इसके बजाय, यह चरण एच के बराबर वर्तमान लाभ प्रदान करता हैfe Q14 (सम्मान। Q20)।
आउटपुट प्रतिबाधा शून्य नहीं है, क्योंकि यह एक आदर्श ऑप amp में होगा, लेकिन नकारात्मक प्रतिक्रिया के साथ यह कम आवृत्तियों पर शून्य पर पहुंचता है।
समग्र ओपन-लूप वोल्टेज लाभ
ओपी amp के नेट ओपन-लूप छोटे-सिग्नल वोल्टेज लाभ में वर्तमान लाभ एच का उत्पाद शामिल हैfe कुछ 4 ट्रांजिस्टर में से।व्यवहार में, एक विशिष्ट 741-शैली के ऑप amp के लिए वोल्टेज लाभ 200,000 आदेश का है, और वर्तमान लाभ, आउटपुट प्रतिबाधा (~ 50 (~ 50 Ω) अभी तक अधिक (शक्ति) लाभ प्रदान करता है।
अन्य रैखिक विशेषताएं
स्मॉल-सिग्नल कॉमन मोड गेन
आदर्श ओपी amp में अनंत सामान्य-मोड अस्वीकृति अनुपात, या शून्य सामान्य-मोड लाभ है।
वर्तमान सर्किट में, यदि इनपुट वोल्टेज एक ही दिशा में बदलते हैं, तो नकारात्मक प्रतिक्रिया Q3/Q4 आधार वोल्टेज का पालन करती है (2 V के साथBE नीचे) इनपुट वोल्टेज विविधताएं।अब Q10-Q11 वर्तमान दर्पण का आउटपुट पार्ट (Q10) अलग-अलग वोल्टेज के बावजूद Q9/Q8 स्थिरांक के माध्यम से सामान्य करंट को बनाए रखता है।Q3/Q4 कलेक्टर धाराएं, और तदनुसार Q15 के आधार पर आउटपुट करंट, अपरिवर्तित रहता है।
विशिष्ट 741 ओपी amp में, सामान्य-मोड अस्वीकृति अनुपात 90 & nbsp; db है, लगभग 6 के एक ओपन-लूप कॉमन-मोड वोल्टेज लाभ को लागू करना।
आवृत्ति मुआवजा
फेयरचाइल्ड μA741 का नवाचार एक ऑन-चिप (मोनोलिथिक) संधारित्र के माध्यम से आवृत्ति मुआवजे की शुरूआत था, इस फ़ंक्शन के लिए बाहरी घटकों की आवश्यकता को समाप्त करके ओपी एएमपी के आवेदन को सरल बनाता था। 30 पीएफ संधारित्र मिलर मुआवजे के माध्यम से एम्पलीफायर को स्थिर करता है और एक ऑप-एम्प इंटीग्रेटर सर्किट के समान तरीके से कार्यों को रोकता है। 'प्रमुख ध्रुव मुआवजा' के रूप में भी जाना जाता है क्योंकि यह एक पोल का परिचय देता है जो खुले लूप आवृत्ति प्रतिक्रिया में अन्य ध्रुवों के प्रभावों को मास्क (हावी) करता है; एक 741 ओपी amp में यह पोल 10 & nbsp; Hz (जहां यह −3 & nbsp; ओपन लूप वोल्टेज लाभ की डीबी हानि का कारण बनता है) के रूप में कम हो सकता है।
यह आंतरिक मुआवजा नकारात्मक प्रतिक्रिया कॉन्फ़िगरेशन में एम्पलीफायर की बिना शर्त स्थिरता को प्राप्त करने के लिए प्रदान किया जाता है जहां प्रतिक्रिया नेटवर्क गैर-प्रतिक्रियाशील है और बंद लूप लाभ एकता या उच्चतर है। इसके विपरीत, μA748 जैसे बाहरी मुआवजे की आवश्यकता वाले एम्पलीफायरों को एकता से काफी अधिक बाहरी मुआवजे या बंद-लूप लाभ की आवश्यकता हो सकती है।
इनपुट ऑफसेट वोल्टेज
ऑफसेट नल पिन का उपयोग बाहरी प्रतिरोधकों (आमतौर पर एक पोटेंशियोमीटर के दो छोरों के रूप में, स्लाइडर के साथ v से जुड़ा हो सकता हैS–) Q5/Q6 वर्तमान दर्पण के संतुलन को समायोजित करने के लिए, Q5 और Q6 के एमिटर प्रतिरोधों के समानांतर में समानांतर में।पोटेंशियोमीटर को इस तरह समायोजित किया जाता है कि आउटपुट शून्य (midrange) होता है जब इनपुट एक साथ छोटे होते हैं।
गैर-रैखिक विशेषताएं
इनपुट ब्रेकडाउन वोल्टेज
ट्रांजिस्टर Q3, Q4 रिवर्स V को बढ़ाने में मदद करता हैBE रेटिंग: एनपीएन ट्रांजिस्टर Q1 और Q2 के बेस-एमिटर जंक्शनों के लगभग 7 पर टूट जाते हैं V, लेकिन PNP ट्रांजिस्टर Q3 और Q4 में V हैBE ब्रेकडाउन वोल्टेज लगभग 50 वी[14]
आउटपुट-स्टेज वोल्टेज स्विंग और वर्तमान सीमित
तापमान के साथ quiescent वर्तमान में भिन्नता, या एक ही प्रकार की संख्या वाले भागों के बीच, सामान्य हैं, इसलिए क्रॉसओवर विरूपण और quiescent वर्तमान महत्वपूर्ण भिन्नता के अधीन हो सकते हैं।
एम्पलीफायर की आउटपुट रेंज सप्लाई वोल्टेज से लगभग एक वोल्ट कम है, जो कि V के हिस्से में हैBE आउटपुट ट्रांजिस्टर Q14 और Q20।
Q17 के साथ Q17 के साथ Q17 emiter में 25 em रोक्स्टर, Q14 वर्तमान को लगभग 25 mA तक सीमित करने के लिए कार्य करता है;अन्यथा, Q17 कोई करंट नहीं करता है।
Q20 के लिए वर्तमान सीमित करना वोल्टेज गेन स्टेज में किया जाता है: Q22 में Q19 के एमिटर रेसिस्टर (50 (50) में वोल्टेज हो जाता है Ω);जैसा कि यह चालू होता है, यह ड्राइव करंट को Q15 बेस तक कम कर देता है।
इस एम्पलीफायर के बाद के संस्करण योजनाबद्ध आउटपुट करंट लिमिटिंग की कुछ अलग विधि दिखा सकते हैं।
प्रयोज्यता विचार
जबकि 741 का उपयोग ऐतिहासिक रूप से ऑडियो और अन्य संवेदनशील उपकरणों में किया गया था, इस तरह का उपयोग अब दुर्लभ है क्योंकि अधिक आधुनिक ऑप एम्प्स के बेहतर शोर प्रदर्शन के कारण। ध्यान देने योग्य HISS उत्पन्न करने के अलावा, 741s और अन्य पुराने Op amps में खराब सामान्य-मोड अस्वीकृति अनुपात हो सकते हैं और इसलिए अक्सर केबल-जनित मेन ह्यूम और अन्य सामान्य-मोड हस्तक्षेप, जैसे स्विच 'क्लिक', संवेदनशील उपकरणों में पेश करेंगे।
741 का अर्थ अक्सर एक जेनेरिक ऑप-एम्प आईसी (जैसे μA741, LM301, 558, LM324, TBA221-या TL071 जैसे अधिक आधुनिक प्रतिस्थापन) का अर्थ है। 741 आउटपुट चरण का विवरण कई अन्य डिजाइनों के लिए गुणात्मक रूप से समान है (जिसमें काफी अलग इनपुट चरण हो सकते हैं), सिवाय:
- कुछ उपकरणों (μA748, LM301, LM308) को आंतरिक रूप से मुआवजा नहीं दिया जाता है (कम बंद-लूप लाभ अनुप्रयोगों में उपयोग किए जाने पर परिचालन एम्पलीफायर के भीतर आउटपुट से एक बाहरी संधारित्र की आवश्यकता होती है)।
- कुछ आधुनिक उपकरणों में रेल-से-रेल आउटपुट क्षमता होती है, जिसका अर्थ है कि आउटपुट नकारात्मक आपूर्ति वोल्टेज के कुछ मिलीवोल्ट्स के भीतर सकारात्मक आपूर्ति वोल्टेज के कुछ मिलीवोल्ट्स के भीतर से हो सकता है।[8]
वर्गीकरण
ओपी एम्प्स को उनके निर्माण द्वारा वर्गीकृत किया जा सकता है:
- असतत, व्यक्तिगत ट्रांजिस्टर या ट्यूब/वाल्व से निर्मित
- एकीकृत सर्किट, सबसे आम
- हाइब्रिड
आईसी ओपी एम्प्स को कई तरीकों से वर्गीकृत किया जा सकता है, जिनमें शामिल हैं:
- सैन्य, औद्योगिक, या वाणिज्यिक ग्रेड। उदाहरण के लिए: LM301 LM101 का वाणिज्यिक ग्रेड संस्करण है, LM201 औद्योगिक संस्करण है। यह ऑपरेटिंग तापमान रेंज और अन्य पर्यावरणीय या गुणवत्ता वाले कारकों को परिभाषित कर सकता है।
- पैकेज प्रकार द्वारा वर्गीकरण भी पर्यावरणीय कठोरता, साथ ही विनिर्माण विकल्पों को भी प्रभावित कर सकता है; दोहरी इन-लाइन पैकेज | डुबकी, और अन्य थ्रू-होल पैकेज सतह-माउंट तकनीक द्वारा प्रतिस्थापित किए जाने के लिए प्रवृत्त हैं। सतह-माउंट डिवाइस।
- आंतरिक मुआवजे द्वारा वर्गीकरण: ओपी एम्प्स कुछ नकारात्मक प्रतिक्रिया सर्किट में उच्च आवृत्ति अस्थिरता से पीड़ित हो सकते हैं जब तक कि एक छोटा मुआवजा संधारित्र चरण और आवृत्ति प्रतिक्रियाओं को संशोधित नहीं करता है। एक अंतर्निहित संधारित्र के साथ ओपी एम्प्स को मुआवजा दिया जाता है, और बिना किसी बाहरी संधारित्र के साथ संचालित करने के लिए कुछ निर्दिष्ट बंद-लूप लाभ के ऊपर सर्किट की अनुमति देते हैं। विशेष रूप से, ओपी एम्प्स जो 1 के बंद लूप लाभ के साथ भी स्थिर हैं, उन्हें एकता लाभ मुआवजा कहा जाता है।
- कई वाणिज्यिक ऑप-एम्प आईसी के एकल, दोहरे और क्वाड संस्करण उपलब्ध हैं, जिसका अर्थ है 1, 2 या 4 ऑपरेशनल एम्पलीफायरों को एक ही पैकेज में शामिल किया गया है।
- रेल-टू-रेल इनपुट (और/या आउटपुट) ओपी एम्प्स इनपुट (और/या आउटपुट) सिग्नल के साथ काम कर सकते हैं जो बिजली की आपूर्ति रेल के बहुत करीब हैं।[8]* CMOS OP AMPS (जैसे CA3140E) अत्यधिक उच्च इनपुट प्रतिरोध प्रदान करता है, जो JFET-INPUT OP AMPS से अधिक है, जो सामान्य रूप से द्विध्रुवी-इनपुट ऑप Amps की तुलना में अधिक है।
- ओपी amp की अन्य किस्मों में प्रोग्रामेबल ओपी एम्प्स शामिल हैं (बस अर्थ का अर्थ है कि क्विसेंट करंट, बैंडविड्थ और इतने पर एक बाहरी अवरोधक द्वारा समायोजित किया जा सकता है)।
- निर्माता अक्सर उद्देश्य के अनुसार अपने ओपी एम्प्स को सारणीबद्ध करते हैं, जैसे कि कम-शोर पूर्व-एम्पलीफायर, विस्तृत बैंडविड्थ एम्पलीफायरों, और इसी तरह।
अनुप्रयोग
इलेक्ट्रॉनिक्स सिस्टम डिज़ाइन में उपयोग करें
सर्किट ब्लॉक के रूप में ओपी एम्प्स का उपयोग उनके सभी व्यक्तिगत सर्किट तत्वों (ट्रांजिस्टर, प्रतिरोधों, आदि) को निर्दिष्ट करने की तुलना में बहुत आसान और स्पष्ट है, चाहे उपयोग किए गए एम्पलीफायरों को एकीकृत या असतत सर्किट हैं। पहले सन्निकटन में ओपी एम्प्स का उपयोग किया जा सकता है जैसे कि वे आदर्श अंतर लाभ ब्लॉक थे; बाद के चरण की सीमाओं को प्रत्येक ऑप amp के लिए मापदंडों की स्वीकार्य सीमा पर रखा जा सकता है।
सर्किट डिज़ाइन सभी इलेक्ट्रॉनिक सर्किट के लिए समान लाइनों का अनुसरण करता है। एक विनिर्देश को नियंत्रित किया जाता है कि सर्किट को क्या करना है, स्वीकार्य सीमाओं के साथ। उदाहरण के लिए, लाभ को 100 गुना होने की आवश्यकता हो सकती है, 5% की सहिष्णुता के साथ, लेकिन निर्दिष्ट तापमान सीमा में 1% से कम का बहाव; इनपुट प्रतिबाधा एक megohm से कम नहीं है; आदि।
एक मूल सर्किट डिज़ाइन किया गया है, अक्सर सर्किट मॉडलिंग (एक कंप्यूटर पर) की मदद से। विशिष्ट व्यावसायिक रूप से उपलब्ध ओपी एम्प्स और अन्य घटकों को तब चुना जाता है जो स्वीकार्य लागत पर निर्दिष्ट सहिष्णुता के भीतर डिजाइन मानदंडों को पूरा करते हैं। यदि सभी मानदंडों को पूरा नहीं किया जा सकता है, तो विनिर्देश को संशोधित करने की आवश्यकता हो सकती है।
एक प्रोटोटाइप तब बनाया और परीक्षण किया जाता है; विनिर्देश को पूरा करने या सुधारने, कार्यक्षमता को बदलने या लागत को कम करने के लिए परिवर्तन, बनाया जा सकता है।
किसी भी प्रतिक्रिया का उपयोग किए बिना आवेदन
यही है, ओपी amp का उपयोग वोल्टेज तुलनित्र के रूप में किया जा रहा है।ध्यान दें कि मुख्य रूप से एक तुलनित्र के रूप में डिज़ाइन किया गया एक उपकरण बेहतर हो सकता है यदि, उदाहरण के लिए, गति महत्वपूर्ण है या इनपुट वोल्टेज की एक विस्तृत श्रृंखला पाई जा सकती है, क्योंकि ऐसे उपकरण जल्दी से पूर्ण या पूर्ण (संतृप्त) राज्यों से उबर सकते हैं।
एक संदर्भ वोल्टेज v यदि वोल्टेज स्तर डिटेक्टर प्राप्त किया जा सकता हैref ओपी amp के इनपुट में से एक पर लागू होता है।इसका मतलब यह है कि ओपी एएमपी को एक सकारात्मक वोल्टेज का पता लगाने के लिए एक तुलनित्र के रूप में स्थापित किया गया है।यदि वोल्टेज को संवेदी किया जाए, तो ईi, ओपी amp के (+) इनपुट पर लागू होता है, परिणाम एक गैर-सकारात्मक-स्तरीय डिटेक्टर है: जब ईi v से ऊपर हैref, वीO बराबर +वीsat;जब ईi v से नीचे हैref, वीO बराबर −vsat।अगर ईi इनवर्टिंग इनपुट पर लागू होता है, सर्किट एक इनवर्टिंग पॉजिटिव-लेवल डिटेक्टर है: जब ईi v से ऊपर हैref, वीO बराबर −vsat।
एक शून्य वोल्टेज स्तर डिटेक्टर (ई)i = 0) परिवर्तित कर सकते हैं, उदाहरण के लिए, एक फ़ंक्शन जनरेटर से एक साइन-वेव का आउटपुट एक चर-आवृत्ति वर्ग तरंग में।अगर ईi एक साइन वेव, त्रिकोणीय तरंग, या किसी भी अन्य आकार की लहर है जो शून्य के आसपास सममित है, शून्य-क्रॉसिंग डिटेक्टर का आउटपुट वर्ग होगा।शून्य-क्रॉसिंग डिटेक्शन मुख्य समय पर ट्राइक को ट्रिगर करने में भी उपयोगी हो सकता है ताकि मुख्य हस्तक्षेप और वर्तमान स्पाइक्स को कम किया जा सके।
पॉजिटिव-फीडबैक एप्लिकेशन
ओपी-एएमपी का एक और विशिष्ट कॉन्फ़िगरेशन सकारात्मक प्रतिक्रिया के साथ है, जो आउटपुट सिग्नल का एक अंश वापस गैर-इनवर्टिंग इनपुट पर ले जाता है।इसका एक महत्वपूर्ण अनुप्रयोग हिस्टैरिसीस, श्मिट ट्रिगर के साथ तुलनित्र है।कुछ सर्किट एक ही एम्पलीफायर के आसपास सकारात्मक प्रतिक्रिया और नकारात्मक प्रतिक्रिया का उपयोग कर सकते हैं, उदाहरण के लिए त्रिभुज-लहर ऑसिलेटर और सक्रिय फिल्टर।
विस्तृत स्लीव रेंज और सकारात्मक प्रतिक्रिया की कमी के कारण, ऊपर वर्णित सभी ओपन-लूप स्तर के डिटेक्टरों की प्रतिक्रिया अपेक्षाकृत धीमी होगी।बाहरी समग्र सकारात्मक प्रतिक्रिया लागू की जा सकती है, लेकिन (आंतरिक सकारात्मक प्रतिक्रिया के विपरीत जो एक उद्देश्य-डिज़ाइन किए गए तुलनित्र के बाद के चरणों के भीतर लागू किया जा सकता है) यह स्पष्ट रूप से शून्य-क्रॉसिंग डिटेक्शन पॉइंट की सटीकता को प्रभावित करता है।उदाहरण के लिए, ई की आवृत्ति, एक सामान्य-उद्देश्य ओपी amp का उपयोग करनाi साइन टू स्क्वायर वेव कनवर्टर के लिए संभवतः 100 & nbsp; Hz से नीचे होना चाहिए।[citation needed]
नकारात्मक-फीडबैक एप्लिकेशन
नॉन-इनवर्टिंग एम्पलीफायर
एक गैर-इनवर्टिंग एम्पलीफायर में, आउटपुट वोल्टेज इनपुट वोल्टेज के समान दिशा में बदलता है।
ओपी amp के लिए लाभ समीकरण है
हालांकि, इस सर्किट वी में− V का एक कार्य हैout आर के माध्यम से नकारात्मक प्रतिक्रिया के कारण1 R2 नेटवर्क।आर1 और आर2 एक वोल्टेज डिवाइडर बनाएं, और वी के रूप में− एक उच्च-प्रतिबाधा इनपुट है, यह इसे सराहनीय रूप से लोड नहीं करता है।फलस्वरूप
कहाँ पे
इसे लाभ समीकरण में प्रतिस्थापित करते हुए, हम प्राप्त करते हैं
के लिए हल करना :
यदि बहुत बड़ा है, यह सरल है
ऑपरेशनल एम्पलीफायर के गैर-इनवर्टिंग इनपुट को डीसी टू ग्राउंड के लिए एक पथ की आवश्यकता होती है;यदि सिग्नल स्रोत डीसी पथ की आपूर्ति नहीं करता है, या यदि उस स्रोत को दिए गए लोड प्रतिबाधा की आवश्यकता होती है, तो सर्किट को गैर-इनवर्टिंग इनपुट से ग्राउंड तक एक और रोकनेवाला की आवश्यकता होगी।जब परिचालन एम्पलीफायर के इनपुट पूर्वाग्रह धाराएं महत्वपूर्ण होती हैं, तो इनपुट को चलाने वाले डीसी स्रोत प्रतिरोधों को संतुलित किया जाना चाहिए।[15] फीडबैक रेसिस्टर्स (न्यूनतम ऑफसेट वोल्टेज देने के लिए) के लिए आदर्श मूल्य ऐसा होगा कि समानांतर में दो प्रतिरोध लगभग गैर-इनपेरिंग इनपुट पिन पर जमीन के प्रतिरोध के बराबर हों।यह आदर्श मूल्य मानता है कि पूर्वाग्रह धाराएं अच्छी तरह से मेल खाती हैं, जो सभी ओपी एम्प्स के लिए सही नहीं हो सकती हैं।[16]
inverting एम्पलीफायर
एक इनवर्टिंग एम्पलीफायर में, आउटपुट वोल्टेज इनपुट वोल्टेज के विपरीत दिशा में बदलता है।
नॉन-इनवर्टिंग एम्पलीफायर के साथ, हम ओपी amp के लाभ समीकरण के साथ शुरू करते हैं:
इस बार, वी− दोनों का एक कार्य हैout और वीin आर द्वारा गठित वोल्टेज डिवाइडर के कारणf और आरin।फिर, Op-amp इनपुट एक प्रशंसनीय लोड लागू नहीं करता है, इसलिए
इसे लाभ समीकरण में प्रतिस्थापित करना और इसके लिए हल करना :
यदि बहुत बड़ा है, यह सरल है
एक अवरोधक को अक्सर गैर-इनवर्टिंग इनपुट और ग्राउंड के बीच डाला जाता है (इसलिए दोनों इनपुट समान प्रतिरोध देखते हैं), पूर्वाग्रह वर्तमान के कारण अलग-अलग वोल्टेज ड्रॉप के कारण इनपुट ऑफसेट वोल्टेज को कम करते हैं, और कुछ ऑप एम्प्स में विकृति को कम कर सकते हैं।
डीसी-ब्लॉकिंग कैपेसिटर को इनपुट रोकनेवाला के साथ श्रृंखला में डाला जा सकता है जब डीसी के लिए एक आवृत्ति प्रतिक्रिया की आवश्यकता नहीं होती है और इनपुट पर किसी भी डीसी वोल्टेज को अवांछित होता है।अर्थात्, इनपुट प्रतिबाधा का कैपेसिटिव घटक एक डीसी शून्य और एक कम-आवृत्ति पोल सम्मिलित करता है जो सर्किट को एक बैंडपास या उच्च-पास विशेषता देता है।
परिचालन एम्पलीफायर इनपुट में क्षमता इनवर्टिंग कॉन्फ़िगरेशन में वस्तुतः स्थिर (जमीन के पास) रहती है।निरंतर ऑपरेटिंग क्षमता आमतौर पर विकृति के स्तर में होती है जो गैर-अस्वाभाविक टोपोलॉजी के साथ प्राप्य की तुलना में कम होती है।
अन्य अनुप्रयोग
- ऑडियो- और वीडियो-फ्रीक्वेंसी प्री-एम्पलीफायर और बफ़र्स
- विभेदक एम्पलीफायरों
- विभेदक और इंटीग्रेटर्स
- फिल्टर
- प्रिसिजन रेक्टिफायर
- प्रिसिजन पीक डिटेक्टर
- वोल्टेज और वर्तमान नियामक
- एनालॉग कैलकुलेटर
- एनालॉग-टू-डिजिटल कन्वर्टर्स
- डिजिटल-टू-एनालॉग कन्वर्टर्स
- वोल्टेज क्लैंपिंग
- ऑसिलेटर और वेवफॉर्म जनरेटर
- क्लिपर
- क्लैम्पर (डीसी इन्सर या रिस्टोरर)
- लॉग और एंटीलॉग एम्पलीफायरों
उपलब्ध अधिकांश एकल, दोहरे और क्वाड ऑप एम्प्स में एक मानकीकृत पिन-आउट होता है जो एक प्रकार को वायरिंग परिवर्तनों के बिना दूसरे के लिए प्रतिस्थापित करने की अनुमति देता है।एक विशिष्ट ओपी amp को इसके खुले लूप लाभ, बैंडविड्थ, शोर प्रदर्शन, इनपुट प्रतिबाधा, बिजली की खपत, या इन कारकों में से किसी के बीच समझौता करने के लिए चुना जा सकता है।
ऐतिहासिक समयरेखा
1941: एक वैक्यूम ट्यूब ऑप amp।एक ओपी amp, जिसे एक सामान्य-उद्देश्य, डीसी-युग्मित, उच्च लाभ, इनवर्टिंग फीडबैक एम्पलीफायर के रूप में परिभाषित किया गया है, पहली बार पाया जाता है U.S. Patent 2,401,779 1941 में बेल लैब्स के कार्ल डी। स्वार्टज़ेल जूनियर द्वारा दायर किए गए एम्पलीफायर को समनिंग एम्पलीफायर। इस डिजाइन ने तीन वैक्यूम ट्यूबों का उपयोग किया। 90 dB और वोल्टेज रेल पर संचालित होता है ±350 V।यह अंतर इनवर्टिंग और गैर-इनवर्टिंग इनपुट के बजाय एक एकल इनवर्टिंग इनपुट था, जैसा कि आज के ओपी एम्प्स में आम हैं।द्वितीय विश्व युद्ध के दौरान, स्वार्टज़ेल के डिजाइन ने बेल लैब्स में डिज़ाइन किए गए एम 9 आर्टिलरी डायरेक्टर में उदारतापूर्वक उपयोग किए जाकर अपना मूल्य साबित कर दिया।इस आर्टिलरी डायरेक्टर ने असाधारण हिट दरों (90%के पास) प्राप्त करने के लिए SCR584 रडार सिस्टम के साथ काम किया जो अन्यथा संभव नहीं होता।[17]
1947: एक स्पष्ट गैर-इनपेरिंग इनपुट के साथ एक ओपी amp।1947 में, परिचालन एम्पलीफायर को पहले औपचारिक रूप से परिभाषित किया गया था और एक पेपर में नामित किया गया था[18] कोलंबिया विश्वविद्यालय के जॉन आर। रागज़िनी द्वारा।इसी पेपर में एक फुटनोट ने एक छात्र द्वारा एक ऑप-एम्प डिज़ाइन का उल्लेख किया जो काफी महत्वपूर्ण होगा।लोएबे जूली द्वारा डिज़ाइन किया गया यह ओपी amp, विभिन्न तरीकों से बेहतर था।इसके दो प्रमुख नवाचार थे।इसके इनपुट स्टेज ने आउटपुट में बहाव को कम करने के लिए लोड के साथ एक लंबी-पूंछ वाली ट्रायोड जोड़ी का उपयोग किया और, अधिक महत्वपूर्ण बात यह है कि यह दो इनपुट (एक इनवर्टिंग, अन्य गैर-इनवर्टिंग) के लिए पहला ऑप-एम्प डिज़ाइन था।अंतर इनपुट ने नई कार्यक्षमता की एक पूरी श्रृंखला को संभव बना दिया, लेकिन चॉपर-स्थिर एम्पलीफायर के उदय के कारण लंबे समय तक इसका उपयोग नहीं किया जाएगा।[17]
1949: एक चॉपर-स्थिर ओपी amp।1949 में, एडविन ए। गोल्डबर्ग ने एक चॉपर-स्थिर ओपी amp डिजाइन किया।[19] यह सेट-अप एक अतिरिक्त एसी एम्पलीफायर के साथ एक सामान्य ओपी amp का उपयोग करता है जो ओपी amp के साथ जाता है। चॉपर डीसी वोल्टेज और जमीन के बीच एक तेज़ दर (60 & nbsp; Hz या 400 & nbsp; Hz) के बीच स्विच करके डीसी से एक एसी सिग्नल प्राप्त करता है। इस सिग्नल को तब ओपी एएमपी के गैर-इनवर्टिंग इनपुट में प्रवर्धित, सुधार, फ़िल्टर किया गया और खिलाया जाता है। इसने आउटपुट ड्रिफ्ट और डीसी ऑफसेट को काफी कम करते हुए ओपी एएमपी के लाभ में काफी सुधार किया। दुर्भाग्य से, कोई भी डिज़ाइन जो हेलिकॉप्टर का उपयोग करता है, वह किसी अन्य उद्देश्य के लिए अपने गैर-इनवर्टिंग इनपुट का उपयोग नहीं कर सकता है। फिर भी, चॉपर-स्थिर ओपी amp की बहुत बेहतर विशेषताओं ने इसे ओपी एम्प्स का उपयोग करने का प्रमुख तरीका बना दिया। नियमित रूप से गैर-इनवर्टिंग इनपुट का उपयोग करने वाली तकनीकें 1960 के दशक तक बहुत लोकप्रिय नहीं होंगी जब ओपी-एम्प आईसीएस ने मैदान में दिखाना शुरू किया।
1953: एक व्यावसायिक रूप से उपलब्ध ओपी amp। 1953 में, वैक्यूम ट्यूब ओपी एम्प्स जॉर्ज ए। फिलब्रिक रिसर्च से मॉडल K2-W की रिहाई के साथ व्यावसायिक रूप से उपलब्ध हो गए। दिखाए गए उपकरणों पर पदनाम, गैप/आर, पूरी कंपनी के नाम के लिए एक संक्षिप्त नाम है। दो नौ-पिन 12AX7 वैक्यूम ट्यूब एक ऑक्टल पैकेज में लगाए गए थे और एक मॉडल K2-P चॉपर ऐड-ऑन उपलब्ध था जो प्रभावी रूप से गैर-इनवर्टिंग इनपुट का उपयोग करेगा। यह ओपी amp लोबे जूली के 1947 के डिजाइन के वंशज पर आधारित था और इसके उत्तराधिकारियों के साथ, उद्योग में ऑप एम्प्स के व्यापक उपयोग को शुरू करेगा।
1961: एक असतत आईसी ओपी amp।1947 में ट्रांजिस्टर के जन्म के साथ, और 1954 में सिलिकॉन ट्रांजिस्टर, आईसीएस की अवधारणा एक वास्तविकता बन गई।1959 में प्लानर प्रक्रिया की शुरूआत ने ट्रांजिस्टर और आईसीएस को व्यावसायिक रूप से उपयोगी होने के लिए पर्याप्त स्थिर बना दिया।1961 तक, ठोस-राज्य, असतत ऑप एम्प्स का उत्पादन किया जा रहा था।ये ओपी एम्प्स प्रभावी रूप से छोटे सर्किट बोर्ड थे जैसे कि एज कनेक्टर्स जैसे पैकेज।वे आमतौर पर वोल्टेज ऑफसेट और बहाव जैसी चीजों को बेहतर बनाने के लिए हाथ से चुने गए प्रतिरोधों के होते थे।P45 (1961) में 94 & nbsp; db का लाभ था और and 15 & nbsp; v रेल पर भाग गया।इसका उद्देश्य की सीमा में संकेतों से निपटने का इरादा था ±10 V।
1961: एक वर्क्टर ब्रिज ओपी amp।ओप-एम्प डिजाइन में कई अलग-अलग दिशाएँ ली गई हैं।1960 के दशक की शुरुआत में Varactor Bridge Op amps का उत्पादन शुरू हुआ।[20][21] वे बहुत छोटे इनपुट करंट के लिए डिज़ाइन किए गए थे और अभी भी उनके इनपुट पर सैकड़ों वोल्ट के साथ सही ढंग से निपटने की क्षमता के साथ सामान्य-मोड अस्वीकृति के संदर्भ में उपलब्ध सर्वश्रेष्ठ ओपी एम्प्स में से हैं।
1962: एक पॉटेड मॉड्यूल में एक ऑप amp।1962 तक, कई कंपनियां मॉड्यूलर पॉटेड पैकेज का उत्पादन कर रही थीं, जिन्हें मुद्रित सर्किट बोर्डों में प्लग किया जा सकता था।[citation needed] ये पैकेज महत्वपूर्ण रूप से महत्वपूर्ण थे क्योंकि उन्होंने परिचालन एम्पलीफायर को एक एकल ब्लैक बॉक्स में बनाया था जिसे आसानी से एक बड़े सर्किट में एक घटक के रूप में माना जा सकता था।
1963: एक मोनोलिथिक आईसी ऑप amp।1963 में, फेयरचाइल्ड सेमीकंडक्टर में बॉब विडलर द्वारा डिज़ाइन किए गए μA702 का पहला मोनोलिथिक आईसी ओपी एएमपी जारी किया गया था।मोनोलिथिक आईसीएस एक चिप और असतत भागों (एक असतत आईसी) या कई चिप्स बंधे और एक सर्किट बोर्ड (एक हाइब्रिड आईसी) पर जुड़े हुए कई चिप के विपरीत एकल चिप से मिलकर बनता है।लगभग सभी आधुनिक ऑप एम्प्स मोनोलिथिक आईसी हैं;हालांकि, यह पहला आईसी ज्यादा सफलता के साथ नहीं मिला।एक असमान आपूर्ति वोल्टेज, कम लाभ और एक छोटी गतिशील रेंज जैसे मुद्दे 1965 तक मोनोलिथिक ऑप एम्प्स के प्रभुत्व से दूर हो गए जब μA709[22] (बॉब विडलर द्वारा भी डिज़ाइन किया गया) जारी किया गया था।
1968: μA741 की रिलीज़। 1967 में LM101 की रिहाई पर मोनोलिथिक ऑप एम्प्स की लोकप्रियता में और सुधार किया गया था, जिसने विभिन्न प्रकार के मुद्दों को हल किया था, और 1968 में μA741 की बाद की रिलीज हुई थी। μA741 LM101 के समान था, सिवाय इसके कि फेयरचाइल्ड की सुविधाओं ने उन्हें अनुमति दी थी। बाहरी मुआवजे की आवश्यकता के बजाय चिप के अंदर एक 30 & nbsp; PF मुआवजा संधारित्र शामिल करें। इस सरल अंतर ने 741 कैनोनिकल ऑप amp और कई आधुनिक एम्प्स ने 741 पर उनके पिनआउट को आधार बनाया है। ΜA741 अभी भी उत्पादन में है, और इलेक्ट्रॉनिक्स में सर्वव्यापी हो गया है - कई निर्माता इस क्लासिक चिप का एक संस्करण बनाते हैं, जो 741 वाले भाग संख्याओं द्वारा पहचानने योग्य है। एक ही हिस्सा कई कंपनियों द्वारा निर्मित है।
1970: पहली हाई-स्पीड, लो-इनपुट वर्तमान एफईटी डिजाइन। 1970 के दशक की हाई स्पीड में, फील्ड-इफेक्ट ट्रांजिस्टर | FETS का उपयोग करके कम-इनपुट वर्तमान डिज़ाइन बनाए जाने लगे। इन्हें काफी हद तक 1980 के दशक में MOSFETS के साथ किए गए Op amps द्वारा प्रतिस्थापित किया जाएगा।
1972: सिंगल साइडेड सप्लाई ओपी एम्प्स का उत्पादन किया जा रहा है।एक एकल पक्षीय आपूर्ति ओपी amp वह है जहां इनपुट और आउटपुट वोल्टेज नकारात्मक बिजली की आपूर्ति वोल्टेज के रूप में कम हो सकते हैं, बजाय इसके कि इसके ऊपर कम से कम दो वोल्ट होने की आवश्यकता होती है।इसका परिणाम यह है कि यह ओपी amp पर नकारात्मक आपूर्ति पिन के साथ कई अनुप्रयोगों में संचालित हो सकता है जो सिग्नल ग्राउंड से जुड़ा हो रहा है, इस प्रकार एक अलग नकारात्मक बिजली की आपूर्ति की आवश्यकता को समाप्त करता है।
LM324 (1972 में जारी) एक ऐसा ओपी amp था जो क्वाड पैकेज (एक पैकेज में चार अलग -अलग ऑप एम्प्स) में आया था और एक उद्योग मानक बन गया।एक ही पैकेज में कई ओपी एम्प्स को पैकेज करने के अलावा, 1970 के दशक में हाइब्रिड पैकेजों में ओपी एम्प्स का जन्म भी देखा गया।इन ओपी एम्प्स को आम तौर पर मौजूदा मोनोलिथिक ऑप एम्प्स के संस्करणों में सुधार किया गया था।जैसा कि मोनोलिथिक ओपी एम्प्स के गुणों में सुधार हुआ है, अधिक जटिल हाइब्रिड आईसीएस को जल्दी से उन प्रणालियों के लिए फिर से स्थापित किया गया था जिनके लिए बहुत लंबी सेवा जीवन या अन्य विशेष प्रणालियों की आवश्यकता होती है।
हाल के रुझान।हाल ही में एनालॉग सर्किट में आपूर्ति वोल्टेज में कमी आई है (जैसा कि उनके पास डिजिटल लॉजिक में है) और कम-वोल्टेज ओपी एम्प्स को यह दर्शाते हुए पेश किया गया है।5 & nbsp; v और तेजी से 3.3 & nbsp; v (कभी -कभी 1.8 & nbsp; v) के रूप में आपूर्ति आम हैं।सिग्नल रेंज को अधिकतम करने के लिए आधुनिक ओपी एम्प्स में आमतौर पर रेल-से-रेल आउटपुट होता है (आउटपुट सिग्नल सबसे कम आपूर्ति वोल्टेज से उच्चतम तक हो सकता है) और कभी-कभी रेल-से-रेल इनपुट।[8]
यह भी देखें
- सक्रिय फ़िल्टर
- एनालॉग कंप्यूटर
- बॉब विडलर
- वर्तमान कन्वेयर
- वर्तमान-फीडबैक ऑपरेशनल एम्पलीफायर
- विभेदक प्रवर्धक
- जॉर्ज ए। फिलब्रिक
- इंस्ट्रूमेंटेशन एम्पलीफायर
- नकारात्मक प्रतिक्रिया एम्पलीफायर
- ओप-एम्प स्वैपिंग
- परिचालन एम्पलीफायर अनुप्रयोग
- परिचालन ट्रांसकॉन्डक्टेंस एम्पलीफायर
- Sallen -key टोपोलॉजी
टिप्पणियाँ
- ↑ 1.0 1.1 The power supply pins (VS+ and VS−) can be labeled in different ways (See IC power supply pins). Often these pins are left out of the diagram for clarity, and the power configuration is described or assumed from the circuit.
- ↑ Typically ~10 nanoamperes, nA, for bipolar op amps, tens of picoamperes, pA, for JFET input stages, and only a few pA for MOSFET input stages.
- ↑ This definition hews to the convention of measuring op-amp parameters with respect to the zero voltage point in the circuit, which is usually half the total voltage between the amplifier's positive and negative power rails.
- ↑ Many older designs of operational amplifiers have offset null inputs to allow the offset to be manually adjusted away. Modern precision op amps can have internal circuits that automatically cancel this offset using choppers or other circuits that measure the offset voltage periodically and subtract it from the input voltage.
- ↑ That the output cannot reach the power supply voltages is usually the result of limitations of the amplifier's output stage transistors. See Output stage.
- ↑ Widlar used this same trick in μA702 and μA709
संदर्भ
- ↑ "Understanding Single-Ended, Pseudo-Differential and Fully-Differential ADC Inputs". Maxim Application Note 1108. Archived from the original on 2007-06-26. Retrieved November 10, 2007.
- ↑ "Apex OP PA98". Archived from the original on 1 January 2016. Retrieved 8 November 2015.
APEX PA98 Op Amp Modules, Selling Price: $207.51
- ↑ Millman, Jacob (1979). Microelectronics: Digital and Analog Circuits and Systems. McGraw-Hill. pp. 523–527. ISBN 0-07-042327-X.
- ↑ "Understanding Basic Analog – Ideal Op Amps" (PDF). Archived (PDF) from the original on 2016-12-27.
- ↑ "Lecture 5: The ideal operational amplifier" (PDF). Archived (PDF) from the original on 2016-11-23.
- ↑ 6.0 6.1 Horowitz, Paul; Hill, Winfield (1989). The Art of Electronics. Cambridge, UK: Cambridge University Press. ISBN 0-521-37095-7.
- ↑ Stout, D. F. (1976). Handbook of Operational Amplifier Circuit Design. McGraw-Hill. pp. 1–11. ISBN 0-07-061797-X.
- ↑ 8.0 8.1 8.2 8.3 8.4 "Application of Rail-to-Rail Operational Amplifiers" (PDF). Texas Instruments. Retrieved 2021-06-08.
- ↑ "Op Amp Output Phase-Reversal and Input Over-Voltage Protection" (PDF). Analog Devices. 2009. Retrieved 2012-12-27.
- ↑ King, Grayson; Watkins, Tim (13 May 1999). "Bootstrapping your op amp yields wide voltage swings" (PDF). Electronic Design News. Retrieved 2012-12-27.[permanent dead link]
- ↑ Lee, Thomas H. (November 18, 2002). "IC Op-Amps Through the Ages" (PDF). Stanford University. Archived (PDF) from the original on October 24, 2012Handout #18: EE214 Fall 2002.
{{cite web}}
: CS1 maint: postscript (link) - ↑ Lu, Liang-Hung. "Electronics 2, Chapter 10" (PDF). National Taiwan University, Graduate Institute of Electronics Engineering. Archived from the original (PDF) on 2014-06-30. Retrieved 2014-02-22.
- ↑ "Understanding silicon circuits: inside the ubiquitous 741 op amp". www.righto.com. Archived from the original on 9 October 2017. Retrieved 28 April 2018.
- ↑ The μA741 Operational Amplifier[permanent dead link]
- ↑ An input bias current of 1 μA through a DC source resistance of 10 kΩ produces a 10 mV offset voltage. If the other input bias current is the same and sees the same source resistance, then the two input offset voltages will cancel out. Balancing the DC source resistances may not be necessary if the input bias current and source resistance product is small.
- ↑ Analog Devices (2009). "Op Amp Input Bias Current" (PDF). Analog Devices. Tutorial MT-038.
- ↑ 17.0 17.1 Jung, Walter G. (2004). "Chapter 8: Op Amp History". Op Amp Applications Handbook. Newnes. p. 777. ISBN 978-0-7506-7844-5. Retrieved 2008-11-15.
- ↑ Ragazzini, John R.; Randall, Robert H.; Russell, Frederick A. (May 1947). "Analysis of Problems in Dynamics by Electronic Circuits". Proceedings of the IRE. IEEE. 35 (5): 444–452. doi:10.1109/JRPROC.1947.232616. ISSN 0096-8390.
- ↑ "Archived copy" (PDF). Archived from the original (PDF) on 2012-10-07. Retrieved 2012-12-27.
{{cite web}}
: CS1 maint: archived copy as title (link) - ↑ "The Philbrick Archive". www.philbrickarchive.org. Archived from the original on 7 September 2012. Retrieved 28 April 2018.
- ↑ June 1961 advertisement for Philbrick P2, "The all-new, all solid-state Philbrick P2 amplifier" (PDF). Archived (PDF) from the original on 2011-10-08. Retrieved 2011-05-11.
- ↑ Malvino, A. P. (1979). Electronic Principles (2nd ed.). p. 476. ISBN 0-07-039867-4.
अग्रिम पठन
- Books
- Op Amps For Everyone; 5th Ed; Bruce Carter, Ron Mancini; Newnes; 484 pages; 2017; ISBN 978-0128116487. (2 MB PDF - 1st edition)
- Operational Amplifiers - Theory and Design; 3rd Ed; Johan Huijsing; Springer; 423 pages; 2017; ISBN 978-3319281261.
- Operational Amplifiers and Linear Integrated Circuits - Theory and Application; 3rd Ed; James Fiore; Creative Commons; 589 pages; 2016.(13 MB PDF Text)(2 MB PDF Lab)
- Analysis and Design of Linear Circuits; 8th Ed; Roland Thomas, Albert Rosa, Gregory Toussaint; Wiley; 912 pages; 2016; ISBN 978-1119235385.
- Design with Operational Amplifiers and Analog Integrated Circuits; 4th Ed; Sergio Franco; McGraw Hill; 672 pages; 2015; ISBN 978-0078028168.
- Small Signal Audio Design; 2nd Ed; Douglas Self; Focal Press; 780 pages; 2014; ISBN 978-0415709736.
- Linear Circuit Design Handbook; 1st Ed; Hank Zumbahlen; Newnes; 960 pages; 2008; ISBN 978-0750687034. (35 MB PDF)
- Op Amp Applications Handbook; 1st Ed; Walt Jung; Analog Devices & Newnes; 896 pages; 2005; ISBN 978-0750678445. (17 MB PDF)
- Operational Amplifiers and Linear Integrated Circuits; 6th Ed; Robert Coughlin, Frederick Driscoll; Prentice Hall; 529 pages; 2001; ISBN 978-0130149916.
- Active-Filter Cookbook; 2nd Ed; Don Lancaster; Sams; 240 pages; 1996; ISBN 978-0750629867. (28 MB PDF - 1st edition)
- IC Op-Amp Cookbook; 3rd Ed; Walt Jung; Prentice Hall; 433 pages; 1986; ISBN 978-0138896010. (18 MB PDF - 1st edition)
- Engineer's Mini-Notebook – OpAmp IC Circuits; 1st Ed; Forrest Mims III; Radio Shack; 49 pages; 1985; ASIN B000DZG196. (4 MB PDF)
- Intuitive IC Op Amps - from Basics to Useful Applications; 1st Ed; Thomas Frederiksen; National Semiconductor; 299 pages; 1984; ISBN 978-9997796677.
- Designing with Operational Amplifiers - Applications Alternatives; 1st Ed; Jerald Graeme; Burr-Brown & McGraw Hill; 269 pages; 1976; ISBN 978-0070238916.
- Applications of Operational Amplifiers - Third Generation Techniques; 1st Ed; Jerald Graeme; Burr-Brown & McGraw Hill; 233 pages; 1973; ISBN 978-0070238909. (37 MB PDF)
- Understanding IC Operational Amplifiers; 1st Ed; Roger Melen and Harry Garland; Sams Publishing; 128 pages; 1971; ISBN 978-0672208553. (archive)
- Operational Amplifiers - Design and Applications; 1st Ed; Jerald Graeme, Gene Tobey, Lawrence Huelsman; Burr-Brown & McGraw Hill; 473 pages; 1971; ISBN 978-0070649170.
- Books with opamp chapters
- Learning the Art of Electronics - A Hands-On Lab Course; 1st Ed; Thomas Hayes, Paul Horowitz; Cambridge; 1150 pages; 2016; ISBN 978-0521177238. (Part 3 is 268 pages)
- The Art of Electronics; 3rd Ed; Paul Horowitz, Winfield Hill; Cambridge; 1220 pages; 2015; ISBN 978-0521809269. (Chapter 4 is 69 pages)
- Lessons in Electric Circuits - Volume III - Semiconductors; 5th Ed; Tony Kuphaldt; Open Book Project; 528 page; 2009. (Chapter 8 is 59 pages) (4 MB PDF)
- Troubleshooting Analog Circuits; 1st Ed; Bob Pease; Newnes; 217 pages; 1991; ISBN 978-0750694995. (Chapter 8 is 19 pages)
- Analog Applications Manual; 1st Ed; Signetics; 418 pages; 1979. (Chapter 3 is 32 pages) (32 MB PDF)
बाहरी संबंध
![](https://upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/langen-gb-30px-Commons-logo.svg.png)
![](https://upload.wikimedia.org/wikipedia/commons/thumb/0/0b/Wikiversity_logo_2017.svg/langen-gb-40px-Wikiversity_logo_2017.svg.png)
![](https://upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/langen-gb-40px-Wikibooks-logo-en-noslogan.svg.png)
- Op Amp Circuit Collection- National Semiconductor Corporation
- Operational Amplifiers - Chapter on All About Circuits
- Loop Gain and its Effects on Analog Circuit Performance - Introduction to loop gain, gain and phase margin, loop stability
- Simple Op Amp Measurements How to measure offset voltage, offset and bias current, gain, CMRR, and PSRR.
- Operational Amplifiers. Introductory on-line text by E. J. Mastascusa (Bucknell University).
- Introduction to op-amp circuit stages, second order filters, single op-amp bandpass filters, and a simple intercom
- MOS op amp design: A tutorial overview
- Operational Amplifier Noise Prediction (All Op Amps) using spot noise
- Operational Amplifier Basics
- History of the Op-amp, from vacuum tubes to about 2002
- Loebe Julie historical OpAmp interview by Bob Pease
- www.PhilbrickArchive.org – A free repository of materials from George A Philbrick / Researches - Operational Amplifier Pioneer
- What's The Difference Between Operational Amplifiers And Instrumentation Amplifiers?, Electronic Design Magazine
- Datasheets / Databooks
- LM301, Single BJT OpAmp, Texas Instruments[permanent dead link]
- LM324, Quad BJT OpAmp, Texas Instruments
- LM741, Single BJT OpAmp, Texas Instruments
- NE5532, Dual BJT OpAmp, Texas Instruments (NE5534 is similar single)
- TL072, Dual JFET OpAmp, Texas Instruments (TL074 is Quad)
] ] ]