प्रसारण ट्रांसमीटर: Difference between revisions

From Vigyanwiki
(Created page with "{{More footnotes|date=December 2021}} एक प्रसारण ट्रांसमीटर एक इलेक्ट्रॉनिक उपकरण है जो...")
 
No edit summary
Line 1: Line 1:
{{More footnotes|date=December 2021}}
एक प्रसारण [[ट्रांसमीटर]] एक इलेक्ट्रॉनिक उपकरण है जो समान्य जनता द्वारा प्राप्त की जाने वाली सूचना सामग्री के साथ संशोधित [[रेडियो तरंग]] को विकीर्ण करता है। उदाहरण एक ट्रांसमीटर है जो ध्वनि (ध्वनि) को रेडियो रिसीवर या प्रसारण रेडियो रिसीवर (रेडियो) को जनता के स्वामित्व में प्रसारित करता है, या एक [[टेलीविजन ट्रांसमीटर]], जो चलती छवियों ([[वीडियो]]) को [[टेलीविजन रिसीवर]] (टेलीविजन) तक पहुंचाता है। शब्द में प्रायः [[एंटीना (रेडियो)]] सम्मिलित होता है जो रेडियो तरंगों को प्रसारित करता है, और ट्रांसमीटर से जुड़ी इमारत और सुविधाएं एक [[ प्रसारण स्टेशन ]] ([[रेडियो स्टेशन]] या [[दूरदर्शन केन्द्र]]) में एक ब्रॉडकास्ट ट्रांसमीटर के साथ-साथ [[प्रोडक्शन स्टूडियो]] होता है जो ब्रॉडकास्ट की प्रारंभ करता है। प्रसारण ट्रांसमीटरों को सरकारों द्वारा लाइसेंस प्राप्त होना चाहिए, और विशिष्ट आवृत्तियों और शक्ति स्तरों तक सीमित होना चाहिए। प्रत्येक ट्रांसमीटर को एक विशिष्ट पहचानकर्ता सौंपा जाता है जिसमें अक्षरों और संख्याओं की एक स्ट्रिंग होती है जिसे [[ कॉल चिह्न ]] कहा जाता है जिसका उपयोग सभी प्रसारणों में किया जाना चाहिए।
एक प्रसारण [[ट्रांसमीटर]] एक इलेक्ट्रॉनिक उपकरण है जो आम जनता द्वारा प्राप्त की जाने वाली सूचना सामग्री के साथ संशोधित [[रेडियो तरंग]]ों को विकीर्ण करता है। उदाहरण एक ट्रांसमीटर है जो ध्वनि (ध्वनि) को रेडियो रिसीवर #प्रसारण रेडियो रिसीवर (रेडियो) को जनता के स्वामित्व में प्रसारित करता है, या एक [[टेलीविजन ट्रांसमीटर]], जो चलती छवियों ([[वीडियो]]) को [[टेलीविजन रिसीवर]] (टेलीविजन) तक पहुंचाता है। शब्द में अक्सर [[एंटीना (रेडियो)]] शामिल होता है जो रेडियो तरंगों को प्रसारित करता है, और ट्रांसमीटर से जुड़ी इमारत और सुविधाएं। एक [[ प्रसारण स्टेशन ]] ([[रेडियो स्टेशन]] या [[दूरदर्शन केन्द्र]]) में एक ब्रॉडकास्ट ट्रांसमीटर के साथ-साथ [[प्रोडक्शन स्टूडियो]] होता है जो ब्रॉडकास्ट की शुरुआत करता है। प्रसारण ट्रांसमीटरों को सरकारों द्वारा लाइसेंस प्राप्त होना चाहिए, और विशिष्ट आवृत्तियों और शक्ति स्तरों तक सीमित होना चाहिए। प्रत्येक ट्रांसमीटर को एक विशिष्ट पहचानकर्ता सौंपा जाता है जिसमें अक्षरों और संख्याओं की एक स्ट्रिंग होती है जिसे [[ कॉल चिह्न ]] कहा जाता है, जिसका उपयोग सभी प्रसारणों में किया जाना चाहिए।
[[File:CrystalPalaceMast(large).jpg|right|upright|thumb|[[क्रिस्टल पैलेस ट्रांसमिटिंग स्टेशन]] ट्रांसमीटर, लंदन का एंटीना टॉवर]]
[[File:CrystalPalaceMast(large).jpg|right|upright|thumb|[[क्रिस्टल पैलेस ट्रांसमिटिंग स्टेशन]] ट्रांसमीटर, लंदन का एंटीना टॉवर]]


== एक्साइटर ==
== एक्साइटर ==
प्रसारण और दूरसंचार में, वह भाग जिसमें ऑसिलेटर, न्यूनाधिक और कभी-कभी [[ऑडियो सिग्नल प्रोसेसिंग]] होता है, को एक्साइटर कहा जाता है। अधिकांश ट्रांसमीटर [[Heterodyne]] सिद्धांत का उपयोग करते हैं, इसलिए उनके पास [[फ्रीक्वेंसी मिक्सर]] इकाइयां भी होती हैं। भ्रामक रूप से, हाई-पॉवर एम्पलीफायर जो कि एक्साइटर तब फीड करता है, उसे अक्सर [[ प्रसारण इंजीनियरिंग ]] द्वारा ट्रांसमीटर कहा जाता है। अंतिम आउटपुट [[ ट्रांसमीटर बिजली उत्पादन ]] (टीपीओ) के रूप में दिया जाता है, हालांकि यह वह नहीं है जिसके द्वारा अधिकांश स्टेशनों का मूल्यांकन किया जाता है।
प्रसारण और दूरसंचार में, वह भाग जिसमें ऑसिलेटर, न्यूनाधिक और कभी-कभी [[ऑडियो सिग्नल प्रोसेसिंग|ऑडियो संकेत प्रोसेसिंग]] होता है, को एक्साइटर कहा जाता है। अधिकांश ट्रांसमीटर [[Heterodyne|हेटेरोडाइन]] सिद्धांत का उपयोग करते हैं, इसलिए उनके पास [[फ्रीक्वेंसी मिक्सर|आवृत्ति मिक्सर]] इकाइयां भी होती हैं। भ्रमित रूप से, उच्च शक्ति एम्पलीफायर जो कि एक्साइटर तब फीड करता है, उसे प्रायः [[ प्रसारण इंजीनियरिंग ]] द्वारा ट्रांसमीटर कहा जाता है। अंतिम आउटपुट [[ ट्रांसमीटर बिजली उत्पादन | ट्रांसमीटर विद्युत् उत्पादन]] (टीपीओ) के रूप में दिया जाता है, चूंकि यह वह नहीं है जिसके द्वारा अधिकांश स्टेशनों का मूल्यांकन किया जाता है।


प्रभावी विकिरणित शक्ति (ईआरपी) का उपयोग स्टेशन कवरेज की गणना करते समय किया जाता है, यहां तक ​​कि अधिकांश गैर-प्रसारण स्टेशनों के लिए भी। यह टीपीओ है, ऐन्टेना की लाइन में किसी भी एटेन्यूएटर (इलेक्ट्रॉनिक्स) या [[ विद्युत चुम्बकीय विकिरण ]] लॉस को घटाकर, [[एंटीना लाभ]] (आवर्धन) से गुणा किया जाता है जो ऐन्टेना क्षितिज की ओर प्रदान करता है। यह ऐन्टेना लाभ महत्वपूर्ण है, क्योंकि इसके बिना एक वांछित सिग्नल शक्ति प्राप्त करने से ट्रांसमीटर के लिए एक विशाल विद्युत उपयोगिता चालान # उपयोगिता बिल और एक निषेधात्मक रूप से महंगा ट्रांसमीटर होगा। VHF- और UHF-श्रेणी के अधिकांश बड़े स्टेशनों के लिए, ट्रांसमीटर शक्ति ERP के 20% से अधिक नहीं है।
प्रभावी विकिरणित शक्ति (ईआरपी) का उपयोग स्टेशन कवरेज की गणना करते समय किया जाता है, यहां तक ​​कि अधिकांश गैर-प्रसारण स्टेशनों के लिए भी। यह टीपीओ है, ऐन्टेना की लाइन में किसी भी एटेन्यूएटर (इलेक्ट्रॉनिक्स) या [[ विद्युत चुम्बकीय विकिरण ]] लॉस को घटाकर, [[एंटीना लाभ]] (आवर्धन) से गुणा किया जाता है जो ऐन्टेना क्षितिज की ओर प्रदान करता है। यह ऐन्टेना लाभ महत्वपूर्ण है, क्योंकि इसके बिना एक वांछित संकेत शक्ति प्राप्त करने से ट्रांसमीटर के लिए एक विशाल विद्युत उपयोगिता चालान या उपयोगिता बिल और एक निषेधात्मक रूप से महंगा ट्रांसमीटर होगा। वीएचएफ- और यूएचएफ-श्रेणी के अधिकांश बड़े स्टेशनों के लिए, ट्रांसमीटर शक्ति ईआरपी के 20% से अधिक नहीं है।


वीएलएफ, एलएफ, एमएफ और एचएफ के लिए ईआरपी आमतौर पर अलग से निर्धारित नहीं किया जाता है। ज्यादातर मामलों में ट्रांसमीटरों की सूची में पाई जाने वाली संचरण शक्ति ट्रांसमीटर के आउटपुट के लिए मूल्य है। यह सर्वदिशात्मक एरियल के लिए केवल एक चौथाई तरंगदैर्ध्य या उससे कम लंबाई के साथ सही है। अन्य हवाई प्रकारों के लिए लाभ कारक हैं, जो अधिकतम बीम तीव्रता की दिशा में शॉर्टवेव दिशात्मक बीम के लिए 50 तक मूल्यों तक पहुंच सकते हैं।
वीएलएफ, एलएफ, एमएफ और एचएफ के लिए ईआरपी सामान्यतः  अलग से निर्धारित नहीं किया जाता है। ज्यादातर स्थतियो में ट्रांसमीटरों की सूची में पाई जाने वाली संचरण शक्ति ट्रांसमीटर के आउटपुट के लिए मान है। यह सर्वदिशात्मक एरियल के लिए केवल एक चौथाई तरंगदैर्ध्य या उससे कम लंबाई के साथ सही है। अन्य हवाई प्रकारों के लिए लाभ कारक हैं, जो अधिकतम बीम तीव्रता की दिशा में लघुतरंग दिशात्मक बीम के लिए 50 तक मानो तक पहुंच सकते हैं।


चूंकि कुछ लेखक 30 मेगाहर्ट्ज से कम आवृत्तियों के लिए ट्रांसमीटरों के एरियल के लाभ कारकों को ध्यान में रखते हैं और अन्य नहीं, इसलिए अक्सर प्रेषित शक्तियों के मूल्यों में विसंगतियां होती हैं।
चूंकि कुछ लेखक 30 मेगाहर्ट्ज से कम आवृत्तियों के लिए ट्रांसमीटरों के एरियल के लाभ कारकों को ध्यान में रखते हैं और अन्य नहीं, इसलिए प्रायः प्रेषित शक्तियों के मानो में विसंगतियां होती हैं।


== बिजली की आपूर्ति ==
== विद्युत् की आपूर्ति ==


आपूर्ति की सुरक्षा में सुधार के लिए ट्रांसमीटरों को कभी-कभी बिजली आपूर्ति ग्रिड के उच्च वोल्टेज स्तर से खिलाया जाता है। उदाहरण के लिए, Longwave ट्रांसमीटर Allouis, [[Warsaw Radio Mast]] और [[Transmitter Roumoules]] ट्रांसमीटर उच्च-वोल्टेज नेटवर्क (Alouis और Konstantynow में 110 kV, Roumoules में 150 kV) से खिलाए जाते हैं, भले ही बिजली के मध्यम-वोल्टेज स्तर से बिजली की आपूर्ति हो ग्रिड (लगभग 20 केवी) पर्याप्त बिजली देने में सक्षम होगा।
आपूर्ति की सुरक्षा में सुधार के लिए ट्रांसमीटरों को कभी-कभी विद्युत् आपूर्ति ग्रिड के उच्च वोल्टेज स्तर से फेड है। उदाहरण के लिए, दीर्घ तरंग ट्रांसमीटर एलोइस, [[Warsaw Radio Mast|वारसॉ रेडियो मस्त]] और [[Transmitter Roumoules|ट्रांसमीटर रूमौल्स]] ट्रांसमीटर उच्च-वोल्टेज नेटवर्क (एलोइस और कॉन्स्टेंटिनोवमें 110 kV, रूमौल्स में 150 kV) से फेड हैं, तथापि  विद्युत् के मध्यम-वोल्टेज स्तर से विद्युत् की आपूर्ति हो ग्रिड (लगभग 20 केवी) पर्याप्त विद्युत् देने में सक्षम होगा।<ref>[http://perso.orange.fr/monte-carlo-radiodiffusion/anglais/olan.htm Long Waves, MCR, Roumoules station radio<!-- Bot generated title -->]</ref><ref>[http://perso.orange.fr/tvignaud/am/allouis/allouis4.htm Allouis – France Inter<!-- Bot generated title -->]</ref>
<ref>[http://perso.orange.fr/monte-carlo-radiodiffusion/anglais/olan.htm Long Waves, MCR, Roumoules station radio<!-- Bot generated title -->]</ref><ref>[http://perso.orange.fr/tvignaud/am/allouis/allouis4.htm Allouis – France Inter<!-- Bot generated title -->]</ref>




== आवृत्ति नियंत्रण ==
== आवृत्ति नियंत्रण ==


{{further|Radio transmitter design}}
{{further|रेडियो ट्रांसमीटर डिजाइन}}


==अंतिम चरणों का ठंडा होना==
==अंतिम चरणों का ठंडा होना==


कम-शक्ति ट्रांसमीटरों को विशेष शीतलन उपकरण की आवश्यकता नहीं होती है। आधुनिक ट्रांसमीटर अविश्वसनीय रूप से कुशल हो सकते हैं, जिनकी दक्षता 98 प्रतिशत से अधिक है। हालांकि, एंटीना में 98% स्थानांतरित करने वाले मेगावाट पावर चरण के साथ एक प्रसारण ट्रांसमीटर को 20 किलोवाट इलेक्ट्रिक हीटर के रूप में भी देखा जा सकता है।
कम-शक्ति ट्रांसमीटरों को विशेष शीतलन उपकरण की आवश्यकता नहीं होती है। आधुनिक ट्रांसमीटर अविश्वसनीय रूप से कुशल हो सकते हैं, जिनकी दक्षता 98 प्रतिशत से अधिक है। चूंकि, एंटीना में 98% स्थानांतरित करने वाले मेगावाट पावर चरण के साथ एक प्रसारण ट्रांसमीटर को 20 किलोवाट इलेक्ट्रिक हीटर के रूप में भी देखा जा सकता है।


50 kW AM और 20 kW FM सहित कई दसियों किलोवाट तक के मध्यम-शक्ति ट्रांसमीटरों के लिए, आमतौर पर मजबूर वायु शीतलन का उपयोग किया जाता है। इन से ऊपर बिजली के स्तर पर कुछ ट्रांसमीटरों में एक ऑटोमोबाइल कूलिंग सिस्टम के अनुरूप मजबूर तरल शीतलन प्रणाली द्वारा ठंडा किया गया आउटपुट चरण होता है। चूंकि शीतलक सीधे [[ वेक्यूम - ट्यूब ]]ों के उच्च-वोल्टेज [[एनोड]]्स को छूता है, शीतलन सर्किट में केवल आसुत, विआयनीकृत पानी या एक विशेष ढांकता हुआ शीतलक का उपयोग किया जा सकता है। यह उच्च शुद्धता शीतलक बदले में एक ताप विनिमायक द्वारा ठंडा किया जाता है, जहां दूसरा शीतलन सर्किट सामान्य गुणवत्ता के पानी का उपयोग कर सकता है क्योंकि यह सक्रिय भागों के संपर्क में नहीं है। छोटे भौतिक आकार के बहुत उच्च शक्ति वाले ट्यूब एनोड के संपर्क में पानी से बाष्पीकरणीय शीतलन का उपयोग कर सकते हैं। भाप का उत्पादन एक छोटी सी जगह में उच्च ताप प्रवाह की अनुमति देता है।
50 kW AM और 20 kW FM सहित कई दसियों किलोवाट तक के मध्यम-शक्ति ट्रांसमीटरों के लिए, सामान्यतः  विवश वायु शीतलन का उपयोग किया जाता है। इन से ऊपर विद्युत् के स्तर पर कुछ ट्रांसमीटरों में एक ऑटोमोबाइल कूलिंग प्रणाली के अनुरूप विवश तरल शीतलन प्रणाली द्वारा ठंडा किया गया आउटपुट चरण होता है। चूंकि शीतलक सीधे [[ वेक्यूम - ट्यूब ]]के उच्च-वोल्टेज [[एनोड]] को छूता है, शीतलन परिपथ  में केवल आसुत, विआयनीकृत पानी या एक विशेष डाइलेक्ट्रिक हुआ शीतलक का उपयोग किया जा सकता है। यह उच्च शुद्धता शीतलक बदले में एक ताप विनिमायक द्वारा ठंडा किया जाता है, जहां दूसरा शीतलन परिपथ  सामान्य गुणवत्ता के पानी का उपयोग कर सकता है क्योंकि यह सक्रिय भागों के संपर्क में नहीं है। छोटे भौतिक आकार के बहुत उच्च शक्ति वाले ट्यूब एनोड के संपर्क में पानी से बाष्पीकरणीय शीतलन का उपयोग कर सकते हैं। भाप का उत्पादन एक छोटी सी जगह में उच्च ताप प्रवाह की अनुमति देता है।


== सुरक्षा उपकरण ==
== सुरक्षा उपकरण ==


उच्च शक्ति ट्रांसमीटरों (40 kV तक) में उपयोग किए जाने वाले उच्च वोल्टेज के लिए व्यापक सुरक्षा उपकरण की आवश्यकता होती है। साथ ही, ट्रांसमीटर बिजली गिरने से क्षतिग्रस्त हो जाते हैं। एंटीना के बिना संचालित होने पर ट्रांसमीटर क्षतिग्रस्त हो सकते हैं, इसलिए सुरक्षा सर्किट को एंटीना के नुकसान का पता लगाना चाहिए और ट्रांसमीटर को तुरंत बंद कर देना चाहिए। ट्यूब-आधारित ट्रांसमीटरों में एनोड वोल्टेज से पहले लगाए गए फिलामेंट वोल्टेज के साथ उचित क्रम में शक्ति लागू होनी चाहिए, अन्यथा ट्यूब क्षतिग्रस्त हो सकते हैं। स्टैंडिंग वेव अनुपात के लिए आउटपुट चरण की निगरानी की जानी चाहिए, जो इंगित करता है कि उत्पन्न शक्ति विकीर्ण नहीं हो रही है, बल्कि ट्रांसमीटर में वापस परिलक्षित हो रही है।
उच्च शक्ति ट्रांसमीटरों (40 kV तक) में उपयोग किए जाने वाले उच्च वोल्टेज के लिए व्यापक सुरक्षा उपकरण की आवश्यकता होती है। साथ ही, ट्रांसमीटर विद्युत् गिरने से क्षतिग्रस्त हो जाते हैं। एंटीना के बिना संचालित होने पर ट्रांसमीटर क्षतिग्रस्त हो सकते हैं, इसलिए सुरक्षा परिपथ  को एंटीना के हानि का पता लगाना चाहिए और ट्रांसमीटर को तुरंत बंद कर देना चाहिए। ट्यूब-आधारित ट्रांसमीटरों में एनोड वोल्टेज से पहले लगाए गए फिलामेंट वोल्टेज के साथ उचित क्रम में शक्ति प्रयुक्त होनी चाहिए, अन्यथा ट्यूब क्षतिग्रस्त हो सकते हैं। स्टैंडिंग वेव अनुपात के लिए आउटपुट चरण की निगरानी की जानी चाहिए, जो इंगित करता है कि उत्पन्न शक्ति विकीर्ण नहीं हो रही है, किंतु ट्रांसमीटर में वापस परिलक्षित हो रही है।


ट्रांसमीटर और एंटीना के बीच बिजली संरक्षण की आवश्यकता होती है। इसमें ट्रांसमीटर टर्मिनलों पर दिखाई देने वाले वोल्टेज को सीमित करने के लिए [[ चिंगारी का अंतर ]] और गैस से भरे सर्ज अरेस्टर होते हैं। नियंत्रण उपकरण जो वोल्टेज स्टैंडिंग-वेव अनुपात को मापता है, अगर बिजली गिरने के बाद उच्च वोल्टेज स्टैंडिंग-वेव अनुपात का पता चलता है, तो ट्रांसमीटर को संक्षिप्त रूप से बंद कर देता है, क्योंकि प्रतिबिंब शायद बिजली की क्षति के कारण होते हैं। यदि यह कई प्रयासों के बाद सफल नहीं होता है, तो एंटीना क्षतिग्रस्त हो सकता है और ट्रांसमीटर को बंद रहना चाहिए। कुछ संचारण संयंत्रों में महत्वपूर्ण स्थानों पर [[पराबैंगनी]] संसूचक लगाये जाते हैं, ताकि विद्युत चाप का पता चलने पर ट्रांसमीटर को बंद कर दिया जा सके। ऑपरेटिंग वोल्टेज, मॉड्यूलेशन कारक, आवृत्ति और अन्य ट्रांसमीटर पैरामीटर सुरक्षा और नैदानिक ​​​​उद्देश्यों के लिए मॉनिटर किए जाते हैं, और स्थानीय और / या रिमोट कंट्रोल रूम में प्रदर्शित किए जा सकते हैं।
ट्रांसमीटर और एंटीना के बीच विद्युत् संरक्षण की आवश्यकता होती है। इसमें ट्रांसमीटर टर्मिनलों पर दिखाई देने वाले वोल्टेज को सीमित करने के लिए [[ चिंगारी का अंतर | स्पार्क गैप]] और गैस से भरे सर्ज अरेस्टर होते हैं। नियंत्रण उपकरण जो वोल्टेज स्टैंडिंग-वेव अनुपात को मापता है, अगर विद्युत् गिरने के बाद उच्च वोल्टेज स्टैंडिंग-वेव अनुपात का पता चलता है, तो ट्रांसमीटर को संक्षिप्त रूप से बंद कर देता है, क्योंकि प्रतिबिंब संभवतः  विद्युत् की क्षति के कारण होते हैं। यदि यह कई प्रयासों के बाद सफल नहीं होता है, तो एंटीना क्षतिग्रस्त हो सकता है और ट्रांसमीटर को बंद रहना चाहिए। कुछ संचारण संयंत्रों में महत्वपूर्ण स्थानों पर [[पराबैंगनी]] संसूचक लगाये जाते हैं, ताकि विद्युत चाप का पता चलने पर ट्रांसमीटर को बंद कर दिया जा सकता है। ऑपरेटिंग वोल्टेज, मॉड्यूलेशन कारक, आवृत्ति और अन्य ट्रांसमीटर पैरामीटर सुरक्षा और नैदानिक ​​​​उद्देश्यों के लिए मॉनिटर किए जाते हैं, और स्थानीय और / या रिमोट कंट्रोल रूम में प्रदर्शित किए जा सकते हैं।


== बिल्डिंग ==
== बिल्डिंग ==


एक वाणिज्यिक ट्रांसमीटर साइट में आमतौर पर ट्रांसमीटर घटकों और नियंत्रण उपकरणों को आश्रय देने के लिए एक नियंत्रण भवन होता है। यह आमतौर पर विशुद्ध रूप से कार्यात्मक इमारत है, जिसमें रेडियो और टेलीविजन ट्रांसमीटर दोनों के लिए उपकरण हो सकते हैं। ट्रांसमिशन लाइन लॉस को कम करने के लिए ट्रांसमीटर बिल्डिंग आमतौर पर [[VHF]] और [[ अति उच्च आवृत्ति ]] साइट्स के लिए एंटीना के तुरंत बगल में होती है, लेकिन कम फ्रीक्वेंसी के लिए बिल्डिंग और एंटीना के बीच कुछ स्कोर या कई सौ मीटर की दूरी होना वांछनीय हो सकता है। कुछ ट्रांसमिटिंग टावरों में रेडियो रिले लिंक ट्रांसमीटर या अन्य, अपेक्षाकृत कम-शक्ति ट्रांसमीटरों को रखने के लिए टॉवर में निर्मित बाड़े होते हैं। कुछ ट्रांसमीटर भवनों में सीमित प्रसारण सुविधाएं शामिल हो सकती हैं ताकि स्टेशन को मुख्य सुविधा के अक्षम होने की स्थिति में बैकअप स्टूडियो के रूप में भवन का उपयोग करने की अनुमति मिल सके।
एक वाणिज्यिक ट्रांसमीटर साइट में सामान्यतः  ट्रांसमीटर घटकों और नियंत्रण उपकरणों को आश्रय देने के लिए एक नियंत्रण भवन होता है। यह सामान्यतः  विशुद्ध रूप से कार्यात्मक इमारत है, जिसमें रेडियो और टेलीविजन ट्रांसमीटर दोनों के लिए उपकरण हो सकते हैं। ट्रांसमिशन लाइन लॉस को कम करने के लिए ट्रांसमीटर बिल्डिंग सामान्यतः  [[VHF]] और [[ अति उच्च आवृत्ति ]] साइट्स के लिए एंटीना के तुरंत बगल में होती है, लेकिन कम आवृत्ति के लिए बिल्डिंग और एंटीना के बीच कुछ स्कोर या कई सौ मीटर की दूरी होना वांछनीय हो सकता है। कुछ ट्रांसमिटिंग टावरों में रेडियो रिले लिंक ट्रांसमीटर या अन्य, अपेक्षाकृत कम-शक्ति ट्रांसमीटरों को रखने के लिए टॉवर में निर्मित बाड़े होते हैं। कुछ ट्रांसमीटर भवनों में सीमित प्रसारण सुविधाएं सम्मिलित हो सकती हैं ताकि स्टेशन को मुख्य सुविधा के अक्षम होने की स्थिति में बैकअप स्टूडियो के रूप में भवन का उपयोग कर'''ने की अनुमति मिल सके'''।


==कानूनी और नियामक पहलू==
==कानूनी और नियामक पहलू==


चूंकि रेडियो तरंगें सीमाओं के पार जाती हैं, अंतर्राष्ट्रीय समझौते रेडियो प्रसारण को नियंत्रित करते हैं। [[जर्मनी]] जैसे यूरोपीय देशों में, अक्सर राष्ट्रीय डाकघर नियामक प्राधिकरण होता है। [[संयुक्त राज्य अमेरिका]] में, प्रसारण और औद्योगिक ट्रांसमीटरों को [[संघीय संचार आयोग]] (FCC) द्वारा नियंत्रित किया जाता है। [[कनाडा]] में, प्रसारण और रेडियो ट्रांसमीटर के तकनीकी पहलुओं को [[उद्योग कनाडा]] द्वारा नियंत्रित किया जाता है, लेकिन प्रसारण सामग्री को [[कनाडाई रेडियो-टेलीविजन और दूरसंचार आयोग]] (CRTC) द्वारा अलग से नियंत्रित किया जाता है। ऑस्ट्रेलिया में ट्रांसमीटर, स्पेक्ट्रम और सामग्री को [[ऑस्ट्रेलियाई संचार और मीडिया प्राधिकरण]] (एसीएमए) द्वारा नियंत्रित किया जाता है। [[अंतर्राष्ट्रीय दूरसंचार संघ]] (ITU) अंतरराष्ट्रीय स्तर पर रेडियो-आवृत्ति स्पेक्ट्रम के प्रबंधन में मदद करता है।
चूंकि रेडियो तरंगें सीमाओं के पार जाती हैं, अंतर्राष्ट्रीय समझौते रेडियो प्रसारण को नियंत्रित करते हैं। [[जर्मनी]] जैसे यूरोपीय देशों में, प्रायः राष्ट्रीय डाकघर नियामक प्राधिकरण होता है। [[संयुक्त राज्य अमेरिका]] में, प्रसारण और औद्योगिक ट्रांसमीटरों को [[संघीय संचार आयोग]] (FCC) द्वारा नियंत्रित किया जाता है। [[कनाडा]] में, प्रसारण और रेडियो ट्रांसमीटर के तकनीकी पहलुओं को [[उद्योग कनाडा]] द्वारा नियंत्रित किया जाता है, लेकिन प्रसारण सामग्री को [[कनाडाई रेडियो-टेलीविजन और दूरसंचार आयोग]] (CRTC) द्वारा अलग से नियंत्रित किया जाता है। ऑस्ट्रेलिया में ट्रांसमीटर, स्पेक्ट्रम और सामग्री को [[ऑस्ट्रेलियाई संचार और मीडिया प्राधिकरण]] (एसीएमए) द्वारा नियंत्रित किया जाता है। [[अंतर्राष्ट्रीय दूरसंचार संघ]] (ITU) अंतरराष्ट्रीय स्तर पर रेडियो-आवृत्ति स्पेक्ट्रम के प्रबंधन में मदद करता है।


== योजना ==
== योजना ==
{{refimprove|section|date=January 2021}}
{{refimprove|section|date=January 2021}}
{{out of date|section|date=January 2021}}
{{out of date|section|date=January 2021}}
जैसा कि किसी भी महंगी परियोजना में होता है, एक उच्च शक्ति ट्रांसमीटर साइट की योजना के लिए बहुत सावधानी की आवश्यकता होती है। यह स्थान के साथ शुरू होता है। न्यूनतम दूरी, जो ट्रांसमीटर आवृत्ति, ट्रांसमीटर शक्ति और संचारण एंटेना के डिजाइन पर निर्भर करती है, लोगों को रेडियो आवृत्ति ऊर्जा से बचाने के लिए आवश्यक है। एंटीना टावर अक्सर बहुत ऊंचे होते हैं और इसलिए उड़ान पथ का मूल्यांकन किया जाना चाहिए। उच्च शक्ति ट्रांसमीटरों के लिए पर्याप्त विद्युत शक्ति उपलब्ध होनी चाहिए। लंबी और मध्यम तरंग के लिए ट्रांसमीटरों को अच्छी ग्राउंडिंग और उच्च विद्युत चालकता की मिट्टी की आवश्यकता होती है। समुद्र या नदी घाटियों में स्थान आदर्श हैं, लेकिन बाढ़ के खतरे पर विचार किया जाना चाहिए। सीमा में सुधार करने के लिए अल्ट्रा हाई फ्रीक्वेंसी के ट्रांसमीटर ऊंचे पहाड़ों पर सबसे अच्छे होते हैं ([[रेडियो प्रचार]] देखें)। एंटीना पैटर्न पर विचार किया जाना चाहिए क्योंकि लॉन्ग-वेव या मीडियम-वेव एंटीना के पैटर्न को बदलना महंगा होता है।
जैसा कि किसी भी महंगी परियोजना में होता है, एक उच्च शक्ति ट्रांसमीटर साइट की योजना के लिए बहुत सावधानी की आवश्यकता होती है। यह स्थान के साथ शुरू होता है। न्यूनतम दूरी, जो ट्रांसमीटर आवृत्ति, ट्रांसमीटर शक्ति और संचारण एंटेना के डिजाइन पर निर्भर करती है, लोगों को रेडियो आवृत्ति ऊर्जा से बचाने के लिए आवश्यक है। एंटीना टावर प्रायः बहुत ऊंचे होते हैं और इसलिए उड़ान पथ का मूल्यांकन किया जाना चाहिए। उच्च शक्ति ट्रांसमीटरों के लिए पर्याप्त विद्युत शक्ति उपलब्ध होनी चाहिए। लंबी और मध्यम तरंग के लिए ट्रांसमीटरों को अच्छी ग्राउंडिंग और उच्च विद्युत चालकता की मिट्टी की आवश्यकता होती है। समुद्र या नदी घाटियों में स्थान आदर्श हैं, लेकिन बाढ़ के खतरे पर विचार किया जाना चाहिए। सीमा में सुधार करने के लिए अल्ट्रा हाई आवृत्ति के ट्रांसमीटर ऊंचे पहाड़ों पर सबसे अच्छे होते हैं ([[रेडियो प्रचार]] देखें)। एंटीना पैटर्न पर विचार किया जाना चाहिए क्योंकि लॉन्ग-वेव या मीडियम-वेव एंटीना के पैटर्न को बदलना महंगा होता है।


[[File:Radiotower.png|100px|left|thumb|एंटीना लड़के टॉवर]]लंबी और मध्यम तरंग के लिए ट्रांसमिटिंग एंटेना आमतौर पर [[मास्ट रेडिएटर]] के रूप में लागू होते हैं। छोटे आयामों वाले समान एंटेना का उपयोग लघु तरंग ट्रांसमीटरों के लिए भी किया जाता है, यदि ये गोल स्प्रे उद्यम में भेजते हैं। फ्री-स्टैंडिंग स्टील टावरों पर विकिरण की व्यवस्था करने के लिए बन्धन प्लानर सरणियों का उपयोग किया जाता है। UHF और टीवी ट्रांसमीटरों के लिए रेडियो टावरों को सिद्धांत रूप में ग्राउंडेड कंस्ट्रक्शन के रूप में लागू किया जा सकता है। टावर्स स्टील जालीदार मस्तूल या प्रबलित कंक्रीट टावर हो सकते हैं जिनके शीर्ष पर एंटेना लगे होते हैं। यूएचएफ के लिए कुछ ट्रांसमिटिंग टावरों में उच्च ऊंचाई वाले ऑपरेटिंग कमरे और/या रेस्तरां और अवलोकन प्लेटफॉर्म जैसी सुविधाएं हैं, जो लिफ्ट द्वारा सुलभ हैं। ऐसे टावरों को आमतौर पर टीवी टावर कहा जाता है। माइक्रोवेव के लिए अक्सर परवलयिक एंटेना का उपयोग किया जाता है। इन्हें एफएम के लिए विशेष प्लेटफॉर्म पर टावरों को प्रसारित करने पर रेडियो रिले लिंक के अनुप्रयोगों के लिए स्थापित किया जा सकता है। उदाहरण के लिए, 3 से 100 मीटर व्यास वाले बड़े परवलयिक एंटेना टेलीविजन उपग्रहों और अंतरिक्ष वाहनों को संकेत देने के लिए आवश्यक हैं। ये पौधे, जिनका उपयोग यदि आवश्यक हो तो रेडियो टेलीस्कोप के रूप में भी किया जा सकता है, फ्रीस्टैंडिंग कंस्ट्रक्शन पर स्थापित किए जाते हैं, जिससे अरेसीबो में रेडियो टेलीस्कोप की तरह कई विशेष डिज़ाइन भी हैं।
[[File:Radiotower.png|100px|left|thumb|एंटीना लड़के टॉवर]]लंबी और मध्यम तरंग के लिए ट्रांसमिटिंग एंटेना सामान्यतः  [[मास्ट रेडिएटर]] के रूप में प्रयुक्त होते हैं। छोटे आयामों वाले समान एंटेना का उपयोग लघु तरंग ट्रांसमीटरों के लिए भी किया जाता है, यदि ये गोल स्प्रे उद्यम में भेजते हैं। फ्री-स्टैंडिंग स्टील टावरों पर विकिरण की व्यवस्था करने के लिए बन्धन प्लानर सरणियों का उपयोग किया जाता है। UHF और टीवी ट्रांसमीटरों के लिए रेडियो टावरों को सिद्धांत रूप में ग्राउंडेड कंस्ट्रक्शन के रूप में प्रयुक्त किया जा सकता है। टावर्स स्टील जालीदार मस्तूल या प्रबलित कंक्रीट टावर हो सकते हैं जिनके शीर्ष पर एंटेना लगे होते हैं। यूएचएफ के लिए कुछ ट्रांसमिटिंग टावरों में उच्च ऊंचाई वाले ऑपरेटिंग कमरे और/या रेस्तरां और अवलोकन प्लेटफॉर्म जैसी सुविधाएं हैं, जो लिफ्ट द्वारा सुलभ हैं। ऐसे टावरों को सामान्यतः  टीवी टावर कहा जाता है। माइक्रोवेव के लिए प्रायः परवलयिक एंटेना का उपयोग किया जाता है। इन्हें एफएम के लिए विशेष प्लेटफॉर्म पर टावरों को प्रसारित करने पर रेडियो रिले लिंक के अनुप्रयोगों के लिए स्थापित किया जा सकता है। उदाहरण के लिए, 3 से 100 मीटर व्यास वाले बड़े परवलयिक एंटेना टेलीविजन उपग्रहों और अंतरिक्ष वाहनों को संकेत देने के लिए आवश्यक हैं। ये पौधे, जिनका उपयोग यदि आवश्यक हो तो रेडियो टेलीस्कोप के रूप में भी किया जा सकता है, फ्रीस्टैंडिंग कंस्ट्रक्शन पर स्थापित किए जाते हैं, जिससे अरेसीबो में रेडियो टेलीस्कोप की तरह कई विशेष डिज़ाइन भी हैं।


ट्रांसमीटर के निर्माण और स्थान की योजना बनाने जितना ही महत्वपूर्ण है कि इसका आउटपुट मौजूदा प्रसारणों के साथ कैसे फिट बैठता है। दो ट्रांसमीटर एक ही क्षेत्र में एक ही आवृत्ति पर प्रसारित नहीं हो सकते क्योंकि इससे सह-चैनल हस्तक्षेप होगा। चैनल योजनाकारों ने विभिन्न ट्रांसमीटरों के आउटपुट को कैसे जोड़ा है, इसके अच्छे उदाहरण के लिए देखें [http://www.aerialsandtv.com/crystalpalacetx.html#crystalpalaceschannels Crystal Palace UHF TV चैनल आवंटन]। यह संदर्भ एक समूहीकृत ट्रांसमीटर का एक अच्छा उदाहरण भी प्रदान करता है, इस मामले में ए समूह। यही है, इसके सभी आउटपुट यूके यूएचएफ टेलीविजन प्रसारण बैंड के नीचे तीसरे स्थान पर हैं। अन्य दो समूह (बी और सी/डी) बैंड के मध्य और शीर्ष तीसरे का उपयोग करते हैं, [http://www.aerialsandtv.com/aerials.html#AerialGainCurves ग्राफ] देखें। देश भर में इस समूहीकरण की नकल करके (आसन्न ट्रांसमीटरों के लिए अलग-अलग समूहों का उपयोग करके), सह-चैनल हस्तक्षेप को कम किया जा सकता है, और इसके अलावा, सीमांत स्वागत क्षेत्रों में अधिक कुशल समूहीकृत प्राप्त एंटेना का उपयोग कर सकते हैं। दुर्भाग्य से, यूके में, इस सावधानीपूर्वक नियोजित प्रणाली को डिजिटल प्रसारण के आगमन के साथ समझौता करना पड़ा है, जिसके लिए (बदलाव की अवधि के दौरान कम से कम) अभी और अधिक चैनल स्थान की आवश्यकता है, और इसके परिणामस्वरूप अतिरिक्त डिजिटल प्रसारण चैनल हमेशा ट्रांसमीटर के भीतर फिट नहीं किए जा सकते हैं। मौजूदा समूह। इस प्रकार कई यूके ट्रांसमीटर वाइडबैंड बन गए हैं जिसके परिणामस्वरूप एंटेना प्राप्त करने के लिए प्रतिस्थापन की आवश्यकता है (बाहरी लिंक देखें)। एक बार डिजिटल स्विच ओवर (DSO) होने के बाद योजना यह है कि अधिकांश ट्रांसमीटर अपने मूल समूहों में वापस आ जाएंगे, स्रोत [https://web.archive.org/web/20100704045818/http://www.ofcom.org.uk/ tv/ifi/tech/dsodetails/ ऑफकॉम जुलाई 2007]।
ट्रांसमीटर के निर्माण और स्थान की योजना बनाने जितना ही महत्वपूर्ण है कि इसका आउटपुट मौजूदा प्रसारणों के साथ कैसे फिट बैठता है। दो ट्रांसमीटर एक ही क्षेत्र में एक ही आवृत्ति पर प्रसारित नहीं हो सकते क्योंकि इससे सह-चैनल हस्तक्षेप होगा। चैनल योजनाकारों ने विभिन्न ट्रांसमीटरों के आउटपुट को कैसे जोड़ा है, इसके अच्छे उदाहरण के लिए देखें [http://www.aerialsandtv.com/crystalpalacetx.html#crystalpalaceschannels Crystal Palace UHF TV चैनल आवंटन]। यह संदर्भ एक समूहीकृत ट्रांसमीटर का एक अच्छा उदाहरण भी प्रदान करता है, इस मामले में ए समूह। यही है, इसके सभी आउटपुट यूके यूएचएफ टेलीविजन प्रसारण बैंड के नीचे तीसरे स्थान पर हैं। अन्य दो समूह (बी और सी/डी) बैंड के मध्य और शीर्ष तीसरे का उपयोग करते हैं, [http://www.aerialsandtv.com/aerials.html#AerialGainCurves ग्राफ] देखें। देश भर में इस समूहीकरण की नकल करके (आसन्न ट्रांसमीटरों के लिए अलग-अलग समूहों का उपयोग करके), सह-चैनल हस्तक्षेप को कम किया जा सकता है, और इसके अलावा, सीमांत स्वागत क्षेत्रों में अधिक कुशल समूहीकृत प्राप्त एंटेना का उपयोग कर सकते हैं। दुर्भाग्य से, यूके में, इस सावधानीपूर्वक नियोजित प्रणाली को डिजिटल प्रसारण के आगमन के साथ समझौता करना पड़ा है, जिसके लिए (बदलाव की अवधि के दौरान कम से कम) अभी और अधिक चैनल स्थान की आवश्यकता है, और इसके परिणामस्वरूप अतिरिक्त डिजिटल प्रसारण चैनल हमेशा ट्रांसमीटर के भीतर फिट नहीं किए जा सकते हैं। मौजूदा समूह। इस प्रकार कई यूके ट्रांसमीटर वाइडबैंड बन गए हैं जिसके परिणामस्वरूप एंटेना प्राप्त करने के लिए प्रतिस्थापन की आवश्यकता है (बाहरी लिंक देखें)। एक बार डिजिटल स्विच ओवर (DSO) होने के बाद योजना यह है कि अधिकांश ट्रांसमीटर अपने मूल समूहों में वापस आ जाएंगे, स्रोत [https://web.archive.org/web/20100704045818/http://www.ofcom.org.uk/ tv/ifi/tech/dsodetails/ ऑफकॉम जुलाई 2007]।
Line 53: Line 51:
आगे की जटिलता तब उत्पन्न होती है जब आसन्न ट्रांसमीटरों को एक ही आवृत्ति पर संचारित करना पड़ता है और इन परिस्थितियों में प्रसारण विकिरण पैटर्न प्रासंगिक दिशा (ओं) में क्षीण हो जाते हैं। इसका एक अच्छा उदाहरण यूनाइटेड किंगडम में है, जहां [[वाल्थम ट्रांसमिटिंग स्टेशन]] [[ सैंडी हीथ संचारण स्टेशन ]] के हाई पावर ट्रांसमिशन के समान आवृत्तियों पर उच्च शक्ति पर प्रसारित होता है, जिसमें दोनों केवल 50 मील की दूरी पर हैं। इस प्रकार वाल्थम की एंटीना सरणी [http://www.aerialsandtv.com/walthamtx.html#WalthamsTransmittingArray] सैंडी हीथ की दिशा में और इसके विपरीत इन दो चैनलों को प्रसारित नहीं करती है।
आगे की जटिलता तब उत्पन्न होती है जब आसन्न ट्रांसमीटरों को एक ही आवृत्ति पर संचारित करना पड़ता है और इन परिस्थितियों में प्रसारण विकिरण पैटर्न प्रासंगिक दिशा (ओं) में क्षीण हो जाते हैं। इसका एक अच्छा उदाहरण यूनाइटेड किंगडम में है, जहां [[वाल्थम ट्रांसमिटिंग स्टेशन]] [[ सैंडी हीथ संचारण स्टेशन ]] के हाई पावर ट्रांसमिशन के समान आवृत्तियों पर उच्च शक्ति पर प्रसारित होता है, जिसमें दोनों केवल 50 मील की दूरी पर हैं। इस प्रकार वाल्थम की एंटीना सरणी [http://www.aerialsandtv.com/walthamtx.html#WalthamsTransmittingArray] सैंडी हीथ की दिशा में और इसके विपरीत इन दो चैनलों को प्रसारित नहीं करती है।


जहां किसी विशेष सेवा को व्यापक कवरेज की आवश्यकता होती है, यह आमतौर पर विभिन्न स्थानों पर कई ट्रांसमीटरों का उपयोग करके प्राप्त किया जाता है। आम तौर पर, ये ट्रांसमीटर हस्तक्षेप से बचने के लिए विभिन्न आवृत्तियों पर काम करेंगे जहां कवरेज ओवरलैप हो। उदाहरणों में राष्ट्रीय शामिल हैंप्रसारण नेटवर्क और [[सेल्युलर नेटवर्क]] उत्तरार्द्ध में, आवृत्ति स्विचिंग स्वचालित रूप से रिसीवर द्वारा आवश्यकतानुसार किया जाता है, पूर्व में, मैनुअल रीट्यूनिंग अधिक सामान्य है (हालांकि [[रेडियो डेटा सिस्टम]] प्रसारण नेटवर्क में स्वचालित आवृत्ति स्विचिंग का एक उदाहरण है)। एकाधिक ट्रांसमीटरों का उपयोग करके कवरेज बढ़ाने के लिए एक अन्य प्रणाली [[अर्ध-तुल्यकालिक संचरण]] है, लेकिन यह आजकल शायद ही कभी प्रयोग किया जाता है।
जहां किसी विशेष सेवा को व्यापक कवरेज की आवश्यकता होती है, यह सामान्यतः  विभिन्न स्थानों पर कई ट्रांसमीटरों का उपयोग करके प्राप्त किया जाता है। समान्य तौर पर, ये ट्रांसमीटर हस्तक्षेप से बचने के लिए विभिन्न आवृत्तियों पर काम करेंगे जहां कवरेज ओवरलैप हो। उदाहरणों में राष्ट्रीय सम्मिलित हैंप्रसारण नेटवर्क और [[सेल्युलर नेटवर्क]] उत्तरार्द्ध में, आवृत्ति स्विचिंग स्वचालित रूप से रिसीवर द्वारा आवश्यकतानुसार किया जाता है, पूर्व में, मैनुअल रीट्यूनिंग अधिक सामान्य है (चूंकि [[रेडियो डेटा सिस्टम|रेडियो डेटा]] प्रणाली प्रसारण नेटवर्क में स्वचालित आवृत्ति स्विचिंग का एक उदाहरण है)। एकाधिक ट्रांसमीटरों का उपयोग करके कवरेज बढ़ाने के लिए एक अन्य प्रणाली [[अर्ध-तुल्यकालिक संचरण]] है, लेकिन यह आजकल संभवतः  ही कभी प्रयोग किया जाता है।


== मुख्य और रिले (पुनरावर्तक) ट्रांसमीटर ==
== मुख्य और रिले (पुनरावर्तक) ट्रांसमीटर ==


संचारण स्टेशनों को आमतौर पर या तो मुख्य स्टेशनों या रिले स्टेशनों के रूप में वर्गीकृत किया जाता है (जिसे [[ रेडियो पुनरावर्तक ]], [[ प्रसारण अनुवादक ]] या कभी-कभी ट्रांसपोज़र के रूप में भी जाना जाता है)।
संचारण स्टेशनों को सामान्यतः  या तो मुख्य स्टेशनों या रिले स्टेशनों के रूप में वर्गीकृत किया जाता है (जिसे [[ रेडियो पुनरावर्तक ]], [[ प्रसारण अनुवादक ]] या कभी-कभी ट्रांसपोज़र के रूप में भी जाना जाता है)।


मुख्य स्टेशनों को उन स्टेशनों के रूप में परिभाषित किया जाता है जो एक [[बेसबैंड]] (अन[[ संग्राहक ]]) इनपुट से अपने स्वयं के मॉड्यूलेटेड आउटपुट सिग्नल उत्पन्न करते हैं। आमतौर पर मुख्य स्टेशन उच्च शक्ति पर काम करते हैं और बड़े क्षेत्रों को कवर करते हैं।
मुख्य स्टेशनों को उन स्टेशनों के रूप में परिभाषित किया जाता है जो एक [[बेसबैंड]] (अन[[ संग्राहक ]]) इनपुट से अपने स्वयं के मॉड्यूलेटेड आउटपुट संकेत उत्पन्न करते हैं। सामान्यतः  मुख्य स्टेशन उच्च शक्ति पर काम करते हैं और बड़े क्षेत्रों को कवर करते हैं।


रिले स्टेशन (अनुवादक) पहले से ही संशोधित इनपुट सिग्नल लेते हैं, आमतौर पर हवा से दूर मूल स्टेशन के सीधे स्वागत से, और बस इसे दूसरी आवृत्ति पर पुन: प्रसारित करते हैं। आमतौर पर रिले स्टेशन मध्यम या निम्न शक्ति पर काम करते हैं, और इसका उपयोग मूल मुख्य स्टेशन के सेवा क्षेत्र के भीतर या उसके किनारे पर खराब रिसेप्शन की जेब भरने के लिए किया जाता है।
रिले स्टेशन (अनुवादक) पहले से ही संशोधित इनपुट संकेत लेते हैं, सामान्यतः  हवा से दूर मूल स्टेशन के सीधे स्वागत से, और बस इसे दूसरी आवृत्ति पर पुन: प्रसारित करते हैं। सामान्यतः  रिले स्टेशन मध्यम या निम्न शक्ति पर काम करते हैं, और इसका उपयोग मूल मुख्य स्टेशन के सेवा क्षेत्र के भीतर या उसके किनारे पर खराब रिसेप्शन की जेब भरने के लिए किया जाता है।


ध्यान दें कि एक मुख्य स्टेशन दूसरे स्टेशन से अपने इनपुट सिग्नल को सीधे ऑफ-एयर भी ले सकता है, हालांकि यह सिग्नल पहले बेसबैंड में पूरी तरह से डिमॉड्युलेट किया जाएगा, संसाधित किया जाएगा, और फिर ट्रांसमिशन के लिए फिर से तैयार किया जाएगा।
ध्यान दें कि एक मुख्य स्टेशन दूसरे स्टेशन से अपने इनपुट संकेत को सीधे ऑफ-एयर भी ले सकता है, चूंकि यह संकेत पहले बेसबैंड में पूरी तरह से डिमॉड्युलेट किया जाएगा, संसाधित किया जाएगा, और फिर ट्रांसमिशन के लिए फिर से तैयार किया जाएगा।


== संस्कृति में ट्रांसमीटर ==
== संस्कृति में ट्रांसमीटर ==
यूरोप के कुछ शहर, जैसे मुगलकर, [[ ismaning ]], [[लैंगेनबर्ग (राइनलैंड)]], [[कलुंदबोर्ग]], हॉर्बी और [[Allouis]] शक्तिशाली ट्रांसमीटरों की साइटों के रूप में प्रसिद्ध हो गए। उदाहरण के लिए, [[गोलियत ट्रांसमीटर]] [[द्वितीय विश्व युद्ध]] के दौरान जर्मनी के [[Saxony-Anhalt]] में कल्बे, सैक्सनी-एनहाल्ट के पास स्थित नाजी जर्मनी के क्रेग्समरीन का एक [[वीएलएफ]] ट्रांसमीटर था। कुछ [[रेडियो मास्ट और टावर]] जैसे रेडियो टॉवर [[बर्लिन]] या टीवी टॉवर [[ स्टटगर्ट ]] शहरों के लैंडमार्क बन गए हैं। कई संचारण संयंत्रों में बहुत ऊँचे रेडियो टॉवर होते हैं जो इंजीनियरिंग की उत्कृष्ट कृतियाँ हैं।
यूरोप के कुछ शहर, जैसे मुगलकर, [[ ismaning ]], [[लैंगेनबर्ग (राइनलैंड)]], [[कलुंदबोर्ग]], हॉर्बी और [[Allouis]] शक्तिशाली ट्रांसमीटरों की साइटों के रूप में प्रसिद्ध हो गए। उदाहरण के लिए, [[गोलियत ट्रांसमीटर]] [[द्वितीय विश्व युद्ध]] के दौरान जर्मनी के [[Saxony-Anhalt]] में कल्बे, सैक्सनी-एनहाल्ट के पास स्थित नाजी जर्मनी के क्रेग्समरीन का एक [[वीएलएफ]] ट्रांसमीटर था। कुछ [[रेडियो मास्ट और टावर]] जैसे रेडियो टॉवर [[बर्लिन]] या टीवी टॉवर [[ स्टटगर्ट ]] शहरों के लैंडमार्क बन गए हैं। कई संचारण संयंत्रों में बहुत ऊँचे रेडियो टॉवर होते हैं जो इंजीनियरिंग की उत्कृष्ट कृतियाँ हैं।


दुनिया में सबसे ऊंची इमारत होने के नाते, राष्ट्र, राज्य/प्रांत/प्रान्त, शहर, आदि को अक्सर डींग मारने के लिए कुछ माना जाता है। अक्सर, [[गगनचुंबी इमारत]]ों के बिल्डरों ने सबसे ऊंची इमारत होने का दावा करने के लिए ट्रांसमीटर एंटेना का इस्तेमाल किया है। न्यूयॉर्क सिटी|न्यूयॉर्क, न्यूयॉर्क में [[क्रिसलर बिल्डिंग]] और [[एम्पायर स्टेट बिल्डिंग]] के बीच सबसे ऊंची इमारत का विवाद एक ऐतिहासिक उदाहरण था।
दुनिया में सबसे ऊंची इमारत होने के नाते, राष्ट्र, राज्य/प्रांत/प्रान्त, शहर, आदि को प्रायः डींग मारने के लिए कुछ माना जाता है। प्रायः, [[गगनचुंबी इमारत]]ों के बिल्डरों ने सबसे ऊंची इमारत होने का दावा करने के लिए ट्रांसमीटर एंटेना का इस्तेमाल किया है। न्यूयॉर्क सिटी|न्यूयॉर्क, न्यूयॉर्क में [[क्रिसलर बिल्डिंग]] और [[एम्पायर स्टेट बिल्डिंग]] के बीच सबसे ऊंची इमारत का विवाद एक ऐतिहासिक उदाहरण था।


कुछ टावरों में एक अवलोकन डेक है जो पर्यटकों के लिए सुलभ है। एक उदाहरण मास्को में [[ओस्टैंकिनो टॉवर]] है, जो 1967 में [[अक्टूबर क्रांति]] की 50 वीं वर्षगांठ पर [[सोवियत संघ]] की तकनीकी क्षमताओं को प्रदर्शित करने के लिए पूरा किया गया था। चूंकि किसी भी प्रकार के निर्माण के बहुत ऊंचे रेडियो टावर प्रमुख लैंडमार्क होते हैं, जिनके लिए सावधानीपूर्वक योजना और निर्माण की आवश्यकता होती है, और विशेष रूप से लंबी और मध्यम-लहर रेंज में उच्च-शक्ति ट्रांसमीटर लंबी दूरी पर प्राप्त किए जा सकते हैं, ऐसी सुविधाओं का अक्सर प्रचार में उल्लेख किया जाता था। अन्य उदाहरण थे Deutschlandsender Herzberg/Elster और [[Warsaw Radio Mast]]।
कुछ टावरों में एक अवलोकन डेक है जो पर्यटकों के लिए सुलभ है। एक उदाहरण मास्को में [[ओस्टैंकिनो टॉवर]] है, जो 1967 में [[अक्टूबर क्रांति]] की 50 वीं वर्षगांठ पर [[सोवियत संघ]] की तकनीकी क्षमताओं को प्रदर्शित करने के लिए पूरा किया गया था। चूंकि किसी भी प्रकार के निर्माण के बहुत ऊंचे रेडियो टावर प्रमुख लैंडमार्क होते हैं, जिनके लिए सावधानीपूर्वक योजना और निर्माण की आवश्यकता होती है, और विशेष रूप से लंबी और मध्यम-लहर रेंज में उच्च-शक्ति ट्रांसमीटर लंबी दूरी पर प्राप्त किए जा सकते हैं, ऐसी सुविधाओं का प्रायः प्रचार में उल्लेख किया जाता था। अन्य उदाहरण थे Deutschlandsender Herzberg/Elster और [[Warsaw Radio Mast]]।


KVLY-TV मास्ट | KVLY-TV का टॉवर ब्लैंचर्ड, नॉर्थ डकोटा के पास स्थित है, जब यह 1963 में बनकर तैयार हुआ था, तब यह दुनिया की सबसे ऊंची कृत्रिम संरचना थी। इसे 1974 में Warszawa रेडियो मास्ट द्वारा पार कर लिया गया था, लेकिन 1970 में बाद के पतन के बाद इसने अपना खिताब वापस पा लिया। 1991. यह 2009 की शुरुआत में [[ बुर्ज खलीफ़ा ]] गगनचुंबी इमारत से आगे निकल गया था, लेकिन KVLY-TV मस्तूल अभी भी सबसे लंबा ट्रांसमीटर है।
KVLY-TV मास्ट | KVLY-TV का टॉवर ब्लैंचर्ड, नॉर्थ डकोटा के पास स्थित है, जब यह 1963 में बनकर तैयार हुआ था, तब यह दुनिया की सबसे ऊंची कृत्रिम संरचना थी। इसे 1974 में Warszawa रेडियो मास्ट द्वारा पार कर लिया गया था, लेकिन 1970 में बाद के पतन के बाद इसने अपना खिताब वापस पा लिया। 1991. यह 2009 की प्रारंभ में [[ बुर्ज खलीफ़ा ]] गगनचुंबी इमारत से आगे निकल गया था, लेकिन KVLY-TV मस्तूल अभी भी सबसे लंबा ट्रांसमीटर है।


== रिकॉर्ड्स ==
== रिकॉर्ड्स ==

Revision as of 13:14, 13 May 2023

एक प्रसारण ट्रांसमीटर एक इलेक्ट्रॉनिक उपकरण है जो समान्य जनता द्वारा प्राप्त की जाने वाली सूचना सामग्री के साथ संशोधित रेडियो तरंग को विकीर्ण करता है। उदाहरण एक ट्रांसमीटर है जो ध्वनि (ध्वनि) को रेडियो रिसीवर या प्रसारण रेडियो रिसीवर (रेडियो) को जनता के स्वामित्व में प्रसारित करता है, या एक टेलीविजन ट्रांसमीटर, जो चलती छवियों (वीडियो) को टेलीविजन रिसीवर (टेलीविजन) तक पहुंचाता है। शब्द में प्रायः एंटीना (रेडियो) सम्मिलित होता है जो रेडियो तरंगों को प्रसारित करता है, और ट्रांसमीटर से जुड़ी इमारत और सुविधाएं एक प्रसारण स्टेशन (रेडियो स्टेशन या दूरदर्शन केन्द्र) में एक ब्रॉडकास्ट ट्रांसमीटर के साथ-साथ प्रोडक्शन स्टूडियो होता है जो ब्रॉडकास्ट की प्रारंभ करता है। प्रसारण ट्रांसमीटरों को सरकारों द्वारा लाइसेंस प्राप्त होना चाहिए, और विशिष्ट आवृत्तियों और शक्ति स्तरों तक सीमित होना चाहिए। प्रत्येक ट्रांसमीटर को एक विशिष्ट पहचानकर्ता सौंपा जाता है जिसमें अक्षरों और संख्याओं की एक स्ट्रिंग होती है जिसे कॉल चिह्न कहा जाता है जिसका उपयोग सभी प्रसारणों में किया जाना चाहिए।

क्रिस्टल पैलेस ट्रांसमिटिंग स्टेशन ट्रांसमीटर, लंदन का एंटीना टॉवर

एक्साइटर

प्रसारण और दूरसंचार में, वह भाग जिसमें ऑसिलेटर, न्यूनाधिक और कभी-कभी ऑडियो संकेत प्रोसेसिंग होता है, को एक्साइटर कहा जाता है। अधिकांश ट्रांसमीटर हेटेरोडाइन सिद्धांत का उपयोग करते हैं, इसलिए उनके पास आवृत्ति मिक्सर इकाइयां भी होती हैं। भ्रमित रूप से, उच्च शक्ति एम्पलीफायर जो कि एक्साइटर तब फीड करता है, उसे प्रायः प्रसारण इंजीनियरिंग द्वारा ट्रांसमीटर कहा जाता है। अंतिम आउटपुट ट्रांसमीटर विद्युत् उत्पादन (टीपीओ) के रूप में दिया जाता है, चूंकि यह वह नहीं है जिसके द्वारा अधिकांश स्टेशनों का मूल्यांकन किया जाता है।

प्रभावी विकिरणित शक्ति (ईआरपी) का उपयोग स्टेशन कवरेज की गणना करते समय किया जाता है, यहां तक ​​कि अधिकांश गैर-प्रसारण स्टेशनों के लिए भी। यह टीपीओ है, ऐन्टेना की लाइन में किसी भी एटेन्यूएटर (इलेक्ट्रॉनिक्स) या विद्युत चुम्बकीय विकिरण लॉस को घटाकर, एंटीना लाभ (आवर्धन) से गुणा किया जाता है जो ऐन्टेना क्षितिज की ओर प्रदान करता है। यह ऐन्टेना लाभ महत्वपूर्ण है, क्योंकि इसके बिना एक वांछित संकेत शक्ति प्राप्त करने से ट्रांसमीटर के लिए एक विशाल विद्युत उपयोगिता चालान या उपयोगिता बिल और एक निषेधात्मक रूप से महंगा ट्रांसमीटर होगा। वीएचएफ- और यूएचएफ-श्रेणी के अधिकांश बड़े स्टेशनों के लिए, ट्रांसमीटर शक्ति ईआरपी के 20% से अधिक नहीं है।

वीएलएफ, एलएफ, एमएफ और एचएफ के लिए ईआरपी सामान्यतः अलग से निर्धारित नहीं किया जाता है। ज्यादातर स्थतियो में ट्रांसमीटरों की सूची में पाई जाने वाली संचरण शक्ति ट्रांसमीटर के आउटपुट के लिए मान है। यह सर्वदिशात्मक एरियल के लिए केवल एक चौथाई तरंगदैर्ध्य या उससे कम लंबाई के साथ सही है। अन्य हवाई प्रकारों के लिए लाभ कारक हैं, जो अधिकतम बीम तीव्रता की दिशा में लघुतरंग दिशात्मक बीम के लिए 50 तक मानो तक पहुंच सकते हैं।

चूंकि कुछ लेखक 30 मेगाहर्ट्ज से कम आवृत्तियों के लिए ट्रांसमीटरों के एरियल के लाभ कारकों को ध्यान में रखते हैं और अन्य नहीं, इसलिए प्रायः प्रेषित शक्तियों के मानो में विसंगतियां होती हैं।

विद्युत् की आपूर्ति

आपूर्ति की सुरक्षा में सुधार के लिए ट्रांसमीटरों को कभी-कभी विद्युत् आपूर्ति ग्रिड के उच्च वोल्टेज स्तर से फेड है। उदाहरण के लिए, दीर्घ तरंग ट्रांसमीटर एलोइस, वारसॉ रेडियो मस्त और ट्रांसमीटर रूमौल्स ट्रांसमीटर उच्च-वोल्टेज नेटवर्क (एलोइस और कॉन्स्टेंटिनोवमें 110 kV, रूमौल्स में 150 kV) से फेड हैं, तथापि विद्युत् के मध्यम-वोल्टेज स्तर से विद्युत् की आपूर्ति हो ग्रिड (लगभग 20 केवी) पर्याप्त विद्युत् देने में सक्षम होगा।[1][2]


आवृत्ति नियंत्रण

अंतिम चरणों का ठंडा होना

कम-शक्ति ट्रांसमीटरों को विशेष शीतलन उपकरण की आवश्यकता नहीं होती है। आधुनिक ट्रांसमीटर अविश्वसनीय रूप से कुशल हो सकते हैं, जिनकी दक्षता 98 प्रतिशत से अधिक है। चूंकि, एंटीना में 98% स्थानांतरित करने वाले मेगावाट पावर चरण के साथ एक प्रसारण ट्रांसमीटर को 20 किलोवाट इलेक्ट्रिक हीटर के रूप में भी देखा जा सकता है।

50 kW AM और 20 kW FM सहित कई दसियों किलोवाट तक के मध्यम-शक्ति ट्रांसमीटरों के लिए, सामान्यतः विवश वायु शीतलन का उपयोग किया जाता है। इन से ऊपर विद्युत् के स्तर पर कुछ ट्रांसमीटरों में एक ऑटोमोबाइल कूलिंग प्रणाली के अनुरूप विवश तरल शीतलन प्रणाली द्वारा ठंडा किया गया आउटपुट चरण होता है। चूंकि शीतलक सीधे वेक्यूम - ट्यूब के उच्च-वोल्टेज एनोड को छूता है, शीतलन परिपथ में केवल आसुत, विआयनीकृत पानी या एक विशेष डाइलेक्ट्रिक हुआ शीतलक का उपयोग किया जा सकता है। यह उच्च शुद्धता शीतलक बदले में एक ताप विनिमायक द्वारा ठंडा किया जाता है, जहां दूसरा शीतलन परिपथ सामान्य गुणवत्ता के पानी का उपयोग कर सकता है क्योंकि यह सक्रिय भागों के संपर्क में नहीं है। छोटे भौतिक आकार के बहुत उच्च शक्ति वाले ट्यूब एनोड के संपर्क में पानी से बाष्पीकरणीय शीतलन का उपयोग कर सकते हैं। भाप का उत्पादन एक छोटी सी जगह में उच्च ताप प्रवाह की अनुमति देता है।

सुरक्षा उपकरण

उच्च शक्ति ट्रांसमीटरों (40 kV तक) में उपयोग किए जाने वाले उच्च वोल्टेज के लिए व्यापक सुरक्षा उपकरण की आवश्यकता होती है। साथ ही, ट्रांसमीटर विद्युत् गिरने से क्षतिग्रस्त हो जाते हैं। एंटीना के बिना संचालित होने पर ट्रांसमीटर क्षतिग्रस्त हो सकते हैं, इसलिए सुरक्षा परिपथ को एंटीना के हानि का पता लगाना चाहिए और ट्रांसमीटर को तुरंत बंद कर देना चाहिए। ट्यूब-आधारित ट्रांसमीटरों में एनोड वोल्टेज से पहले लगाए गए फिलामेंट वोल्टेज के साथ उचित क्रम में शक्ति प्रयुक्त होनी चाहिए, अन्यथा ट्यूब क्षतिग्रस्त हो सकते हैं। स्टैंडिंग वेव अनुपात के लिए आउटपुट चरण की निगरानी की जानी चाहिए, जो इंगित करता है कि उत्पन्न शक्ति विकीर्ण नहीं हो रही है, किंतु ट्रांसमीटर में वापस परिलक्षित हो रही है।

ट्रांसमीटर और एंटीना के बीच विद्युत् संरक्षण की आवश्यकता होती है। इसमें ट्रांसमीटर टर्मिनलों पर दिखाई देने वाले वोल्टेज को सीमित करने के लिए स्पार्क गैप और गैस से भरे सर्ज अरेस्टर होते हैं। नियंत्रण उपकरण जो वोल्टेज स्टैंडिंग-वेव अनुपात को मापता है, अगर विद्युत् गिरने के बाद उच्च वोल्टेज स्टैंडिंग-वेव अनुपात का पता चलता है, तो ट्रांसमीटर को संक्षिप्त रूप से बंद कर देता है, क्योंकि प्रतिबिंब संभवतः विद्युत् की क्षति के कारण होते हैं। यदि यह कई प्रयासों के बाद सफल नहीं होता है, तो एंटीना क्षतिग्रस्त हो सकता है और ट्रांसमीटर को बंद रहना चाहिए। कुछ संचारण संयंत्रों में महत्वपूर्ण स्थानों पर पराबैंगनी संसूचक लगाये जाते हैं, ताकि विद्युत चाप का पता चलने पर ट्रांसमीटर को बंद कर दिया जा सकता है। ऑपरेटिंग वोल्टेज, मॉड्यूलेशन कारक, आवृत्ति और अन्य ट्रांसमीटर पैरामीटर सुरक्षा और नैदानिक ​​​​उद्देश्यों के लिए मॉनिटर किए जाते हैं, और स्थानीय और / या रिमोट कंट्रोल रूम में प्रदर्शित किए जा सकते हैं।

बिल्डिंग

एक वाणिज्यिक ट्रांसमीटर साइट में सामान्यतः ट्रांसमीटर घटकों और नियंत्रण उपकरणों को आश्रय देने के लिए एक नियंत्रण भवन होता है। यह सामान्यतः विशुद्ध रूप से कार्यात्मक इमारत है, जिसमें रेडियो और टेलीविजन ट्रांसमीटर दोनों के लिए उपकरण हो सकते हैं। ट्रांसमिशन लाइन लॉस को कम करने के लिए ट्रांसमीटर बिल्डिंग सामान्यतः VHF और अति उच्च आवृत्ति साइट्स के लिए एंटीना के तुरंत बगल में होती है, लेकिन कम आवृत्ति के लिए बिल्डिंग और एंटीना के बीच कुछ स्कोर या कई सौ मीटर की दूरी होना वांछनीय हो सकता है। कुछ ट्रांसमिटिंग टावरों में रेडियो रिले लिंक ट्रांसमीटर या अन्य, अपेक्षाकृत कम-शक्ति ट्रांसमीटरों को रखने के लिए टॉवर में निर्मित बाड़े होते हैं। कुछ ट्रांसमीटर भवनों में सीमित प्रसारण सुविधाएं सम्मिलित हो सकती हैं ताकि स्टेशन को मुख्य सुविधा के अक्षम होने की स्थिति में बैकअप स्टूडियो के रूप में भवन का उपयोग करने की अनुमति मिल सके

कानूनी और नियामक पहलू

चूंकि रेडियो तरंगें सीमाओं के पार जाती हैं, अंतर्राष्ट्रीय समझौते रेडियो प्रसारण को नियंत्रित करते हैं। जर्मनी जैसे यूरोपीय देशों में, प्रायः राष्ट्रीय डाकघर नियामक प्राधिकरण होता है। संयुक्त राज्य अमेरिका में, प्रसारण और औद्योगिक ट्रांसमीटरों को संघीय संचार आयोग (FCC) द्वारा नियंत्रित किया जाता है। कनाडा में, प्रसारण और रेडियो ट्रांसमीटर के तकनीकी पहलुओं को उद्योग कनाडा द्वारा नियंत्रित किया जाता है, लेकिन प्रसारण सामग्री को कनाडाई रेडियो-टेलीविजन और दूरसंचार आयोग (CRTC) द्वारा अलग से नियंत्रित किया जाता है। ऑस्ट्रेलिया में ट्रांसमीटर, स्पेक्ट्रम और सामग्री को ऑस्ट्रेलियाई संचार और मीडिया प्राधिकरण (एसीएमए) द्वारा नियंत्रित किया जाता है। अंतर्राष्ट्रीय दूरसंचार संघ (ITU) अंतरराष्ट्रीय स्तर पर रेडियो-आवृत्ति स्पेक्ट्रम के प्रबंधन में मदद करता है।

योजना

Template:Out of date जैसा कि किसी भी महंगी परियोजना में होता है, एक उच्च शक्ति ट्रांसमीटर साइट की योजना के लिए बहुत सावधानी की आवश्यकता होती है। यह स्थान के साथ शुरू होता है। न्यूनतम दूरी, जो ट्रांसमीटर आवृत्ति, ट्रांसमीटर शक्ति और संचारण एंटेना के डिजाइन पर निर्भर करती है, लोगों को रेडियो आवृत्ति ऊर्जा से बचाने के लिए आवश्यक है। एंटीना टावर प्रायः बहुत ऊंचे होते हैं और इसलिए उड़ान पथ का मूल्यांकन किया जाना चाहिए। उच्च शक्ति ट्रांसमीटरों के लिए पर्याप्त विद्युत शक्ति उपलब्ध होनी चाहिए। लंबी और मध्यम तरंग के लिए ट्रांसमीटरों को अच्छी ग्राउंडिंग और उच्च विद्युत चालकता की मिट्टी की आवश्यकता होती है। समुद्र या नदी घाटियों में स्थान आदर्श हैं, लेकिन बाढ़ के खतरे पर विचार किया जाना चाहिए। सीमा में सुधार करने के लिए अल्ट्रा हाई आवृत्ति के ट्रांसमीटर ऊंचे पहाड़ों पर सबसे अच्छे होते हैं (रेडियो प्रचार देखें)। एंटीना पैटर्न पर विचार किया जाना चाहिए क्योंकि लॉन्ग-वेव या मीडियम-वेव एंटीना के पैटर्न को बदलना महंगा होता है।

एंटीना लड़के टॉवर

लंबी और मध्यम तरंग के लिए ट्रांसमिटिंग एंटेना सामान्यतः मास्ट रेडिएटर के रूप में प्रयुक्त होते हैं। छोटे आयामों वाले समान एंटेना का उपयोग लघु तरंग ट्रांसमीटरों के लिए भी किया जाता है, यदि ये गोल स्प्रे उद्यम में भेजते हैं। फ्री-स्टैंडिंग स्टील टावरों पर विकिरण की व्यवस्था करने के लिए बन्धन प्लानर सरणियों का उपयोग किया जाता है। UHF और टीवी ट्रांसमीटरों के लिए रेडियो टावरों को सिद्धांत रूप में ग्राउंडेड कंस्ट्रक्शन के रूप में प्रयुक्त किया जा सकता है। टावर्स स्टील जालीदार मस्तूल या प्रबलित कंक्रीट टावर हो सकते हैं जिनके शीर्ष पर एंटेना लगे होते हैं। यूएचएफ के लिए कुछ ट्रांसमिटिंग टावरों में उच्च ऊंचाई वाले ऑपरेटिंग कमरे और/या रेस्तरां और अवलोकन प्लेटफॉर्म जैसी सुविधाएं हैं, जो लिफ्ट द्वारा सुलभ हैं। ऐसे टावरों को सामान्यतः टीवी टावर कहा जाता है। माइक्रोवेव के लिए प्रायः परवलयिक एंटेना का उपयोग किया जाता है। इन्हें एफएम के लिए विशेष प्लेटफॉर्म पर टावरों को प्रसारित करने पर रेडियो रिले लिंक के अनुप्रयोगों के लिए स्थापित किया जा सकता है। उदाहरण के लिए, 3 से 100 मीटर व्यास वाले बड़े परवलयिक एंटेना टेलीविजन उपग्रहों और अंतरिक्ष वाहनों को संकेत देने के लिए आवश्यक हैं। ये पौधे, जिनका उपयोग यदि आवश्यक हो तो रेडियो टेलीस्कोप के रूप में भी किया जा सकता है, फ्रीस्टैंडिंग कंस्ट्रक्शन पर स्थापित किए जाते हैं, जिससे अरेसीबो में रेडियो टेलीस्कोप की तरह कई विशेष डिज़ाइन भी हैं।

ट्रांसमीटर के निर्माण और स्थान की योजना बनाने जितना ही महत्वपूर्ण है कि इसका आउटपुट मौजूदा प्रसारणों के साथ कैसे फिट बैठता है। दो ट्रांसमीटर एक ही क्षेत्र में एक ही आवृत्ति पर प्रसारित नहीं हो सकते क्योंकि इससे सह-चैनल हस्तक्षेप होगा। चैनल योजनाकारों ने विभिन्न ट्रांसमीटरों के आउटपुट को कैसे जोड़ा है, इसके अच्छे उदाहरण के लिए देखें Crystal Palace UHF TV चैनल आवंटन। यह संदर्भ एक समूहीकृत ट्रांसमीटर का एक अच्छा उदाहरण भी प्रदान करता है, इस मामले में ए समूह। यही है, इसके सभी आउटपुट यूके यूएचएफ टेलीविजन प्रसारण बैंड के नीचे तीसरे स्थान पर हैं। अन्य दो समूह (बी और सी/डी) बैंड के मध्य और शीर्ष तीसरे का उपयोग करते हैं, ग्राफ देखें। देश भर में इस समूहीकरण की नकल करके (आसन्न ट्रांसमीटरों के लिए अलग-अलग समूहों का उपयोग करके), सह-चैनल हस्तक्षेप को कम किया जा सकता है, और इसके अलावा, सीमांत स्वागत क्षेत्रों में अधिक कुशल समूहीकृत प्राप्त एंटेना का उपयोग कर सकते हैं। दुर्भाग्य से, यूके में, इस सावधानीपूर्वक नियोजित प्रणाली को डिजिटल प्रसारण के आगमन के साथ समझौता करना पड़ा है, जिसके लिए (बदलाव की अवधि के दौरान कम से कम) अभी और अधिक चैनल स्थान की आवश्यकता है, और इसके परिणामस्वरूप अतिरिक्त डिजिटल प्रसारण चैनल हमेशा ट्रांसमीटर के भीतर फिट नहीं किए जा सकते हैं। मौजूदा समूह। इस प्रकार कई यूके ट्रांसमीटर वाइडबैंड बन गए हैं जिसके परिणामस्वरूप एंटेना प्राप्त करने के लिए प्रतिस्थापन की आवश्यकता है (बाहरी लिंक देखें)। एक बार डिजिटल स्विच ओवर (DSO) होने के बाद योजना यह है कि अधिकांश ट्रांसमीटर अपने मूल समूहों में वापस आ जाएंगे, स्रोत tv/ifi/tech/dsodetails/ ऑफकॉम जुलाई 2007

आगे की जटिलता तब उत्पन्न होती है जब आसन्न ट्रांसमीटरों को एक ही आवृत्ति पर संचारित करना पड़ता है और इन परिस्थितियों में प्रसारण विकिरण पैटर्न प्रासंगिक दिशा (ओं) में क्षीण हो जाते हैं। इसका एक अच्छा उदाहरण यूनाइटेड किंगडम में है, जहां वाल्थम ट्रांसमिटिंग स्टेशन सैंडी हीथ संचारण स्टेशन के हाई पावर ट्रांसमिशन के समान आवृत्तियों पर उच्च शक्ति पर प्रसारित होता है, जिसमें दोनों केवल 50 मील की दूरी पर हैं। इस प्रकार वाल्थम की एंटीना सरणी [1] सैंडी हीथ की दिशा में और इसके विपरीत इन दो चैनलों को प्रसारित नहीं करती है।

जहां किसी विशेष सेवा को व्यापक कवरेज की आवश्यकता होती है, यह सामान्यतः विभिन्न स्थानों पर कई ट्रांसमीटरों का उपयोग करके प्राप्त किया जाता है। समान्य तौर पर, ये ट्रांसमीटर हस्तक्षेप से बचने के लिए विभिन्न आवृत्तियों पर काम करेंगे जहां कवरेज ओवरलैप हो। उदाहरणों में राष्ट्रीय सम्मिलित हैंप्रसारण नेटवर्क और सेल्युलर नेटवर्क उत्तरार्द्ध में, आवृत्ति स्विचिंग स्वचालित रूप से रिसीवर द्वारा आवश्यकतानुसार किया जाता है, पूर्व में, मैनुअल रीट्यूनिंग अधिक सामान्य है (चूंकि रेडियो डेटा प्रणाली प्रसारण नेटवर्क में स्वचालित आवृत्ति स्विचिंग का एक उदाहरण है)। एकाधिक ट्रांसमीटरों का उपयोग करके कवरेज बढ़ाने के लिए एक अन्य प्रणाली अर्ध-तुल्यकालिक संचरण है, लेकिन यह आजकल संभवतः ही कभी प्रयोग किया जाता है।

मुख्य और रिले (पुनरावर्तक) ट्रांसमीटर

संचारण स्टेशनों को सामान्यतः या तो मुख्य स्टेशनों या रिले स्टेशनों के रूप में वर्गीकृत किया जाता है (जिसे रेडियो पुनरावर्तक , प्रसारण अनुवादक या कभी-कभी ट्रांसपोज़र के रूप में भी जाना जाता है)।

मुख्य स्टेशनों को उन स्टेशनों के रूप में परिभाषित किया जाता है जो एक बेसबैंड (अनसंग्राहक ) इनपुट से अपने स्वयं के मॉड्यूलेटेड आउटपुट संकेत उत्पन्न करते हैं। सामान्यतः मुख्य स्टेशन उच्च शक्ति पर काम करते हैं और बड़े क्षेत्रों को कवर करते हैं।

रिले स्टेशन (अनुवादक) पहले से ही संशोधित इनपुट संकेत लेते हैं, सामान्यतः हवा से दूर मूल स्टेशन के सीधे स्वागत से, और बस इसे दूसरी आवृत्ति पर पुन: प्रसारित करते हैं। सामान्यतः रिले स्टेशन मध्यम या निम्न शक्ति पर काम करते हैं, और इसका उपयोग मूल मुख्य स्टेशन के सेवा क्षेत्र के भीतर या उसके किनारे पर खराब रिसेप्शन की जेब भरने के लिए किया जाता है।

ध्यान दें कि एक मुख्य स्टेशन दूसरे स्टेशन से अपने इनपुट संकेत को सीधे ऑफ-एयर भी ले सकता है, चूंकि यह संकेत पहले बेसबैंड में पूरी तरह से डिमॉड्युलेट किया जाएगा, संसाधित किया जाएगा, और फिर ट्रांसमिशन के लिए फिर से तैयार किया जाएगा।

संस्कृति में ट्रांसमीटर

यूरोप के कुछ शहर, जैसे मुगलकर, ismaning , लैंगेनबर्ग (राइनलैंड), कलुंदबोर्ग, हॉर्बी और Allouis शक्तिशाली ट्रांसमीटरों की साइटों के रूप में प्रसिद्ध हो गए। उदाहरण के लिए, गोलियत ट्रांसमीटर द्वितीय विश्व युद्ध के दौरान जर्मनी के Saxony-Anhalt में कल्बे, सैक्सनी-एनहाल्ट के पास स्थित नाजी जर्मनी के क्रेग्समरीन का एक वीएलएफ ट्रांसमीटर था। कुछ रेडियो मास्ट और टावर जैसे रेडियो टॉवर बर्लिन या टीवी टॉवर स्टटगर्ट शहरों के लैंडमार्क बन गए हैं। कई संचारण संयंत्रों में बहुत ऊँचे रेडियो टॉवर होते हैं जो इंजीनियरिंग की उत्कृष्ट कृतियाँ हैं।

दुनिया में सबसे ऊंची इमारत होने के नाते, राष्ट्र, राज्य/प्रांत/प्रान्त, शहर, आदि को प्रायः डींग मारने के लिए कुछ माना जाता है। प्रायः, गगनचुंबी इमारतों के बिल्डरों ने सबसे ऊंची इमारत होने का दावा करने के लिए ट्रांसमीटर एंटेना का इस्तेमाल किया है। न्यूयॉर्क सिटी|न्यूयॉर्क, न्यूयॉर्क में क्रिसलर बिल्डिंग और एम्पायर स्टेट बिल्डिंग के बीच सबसे ऊंची इमारत का विवाद एक ऐतिहासिक उदाहरण था।

कुछ टावरों में एक अवलोकन डेक है जो पर्यटकों के लिए सुलभ है। एक उदाहरण मास्को में ओस्टैंकिनो टॉवर है, जो 1967 में अक्टूबर क्रांति की 50 वीं वर्षगांठ पर सोवियत संघ की तकनीकी क्षमताओं को प्रदर्शित करने के लिए पूरा किया गया था। चूंकि किसी भी प्रकार के निर्माण के बहुत ऊंचे रेडियो टावर प्रमुख लैंडमार्क होते हैं, जिनके लिए सावधानीपूर्वक योजना और निर्माण की आवश्यकता होती है, और विशेष रूप से लंबी और मध्यम-लहर रेंज में उच्च-शक्ति ट्रांसमीटर लंबी दूरी पर प्राप्त किए जा सकते हैं, ऐसी सुविधाओं का प्रायः प्रचार में उल्लेख किया जाता था। अन्य उदाहरण थे Deutschlandsender Herzberg/Elster और Warsaw Radio Mast

KVLY-TV मास्ट | KVLY-TV का टॉवर ब्लैंचर्ड, नॉर्थ डकोटा के पास स्थित है, जब यह 1963 में बनकर तैयार हुआ था, तब यह दुनिया की सबसे ऊंची कृत्रिम संरचना थी। इसे 1974 में Warszawa रेडियो मास्ट द्वारा पार कर लिया गया था, लेकिन 1970 में बाद के पतन के बाद इसने अपना खिताब वापस पा लिया। 1991. यह 2009 की प्रारंभ में बुर्ज खलीफ़ा गगनचुंबी इमारत से आगे निकल गया था, लेकिन KVLY-TV मस्तूल अभी भी सबसे लंबा ट्रांसमीटर है।

रिकॉर्ड्स

यह भी देखें

संदर्भ


बाहरी संबंध