डीएफटी मैट्रिक्स: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Discrete Fourier Transform expressed as a matrix}} | {{Short description|Discrete Fourier Transform expressed as a matrix}} | ||
प्रयुक्त गणित में, एक डीएफटी आव्यूह एक [[परिवर्तन मैट्रिक्स|परिवर्तन]] आव्यूह के रूप में [[असतत फूरियर रूपांतरण]] (डीएफटी) की अभिव्यक्ति है, जिसे [[मैट्रिक्स गुणन|आव्यूह गुणन]] के माध्यम से संकेत पर प्रयुक्त किया जा सकता है। | प्रयुक्त गणित में, एक डीएफटी आव्यूह एक [[परिवर्तन मैट्रिक्स|परिवर्तन]] आव्यूह के रूप में [[असतत फूरियर रूपांतरण]] (डीएफटी) की अभिव्यक्ति है, जिसे [[मैट्रिक्स गुणन|आव्यूह गुणन]] के माध्यम से संकेत पर प्रयुक्त किया जा सकता है। | ||
Line 20: | Line 20: | ||
जहाँ <math>\omega = e^{-2\pi i/N}</math> एकता का आदिम <math>i^2=-1</math>रूट है जिसमें हम इस तथ्य का उपयोग करके <math>\omega</math> के लिए बड़े घातांक लिखने से बच सकते हैं कि किसी भी घातांक <math>x</math> के लिए हमारी पहचान <math>\omega^{x} = \omega^{x \bmod N}.</math> है यह वैंडरमोंड है एकता की जड़ों के लिए मैट्रिक्स, सामान्यीकरण कारक तक ध्यान दें कि योग के सामने सामान्यीकरण कारक <math>1/\sqrt{N}</math> और ω में घातांक का चिह्न केवल परंपराएं हैं, और कुछ उपचारों में भिन्न हैं। निम्नलिखित सभी चर्चा परिपाटी पर ध्यान दिए बिना प्रयुक्त होती है, अधिकतम सामान्य समायोजन के साथ एकमात्र महत्वपूर्ण बात यह है कि आगे और व्युत्क्रम परिवर्तनों में विपरीत-चिन्ह वाले घातांक होते हैं, और यह कि उनके सामान्यीकरण कारकों का गुणनफल 1/N होता है। चूँकि, यहाँ <math>1/\sqrt{N}</math> विकल्प परिणामी डीएफटी आव्यूह को एकात्मक बनाता है, जो कई परिस्थितियों में सुविधाजनक है। | जहाँ <math>\omega = e^{-2\pi i/N}</math> एकता का आदिम <math>i^2=-1</math>रूट है जिसमें हम इस तथ्य का उपयोग करके <math>\omega</math> के लिए बड़े घातांक लिखने से बच सकते हैं कि किसी भी घातांक <math>x</math> के लिए हमारी पहचान <math>\omega^{x} = \omega^{x \bmod N}.</math> है यह वैंडरमोंड है एकता की जड़ों के लिए मैट्रिक्स, सामान्यीकरण कारक तक ध्यान दें कि योग के सामने सामान्यीकरण कारक <math>1/\sqrt{N}</math> और ω में घातांक का चिह्न केवल परंपराएं हैं, और कुछ उपचारों में भिन्न हैं। निम्नलिखित सभी चर्चा परिपाटी पर ध्यान दिए बिना प्रयुक्त होती है, अधिकतम सामान्य समायोजन के साथ एकमात्र महत्वपूर्ण बात यह है कि आगे और व्युत्क्रम परिवर्तनों में विपरीत-चिन्ह वाले घातांक होते हैं, और यह कि उनके सामान्यीकरण कारकों का गुणनफल 1/N होता है। चूँकि, यहाँ <math>1/\sqrt{N}</math> विकल्प परिणामी डीएफटी आव्यूह को एकात्मक बनाता है, जो कई परिस्थितियों में सुविधाजनक है। | ||
फास्ट फूरियर रूपांतरण एल्गोरिदम आव्यूह के समरूपता का उपयोग इस आव्यूह द्वारा एक वेक्टर को गुणा करने के समय को कम करने के लिए करता है, सामान्य <math>O(N^2)</math> से हैडमार्ड आव्यूह और वॉल्श आव्यूह जैसे मैट्रिसेस द्वारा गुणन के लिए इसी तरह की विधियों को प्रयुक्त | फास्ट फूरियर रूपांतरण एल्गोरिदम आव्यूह के समरूपता का उपयोग इस आव्यूह द्वारा एक वेक्टर को गुणा करने के समय को कम करने के लिए करता है, सामान्य <math>O(N^2)</math> से हैडमार्ड आव्यूह और वॉल्श आव्यूह जैसे मैट्रिसेस द्वारा गुणन के लिए इसी तरह की विधियों को प्रयुक्त किया जा सकता है। | ||
== उदाहरण == | == उदाहरण == | ||
Line 122: | Line 122: | ||
| caption2 = Imaginary part (sine) | | caption2 = Imaginary part (sine) | ||
}} | }} | ||
फूरियर रूपांतरण की धारणा आसानी से [[सामान्यीकृत फूरियर श्रृंखला]] है। एन-पॉइंट डीएफटी के ऐसे एक औपचारिक सामान्यीकरण की कल्पना एन को मनमाने ढंग से बड़ा करके की जा सकती है। सीमा में, कठोर गणितीय मशीनरी ऐसे रैखिक ऑपरेटरों को तथाकथित [[ अभिन्न परिवर्तन ]] के रूप में मानती है। इस मामले में, यदि हम पंक्तियों में जटिल घातांकों के साथ एक बहुत बड़ा आव्यूह बनाते हैं (अर्थात, कोज्या वास्तविक भाग और साइन काल्पनिक भाग), और बिना सीमा के रिज़ॉल्यूशन बढ़ाते हैं, तो हम दूसरी तरह के फ्रेडहोम इंटीग्रल समीकरण के कर्नेल तक पहुँचते हैं, अर्थात् [[फूरियर ऑपरेटर]] जो निरंतर फूरियर रूपांतरण को परिभाषित करता है। इस सतत फूरियर ऑपरेटर के एक आयताकार हिस्से को एक छवि के रूप में प्रदर्शित किया जा सकता है, जो डीएफटी आव्यूह के समान है, जैसा कि दाईं ओर दिखाया गया है, जहां ग्रेस्केल पिक्सेल मान संख्यात्मक मात्रा को दर्शाता है। | फूरियर रूपांतरण की धारणा आसानी से [[सामान्यीकृत फूरियर श्रृंखला]] है। एन-पॉइंट डीएफटी के ऐसे एक औपचारिक सामान्यीकरण की कल्पना एन को मनमाने ढंग से बड़ा करके की जा सकती है। सीमा में, कठोर गणितीय मशीनरी ऐसे रैखिक ऑपरेटरों को तथाकथित [[ अभिन्न परिवर्तन |अभिन्न परिवर्तन]] के रूप में मानती है। इस मामले में, यदि हम पंक्तियों में जटिल घातांकों के साथ एक बहुत बड़ा आव्यूह बनाते हैं (अर्थात, कोज्या वास्तविक भाग और साइन काल्पनिक भाग), और बिना सीमा के रिज़ॉल्यूशन बढ़ाते हैं, तो हम दूसरी तरह के फ्रेडहोम इंटीग्रल समीकरण के कर्नेल तक पहुँचते हैं, अर्थात् [[फूरियर ऑपरेटर]] जो निरंतर फूरियर रूपांतरण को परिभाषित करता है। इस सतत फूरियर ऑपरेटर के एक आयताकार हिस्से को एक छवि के रूप में प्रदर्शित किया जा सकता है, जो डीएफटी आव्यूह के समान है, जैसा कि दाईं ओर दिखाया गया है, जहां ग्रेस्केल पिक्सेल मान संख्यात्मक मात्रा को दर्शाता है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 11:30, 17 May 2023
प्रयुक्त गणित में, एक डीएफटी आव्यूह एक परिवर्तन आव्यूह के रूप में असतत फूरियर रूपांतरण (डीएफटी) की अभिव्यक्ति है, जिसे आव्यूह गुणन के माध्यम से संकेत पर प्रयुक्त किया जा सकता है।
परिभाषा
एक N-पॉइंट डीएफटी गुणा के रूप में व्यक्त किया जाता है, जहां मूल इनपुट संकेत है, N-बाय-N स्क्वायर डीएफटी आव्यूह है, और संकेत का डीएफटी है।
रूपांतरण आव्यूह को के रूप में परिभाषित किया जा सकता है या समकक्ष:
- ,
जहाँ एकता का आदिम रूट है जिसमें हम इस तथ्य का उपयोग करके के लिए बड़े घातांक लिखने से बच सकते हैं कि किसी भी घातांक के लिए हमारी पहचान है यह वैंडरमोंड है एकता की जड़ों के लिए मैट्रिक्स, सामान्यीकरण कारक तक ध्यान दें कि योग के सामने सामान्यीकरण कारक और ω में घातांक का चिह्न केवल परंपराएं हैं, और कुछ उपचारों में भिन्न हैं। निम्नलिखित सभी चर्चा परिपाटी पर ध्यान दिए बिना प्रयुक्त होती है, अधिकतम सामान्य समायोजन के साथ एकमात्र महत्वपूर्ण बात यह है कि आगे और व्युत्क्रम परिवर्तनों में विपरीत-चिन्ह वाले घातांक होते हैं, और यह कि उनके सामान्यीकरण कारकों का गुणनफल 1/N होता है। चूँकि, यहाँ विकल्प परिणामी डीएफटी आव्यूह को एकात्मक बनाता है, जो कई परिस्थितियों में सुविधाजनक है।
फास्ट फूरियर रूपांतरण एल्गोरिदम आव्यूह के समरूपता का उपयोग इस आव्यूह द्वारा एक वेक्टर को गुणा करने के समय को कम करने के लिए करता है, सामान्य से हैडमार्ड आव्यूह और वॉल्श आव्यूह जैसे मैट्रिसेस द्वारा गुणन के लिए इसी तरह की विधियों को प्रयुक्त किया जा सकता है।
उदाहरण
दो-बिंदु
दो-बिंदु डीएफटी एक साधारण मामला है, जिसमें पहली प्रविष्टि डीसी पूर्वाग्रह (योग) है और दूसरी प्रविष्टि एसी गुणांक (अंतर) है।
पहली पंक्ति योग करती है, और दूसरी पंक्ति अंतर करती है।
का कारक रूपांतरण को एकात्मक बनाना है (नीचे देखें)।
चार सूत्री
चार-बिंदु दक्षिणावर्त DFT आव्यूह इस प्रकार है:
जहाँ .
आठ-बिंदु
दो मामलों की पहली गैर-तुच्छ पूर्णांक शक्ति आठ बिंदुओं के लिए है:
कहाँ
(ध्यान दें कि .)
निम्नलिखित छवि डीएफटी को आव्यूह गुणन के रूप में दर्शाती है, जटिल घातांक के नमूनों द्वारा दर्शाए गए आव्यूह के तत्वों के साथ:
वास्तविक भाग (कोज्या तरंग) को एक ठोस रेखा और काल्पनिक भाग (साइन तरंग) को धराशायी रेखा द्वारा दर्शाया जाता है।
शीर्ष पंक्ति सभी वाले हैं (द्वारा स्केल किया गया यूनिटारिटी के लिए), इसलिए यह इनपुट संकेत में डीसी पूर्वाग्रह को मापता है। अगली पंक्ति एक जटिल घातांक के ऋणात्मक एक चक्र के आठ नमूने हैं, अर्थात, −1/8 की भिन्नात्मक आवृत्ति वाला एक संकेत, इसलिए यह मापता है कि संकेत में भिन्नात्मक आवृत्ति +1/8 पर कितनी शक्ति है। याद रखें कि एक मेल खाने वाला फ़िल्टर संकेत की तुलना हम जो कुछ भी खोज रहे हैं उसके एक समय उलट संस्करण के साथ करते हैं, इसलिए जब हम fracfreq की तलाश कर रहे हैं। 1/8 हम fracfreq से तुलना करते हैं। −1/8 इसलिए यह पंक्ति ऋणात्मक बारंबारता है। अगली पंक्ति एक जटिल घातांक के नकारात्मक दो चक्र हैं, जिन्हें आठ स्थानों पर नमूना लिया गया है, इसलिए इसमें -1/4 की भिन्नात्मक आवृत्ति है, और इस प्रकार उस सीमा को मापता है जिस तक संकेत की आंशिक आवृत्ति +1/4 है।
निम्नलिखित सारांशित करता है कि 8-बिंदु डीएफटी कैसे काम करता है, पंक्ति दर पंक्ति, भिन्नात्मक आवृत्ति के संदर्भ में:
- 0 मापता है कि संकेत में कितना DC है
- −1/8 मापता है कि कितने संकेत की आंशिक आवृत्ति +1/8 है
- −1/4 मापता है कि कितने संकेत की आंशिक आवृत्ति +1/4 है
- −3/8 मापता है कि कितने संकेत की भिन्नात्मक आवृत्ति +3/8 है
- −1/2 मापता है कि कितने संकेत की आंशिक आवृत्ति +1/2 है
- −5/8 मापता है कि कितने संकेत की भिन्नात्मक आवृत्ति +5/8 है
- −3/4 मापता है कि कितने संकेत की आंशिक आवृत्ति +3/4 है
- −7/8 मापता है कि कितने संकेत की भिन्नात्मक आवृत्ति +7/8 है
समतुल्य रूप से अंतिम पंक्ति को +1/8 की भिन्नात्मक आवृत्ति कहा जा सकता है और इस प्रकार यह मापता है कि कितने संकेत की भिन्नात्मक आवृत्ति -1/8 है। इस तरह, यह कहा जा सकता है कि आव्यूह की शीर्ष पंक्तियाँ संकेत में सकारात्मक आवृत्ति सामग्री को मापती हैं और नीचे की पंक्तियाँ संकेत में नकारात्मक आवृत्ति घटक को मापती हैं।
एकात्मक परिवर्तन
डीएफटी (या स्केलिंग के उचित चयन के माध्यम से हो सकता है) एक एकात्मक परिवर्तन है, यानी, जो ऊर्जा को संरक्षित करता है। एकात्मकता प्राप्त करने के लिए स्केलिंग का उपयुक्त विकल्प है , ताकि भौतिक डोमेन में ऊर्जा फूरियर डोमेन में ऊर्जा के समान हो, यानी पारसेवल के प्रमेय को संतुष्ट करने के लिए। (अन्य, गैर-एकात्मक, स्केलिंग, आमतौर पर कम्प्यूटेशनल सुविधा के लिए भी उपयोग किए जाते हैं; उदाहरण के लिए, असतत फूरियर रूपांतरण लेख में दिखाए गए स्केलिंग के साथ कनवल्शन प्रमेय थोड़ा सरल रूप लेता है।)
अन्य गुण
डीएफटी आव्यूह के अन्य गुणों के लिए, इसके eigenvalues सहित, कनवल्शन से कनेक्शन, एप्लिकेशन, और इसी तरह, असतत फूरियर ट्रांसफॉर्म लेख देखें।
एक सीमित मामला: फूरियर ऑपरेटर
फूरियर रूपांतरण की धारणा आसानी से सामान्यीकृत फूरियर श्रृंखला है। एन-पॉइंट डीएफटी के ऐसे एक औपचारिक सामान्यीकरण की कल्पना एन को मनमाने ढंग से बड़ा करके की जा सकती है। सीमा में, कठोर गणितीय मशीनरी ऐसे रैखिक ऑपरेटरों को तथाकथित अभिन्न परिवर्तन के रूप में मानती है। इस मामले में, यदि हम पंक्तियों में जटिल घातांकों के साथ एक बहुत बड़ा आव्यूह बनाते हैं (अर्थात, कोज्या वास्तविक भाग और साइन काल्पनिक भाग), और बिना सीमा के रिज़ॉल्यूशन बढ़ाते हैं, तो हम दूसरी तरह के फ्रेडहोम इंटीग्रल समीकरण के कर्नेल तक पहुँचते हैं, अर्थात् फूरियर ऑपरेटर जो निरंतर फूरियर रूपांतरण को परिभाषित करता है। इस सतत फूरियर ऑपरेटर के एक आयताकार हिस्से को एक छवि के रूप में प्रदर्शित किया जा सकता है, जो डीएफटी आव्यूह के समान है, जैसा कि दाईं ओर दिखाया गया है, जहां ग्रेस्केल पिक्सेल मान संख्यात्मक मात्रा को दर्शाता है।
यह भी देखें
- बहुआयामी परिवर्तन
- पाउली मैट्रिसेस का सामान्यीकरण # निर्माण: घड़ी और शिफ्ट मैट्रिसेस
संदर्भ
- The Transform and Data Compression Handbook by P. C. Yip, K. Ramamohan Rao – See chapter 2 for a treatment of the DFT based largely on the DFT matrix