क्वांटम नींव: Difference between revisions
(Created page with "{{Short description|Branch of knowledge concerned with building intuition for quantum theory}} क्वांटम फ़ाउंडेशन एक अनुशासन (...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Branch of knowledge concerned with building intuition for quantum theory}} | {{Short description|Branch of knowledge concerned with building intuition for quantum theory}} | ||
क्वांटम फ़ाउंडेशन एक अनुशासन | क्वांटम फ़ाउंडेशन विज्ञान का एक अनुशासन है । जो [[क्वांटम यांत्रिकी]] के प्रति-सही ज्ञान युक्त तथ्यों को समझने का प्रयास करता है । इसे सुधारता है और यहां तक कि इसके नए सामान्यीकरण भी प्रस्तावित करता है। अन्य भौतिक सिद्धांतों के विपरीत, जैसे कि [[सामान्य सापेक्षता]], क्वांटम सिद्धांत के परिभाषित सिद्धांत अधिक तदर्थ हैं । जिनमें कोई स्पष्ट भौतिक अंतर्ज्ञान नहीं है। जबकि वे सही प्रायोगिक पूर्वानुमानो की ओर ले जाते हैं । वे संसार की मानसिक चित्र के साथ नहीं आते हैं । जहाँ वे फिट होते हैं। | ||
इस वैचारिक अंतर को हल करने के लिए विभिन्न दृष्टिकोण | इस वैचारिक अंतर को हल करने के लिए विभिन्न दृष्टिकोण उपस्थित हैं । | ||
* सबसे पहले, | * सबसे पहले, मौलिक भौतिकी के विपरीत क्वांटम भौतिकी को रखा जा सकता है । [[बेल परीक्षण प्रयोग]] जैसे परिदृश्यों की पहचान करके, जहां क्वांटम सिद्धांत मूल रूप से मौलिक पूर्वानुमानो से विचलित हो जाता है । क्वांटम भौतिकी की संरचना पर भौतिक अंतर्दृष्टि प्राप्त करने की उम्मीद करता है। | ||
* दूसरा, परिचालन [[स्वयंसिद्ध]] | * दूसरा, परिचालन [[स्वयंसिद्ध|सिद्धांत]] के संदर्भ में क्वांटम औपचारिकता की पुन: व्युत्पत्ति खोजने का प्रयास किया जा सकता है। | ||
* तीसरा, क्वांटम | * तीसरा, क्वांटम रूपरेखा के गणितीय तत्वों और भौतिक घटनाओं के बीच पूर्ण अनुरूपता की खोज की जा सकती है । ऐसे किसी भी अनुरूपता को [[क्वांटम यांत्रिकी की व्याख्या]] कहा जाता है। | ||
* चौथा, कोई क्वांटम सिद्धांत को पूरी तरह से त्याग सकता है और | * चौथा, कोई क्वांटम सिद्धांत को पूरी तरह से त्याग सकता है और संसार के एक अलग मॉडल का प्रस्ताव कर सकता है। | ||
क्वांटम फ़ाउंडेशन में अनुसंधान इन सड़कों के साथ संरचित है। | क्वांटम फ़ाउंडेशन में अनुसंधान इन सड़कों के साथ संरचित है। | ||
== क्वांटम सिद्धांत की गैर- | == क्वांटम सिद्धांत की गैर-मौलिक विशेषताएं == | ||
=== क्वांटम गैर-स्थानीयता === | === क्वांटम गैर-स्थानीयता === | ||
{{main| | {{main|क्वांटम गैर-स्थानीयता}} | ||
क्वांटम | क्वांटम स्तर पर मापन करने वाले दो या दो से अधिक अलग-अलग पार्टियां उन सहसंबंधों का निरीक्षण कर सकती हैं । जिन्हें किसी [[छिपे हुए चर सिद्धांत]] के साथ नहीं समझाया जा सकता है।<ref name=Bell1964>{{cite journal | last1 = Bell | first1 = J. S. | authorlink = John Stewart Bell | year = 1964 | title = आइंस्टीन पोडॉल्स्की रोसेन विरोधाभास पर| url = https://cds.cern.ch/record/111654/files/vol1p195-200_001.pdf | journal = [[Physics Physique Физика]] | volume = 1 | issue = 3| pages = 195–200 | doi = 10.1103/PhysicsPhysiqueFizika.1.195 | doi-access = free }}</ref><ref name="Mermin1993">{{cite journal | last = Mermin |first = N. David |authorlink=N. David Mermin |title = छिपे हुए चर और जॉन बेल के दो प्रमेय| journal = [[Reviews of Modern Physics]] | volume = 65 |pages = 803–15 | number = 3| date = July 1993 |doi = 10.1103/RevModPhys.65.803 |arxiv=1802.10119|bibcode = 1993RvMP...65..803M |s2cid = 119546199 }}</ref> क्या इसे यह सिद्ध करने के रूप में माना जाना चाहिए कि भौतिक संसार स्वयं गैर-उपस्थान है । <ref>{{cite journal|last=Werner |first=R. F. |title='बेल ने क्या किया' पर टिप्पणी करें|journal=[[Journal of Physics A]] |year=2014 |volume=47 |issue=42 |pages=424011 |doi=10.1088/1751-8113/47/42/424011|bibcode=2014JPhA...47P4011W |s2cid=122180759 }}</ref><ref>{{cite journal|first1=M. |last1=Żukowski |first2=Č. |last2=Brukner |authorlink2=Časlav Brukner |title=Quantum non-locality—it ain't necessarily so... |journal=[[Journal of Physics A]] |volume=47 |year=2014 |issue=42 |pages=424009 |doi=10.1088/1751-8113/47/42/424009|arxiv=1501.04618 |s2cid=119220867 }}</ref> किन्तु क्वांटम गैर-स्थानीयता की शब्दावली सामान्य है। क्वांटम फ़ाउंडेशन में गैर-स्थानिकता अनुसंधान प्रयास उन स्पष्ट सीमाओं को निर्धारित करने पर ध्यान केंद्रित करते हैं । जो मौलिक या क्वांटम भौतिकी बेल प्रयोग या अधिक जटिल कारण परिदृश्यों में देखे गए सहसंबंधों पर प्रयुक्त होती हैं।<ref name=FRITZ>{{cite journal|first=T.|last= Fritz|title= Beyond Bell's Theorem: Correlation Scenarios|journal=[[New Journal of Physics]]|volume= 14|pages= 103001|year=2012|issue= 10|doi= 10.1088/1367-2630/14/10/103001|arxiv= 1206.5115|bibcode= 2012NJPh...14j3001F|doi-access= free}}</ref> इस खोज प्रोग्राम में अब तक बेल के प्रमेय का एक सामान्यीकरण प्रदान किया है । जो सभी मौलिक सिद्धांतों को एक अतिसूक्ष्म, फिर भी परिमित, छिपे हुए प्रभाव के साथ गलत सिद्ध करने की अनुमति देता है।<ref name = BANCAL>{{cite journal|first=Jean-Daniel|last= Bancal|author2= Pironio, Stefano|author3= Acín, Antonio |author4= Liang, Yeong-Cherng |author5= Scarani, Valerio |author6= Gisin, Nicolas |authorlink6=Nicolas Gisin |title= परिमित-गति के कारण प्रभावों के आधार पर क्वांटम गैर-स्थानिकता सुपरल्यूमिनल सिग्नलिंग की ओर ले जाती है|journal=[[Nature Physics]] |volume= 8|pages= 867–870|year=2012|issue= 12|doi=10.1038/nphys2460|arxiv= 1110.3795|bibcode= 2012NatPh...8..867B|doi-access= free}}</ref> | ||
=== क्वांटम | === क्वांटम संदर्भ === | ||
{{main| | {{main|क्वांटम संदर्भ}} | ||
गैर-स्थानिकता को [[क्वांटम प्रासंगिकता]] के उदाहरण के रूप में समझा जा सकता है। एक स्थिति प्रासंगिक होती है जब एक अवलोकन योग्य का मूल्य उस संदर्भ पर निर्भर करता है जिसमें इसे मापा जाता है (अर्थात्, जिस पर अन्य अवलोकनों को भी मापा जा रहा है)। माप की | गैर-स्थानिकता को [[क्वांटम प्रासंगिकता|क्वांटम संदर्भ]] के उदाहरण के रूप में समझा जा सकता है। एक स्थिति प्रासंगिक होती है । जब एक अवलोकन योग्य का मूल्य उस संदर्भ पर निर्भर करता है । जिसमें इसे मापा जाता है (अर्थात्, जिस पर अन्य अवलोकनों को भी मापा जा रहा है)। माप की संदर्भ की मूल परिभाषा को स्तर की तैयारियों और यहां तक कि सामान्य भौतिक परिवर्तनों तक बढ़ाया जा सकता है।<ref name=SPEKKENS>{{cite journal|first=R. W. |last=Spekkens|title= तैयारी, परिवर्तन और सटीक माप के लिए प्रासंगिकता|journal=[[Physical Review A]] |volume= 71|issue=5|pages= 052108 |year=2005| doi=10.1103/PhysRevA.71.052108|arxiv=quant-ph/0406166|bibcode=2005PhRvA..71e2108S|s2cid=38186461}}</ref> | ||
=== क्वांटम तरंग क्रिया के लिए एपिस्टेमिक मॉडल === | |||
एक भौतिक प्रोपर्टी एपिस्टेमिक है । जब यह एक दूसरे, अधिक मौलिक विशेषता के मूल्य पर हमारे ज्ञान या विश्वासों का प्रतिनिधित्व करती है। किसी घटना के घटित होने की प्रायिकता गुण का एक उदाहरण है। इसके विपरीत, एक गैर-एपिस्टेमिक या ओन्टिक चर विचाराधीन प्रणाली की "वास्तविक" प्रोपर्टी की धारणा को पकड़ लेता है। | |||
=== क्वांटम | इस बात पर बहस चल रही है कि क्या तरंग क्रिया अभी तक खोजे जाने वाले ऑनटिक वैरिएबल की एपिस्टेमिक अवस्था का प्रतिनिधित्व करता है या इसके विपरीत, यह एक मौलिक इकाई है।<ref name="HARRIGAN">{{cite journal|first=N. |last=Harrigan|author2= R. W. Spekkens|title= आइंस्टीन, अपूर्णता, और क्वांटम स्टेट्स का महामारी दृश्य|journal= [[Foundations of Physics]]|volume= 40|issue=2|pages= 125–157|year=2010|doi=10.1007/s10701-009-9347-0|arxiv=0706.2661|bibcode=2010FoPh...40..125H|s2cid=32755624}}</ref> कुछ भौतिक धारणाओं के अनुसार, पीबीआर प्रमेय पुसे-बैरेट-रूडोल्फ (पीबीआर) प्रमेय क्वांटम स्तरों की असंगति को एपिस्टेमिक स्तरों के रूप में प्रदर्शित करता है, ऊपर के अर्थ में <ref name="PBR">{{cite journal|first=M. F.|last= Pusey|author2= Barrett, J.|author3= Rudolph, T.|title= क्वांटम राज्य की वास्तविकता पर|journal= [[Nature Physics]]|volume= 8|issue=6|pages= 475–478|year=2012| doi=10.1038/nphys2309|arxiv= 1111.3328|bibcode= 2012NatPh...8..476P|s2cid= 14618942}}</ref> ध्यान दें कि, [[QBism|क्यूबिज़्म]] में <ref name="FUCHS">{{cite arXiv|first=C. A.|last= Fuchs|title= QBism, क्वांटम बायेसियनवाद की परिधि| eprint=1003.5209|year=2010|class= quant-ph}}</ref> और [[कोपेनहेगन व्याख्या]]-प्रकार <ref name="ZEILINGER">{{cite journal|first=M. |last=Schlosshauer|author2= Kofler, J.|author3= Zeilinger, A.|authorlink3=Anton Zeilinger |title= क्वांटम यांत्रिकी के प्रति मूलभूत दृष्टिकोण का एक स्नैपशॉट|journal= [[Studies in History and Philosophy of Science Part B]]|volume= 44|issue=3|pages= 222–230|year=2013| doi=10.1016/j.shpsb.2013.04.004|arxiv=1301.1069|bibcode=2013SHPMP..44..222S|s2cid=55537196}}</ref> विचार, क्वांटम स्तरों को अभी भी एपिस्टेमिक के रूप में माना जाता है, कुछ ओन्टिक चर के संबंध में नहीं, किन्तु भविष्य के प्रयोगात्मक परिणामों के बारे में किसी की अपेक्षाओं के अनुसार पीबीआर प्रमेय क्वांटम स्तरों पर इस तरह के एपिस्टेमिक संबंधी विचारों को बाहर नहीं करता है। | ||
== सिद्धांत पुनर्निर्माण == | |||
क्वांटम सिद्धांत के कुछ प्रति-सही तथ्य, साथ ही इसे विस्तारित करने में कठिनाई, इस तथ्य से अनुसरण करते हैं कि इसके परिभाषित सिद्धांतो में शारीरिक प्रेरणा का अभाव है। क्वांटम फ़ाउंडेशन में अनुसंधान का एक सक्रिय क्षेत्र इसलिए क्वांटम सिद्धांत के वैकल्पिक योगों को खोजना है । जो शारीरिक रूप से सम्मोहक सिद्धांतों पर निर्भर करते हैं। सिद्धांत के विवरण के वांछित स्तर के आधार पर वे प्रयास दो सुगंध में आते हैं । तथाकथित सामान्यीकृत संभाव्य सिद्धांत दृष्टिकोण और ब्लैक बॉक्स दृष्टिकोण है । | |||
== | === सामान्यीकृत संभाव्य सिद्धांतों की रूपरेखा === | ||
{{Main|सामान्यीकृत प्रायिकता सिद्धांत}} | |||
सामान्यीकृत संभाव्यता सिद्धांत (जीपीटी) इच्छानुसार भौतिक सिद्धांतों की परिचालन विशेषताओं का वर्णन करने के लिए एक सामान्य रुपरेखा है। अनिवार्य रूप से, वे स्तर की तैयारी, परिवर्तन और माप के संयोजन वाले किसी भी प्रयोग का सांख्यिकीय विवरण प्रदान करते हैं। जीपीटी की रूपरेखा मौलिक और क्वांटम भौतिकी, साथ ही काल्पनिक गैर-क्वांटम भौतिक सिद्धांतों को समायोजित कर सकती है । जो फिर भी क्वांटम सिद्धांत की सबसे उल्लेखनीय विशेषताएं हैं, जैसे कि उलझाव या टेलीपोर्टेशन <ref name=TELEPORT>{{cite conference|first=H. |last=Barnum|author2= Barrett, J.|author3= Leifer, M. |author4= Wilce, A.|title= सामान्य संभाव्य सिद्धांतों में टेलीपोर्टेशन|conference= AMS Proceedings of Symposia in Applied Mathematics|editor= S. Abramsky and M. Mislove|publisher=[[American Mathematical Society]], Providence|year= 2012}}</ref> विशेष रूप से, शारीरिक रूप से प्रेरित सिद्धांतो का एक छोटा सा समुच्चय क्वांटम सिद्धांत के जीपीटी प्रतिनिधित्व को अलग करने के लिए पर्याप्त है।<ref name=HARDY>{{cite arXiv|first=L. |last=Hardy|authorlink=Lucien Hardy |title= क्वांटम थ्योरी फ्रॉम फाइव रीजनेबल एक्सिओम्स|year=2001|eprint= quant-ph/0101012}}</ref> | |||
लूसियन हार्डी ने मूलभूत भौतिक सिद्धांतों से क्वांटम सिद्धांत को फिर से प्राप्त करने के प्रयास में 2001 में जीपीटी की अवधारणा प्रस्तुत किया था।<ref name="HARDY" /> चूँकि हार्डी का काम बहुत प्रभावशाली था । (नीचे अनुवर्ती देखें), उनके एक सिद्धांत को असंतोषजनक माना गया था । यह निर्धारित किया गया था कि, सभी सिद्धांतों के बाकी सिद्धांतों के साथ संगत सभी भौतिक सिद्धांतों में से एक को सबसे सरल चुनना चाहिए।<ref name="DB">{{cite book|first=B. |last=Dakic|author2= Brukner, Č.|authorlink2=Časlav Brukner |chapter= Quantum Theory and Beyond: Is Entanglement Special?|title= Deep Beauty: Understanding the Quantum World through Mathematical Innovation|editor= H. Halvorson|publisher=Cambridge University Press|year= 2011|pages= 365–392}}</ref> डाकिक और सीस्लाव ब्रुकनर के काम ने इस "सरलता के सिद्धांत" को समाप्त कर दिया और तीन भौतिक सिद्धांतों के आधार पर क्वांटम सिद्धांत का पुनर्निर्माण प्रदान किया।<ref name="DB" /> इसके बाद मसान और मुलर का अधिक कठोर पुनर्निर्माण किया गया।<ref name="MM">{{cite journal|first=L. |last=Masanes|author2= Müller, M. |title= भौतिक आवश्यकताओं से क्वांटम सिद्धांत की व्युत्पत्ति|journal=[[New Journal of Physics]]|volume=13|pages=063001|year=2011|issue=6|doi=10.1088/1367-2630/13/6/063001|arxiv=1004.1483|bibcode=2011NJPh...13f3001M|s2cid=4806946}}</ref> | |||
इन तीन पुनर्निर्माणों के सामान्य अभिगृहीत हैं । | |||
* उपस्थान सिद्धांत: सिस्टम जो समान मात्रा में जानकारी संग्रहीत कर सकते हैं । भौतिक रूप से समतुल्य हैं। | |||
* उपस्थान टोमोग्राफी: एक समग्र प्रणाली की स्थिति को चिह्नित करने के लिए यह प्रत्येक भाग पर माप करने के लिए पर्याप्त है। | |||
* उत्क्रमणीयता: किसी भी दो चरम अवस्थाओं के लिए अर्थात, वे स्तर जो अन्य स्तरों के सांख्यिकीय मिश्रण नहीं हैं, एक प्रतिवर्ती भौतिक परिवर्तन उपस्थित है । जो एक को दूसरे में मैप करता है। | |||
चिरिबेला एट अल द्वारा प्रस्तावित एक वैकल्पिक जीपीटी पुनर्निर्माण <ref name="PAVIA">{{cite journal|first=G. |last=Chiribella|author2= D'Ariano, G. M.|author3= Perinotti, P.|title= क्वांटम थ्योरी की सूचनात्मक व्युत्पत्ति|journal= [[Phys. Rev. A]]|volume= 84|pages= 012311|year=2011|issue=1|doi=10.1103/PhysRevA.84.012311|arxiv=1011.6451|bibcode=2011PhRvA..84a2311C|s2cid=15364117}}</ref><ref>{{cite book|first1=G. M. |last1=D'Ariano |first2=G. |last2=Chiribella |first3=P. |last3=Perinotti |title=Quantum Theory from First Principles: An Informational Approach |publisher=Cambridge University Press |year=2017 |isbn=9781107338340 |oclc=972460315}}</ref> लगभग उसी समय पर भी आधारित है । | |||
* शोधन सिद्धांत: किसी भी स्तर के लिए <math>S_A</math> एक भौतिक प्रणाली ए में एक द्विदलीय भौतिक प्रणाली उपस्थित है । <math>A-B</math> और एक चरम स्थिति (या शोधन) <math>T_{AB}</math> ऐसा है कि <math>S_A</math> का प्रतिबंध है । प्रणाली <math>T_{AB}</math> के लिए <math>A</math>. इसके अतिरिक्त, कोई दो ऐसे शोधन <math>T_{AB}, T^{\prime}_{AB}</math> का <math>S_A</math> सिस्टम पर एक प्रतिवर्ती भौतिक परिवर्तन <math>B</math> के माध्यम से एक दूसरे में मैप किया जा सकता है । | |||
क्वांटम सिद्धांत को चित्रित करने के लिए शोधन के उपयोग की इस आधार पर आलोचना की गई है कि यह [[ स्पीकेन का खिलौना मॉडल | स्पेकेंस टॉय मॉडल]] में भी प्रयुक्त होता है।<ref>{{cite journal|first1=M. |last1=Appleby |first2=C. A. |last2=Fuchs |first3=B. C. |last3=Stacey |first4=H. |last4=Zhu |title=Introducing the Qplex: a novel arena for quantum theory |journal=[[European Physical Journal D]] |arxiv=1612.03234 |doi=10.1140/epjd/e2017-80024-y |year=2017 |volume=71 |issue=7 |pages=197 |bibcode=2017EPJD...71..197A|s2cid=119240836 }}</ref> | |||
जीपीटी दृष्टिकोण की सफलता के लिए, यह प्रतिवाद किया जा सकता है कि ऐसे सभी कार्य केवल परिमित आयामी क्वांटम सिद्धांत को पुनः प्राप्त करते हैं। इसके अतिरिक्त, पिछले सिद्धांतो में से कोई भी प्रयोगात्मक रूप से गलत नहीं हो सकता है । जब तक कि माप उपकरण को [[क्वांटम टोमोग्राफी]] नहीं माना जाता है। | |||
=== श्रेणीबद्ध क्वांटम यांत्रिकी या प्रक्रिया सिद्धांत === | === श्रेणीबद्ध क्वांटम यांत्रिकी या प्रक्रिया सिद्धांत === | ||
{{Main| | {{Main|श्रेणीबद्ध क्वांटम यांत्रिकी}} | ||
श्रेणीबद्ध क्वांटम यांत्रिकी ( | श्रेणीबद्ध क्वांटम यांत्रिकी (सीक्यूएम) या प्रक्रिया सिद्धांत भौतिक सिद्धांतों का वर्णन करने के लिए एक सामान्य रुपरेखा है । जिसमें प्रक्रियाओं और उनकी रचनाओं पर जोर दिया गया है।<ref>{{Cite book |last1=Coecke |first1=Bob |url=https://www.worldcat.org/oclc/983730394 |title=Picturing Quantum Processes: a first course in quantum theory and diagrammatic reasoning |last2=Kissinger |first2=Aleks |date=2017 |publisher=Cambridge University Press |isbn=978-1-316-21931-7 |location=Cambridge, United Kingdom |oclc=983730394}}</ref> इसका नेतृत्व [[सैमसन अब्राम्स्की]] और [[बॉब कोएके]] ने किया था। क्वांटम फ़ाउंडेशन में इसके प्रभाव के अतिरिक्त, विशेष रूप से आरेखीय औपचारिकता का उपयोग, सीक्यूएम भी क्वांटम प्रौद्योगिकियों में एक महत्वपूर्ण भूमिका निभाता है । विशेष रूप से [[ZX-पथरी|जेडएक्स-पथरी]] के रूप में इसका उपयोग भौतिकी के बाहर के सिद्धांतों को मॉडल करने के लिए भी किया गया है, उदाहरण के लिए डिस्कोकैट रचनात्मक मॉडल है । | ||
=== ब्लैक बॉक्स की रूपरेखा === | === ब्लैक बॉक्स की रूपरेखा === | ||
{{main| | {{main|क्वांटम गैर-स्थानीयता}} | ||
ब्लैक बॉक्स या | ब्लैक बॉक्स या उपकरण-स्वतंत्र रूपरेखा में, एक प्रयोग को ब्लैक बॉक्स के रूप में माना जाता है । जहां प्रयोगवादी एक इनपुट (प्रयोग का प्रकार) प्रस्तुत करता है और एक आउटपुट (प्रयोग का परिणाम) प्राप्त करता है। अलग-अलग प्रयोगशालाओं में दो या दो से अधिक टीमो द्वारा किए गए प्रयोग इसलिए केवल उनके सांख्यिकीय सहसंबंधों द्वारा वर्णित हैं। | ||
बेल के प्रमेय से, हम जानते हैं कि | बेल के प्रमेय से, हम जानते हैं कि मौलिक और क्वांटम भौतिकी अनुमत सहसंबंधों के विभिन्न समुच्चयों की पूर्वानुमान करती है। इसलिए, यह उम्मीद की जाती है कि दूर-से-क्वांटम भौतिक सिद्धांतों को क्वांटम समुच्चय से परे सहसंबंधों की पूर्वानुमान करनी चाहिए। वास्तव में, सैद्धांतिक गैर-क्वांटम सहसंबंधों के उदाहरण उपस्थित हैं । जो एक प्राथमिकता, भौतिक रूप से असंभव नहीं लगते हैं।<ref name=RASTALL>{{cite journal|last=Rastall|first= Peter|year=1985|title=स्थानीयता, बेल की प्रमेय और क्वांटम यांत्रिकी|journal= [[Foundations of Physics]]|volume= 15|issue=9|pages= 963–972|doi=10.1007/bf00739036|bibcode= 1985FoPh...15..963R|s2cid= 122298281}}</ref><ref name=KT>{{cite conference|first=L.A.|last= Khalfin|author2= Tsirelson, B. S.|title= बेल असमानताओं के क्वांटम और अर्ध-शास्त्रीय अनुरूप| conference=Symposium on the Foundations of Modern Physics|publisher= World Sci. Publ. |pages= 441–460|year= 1985|editor=Lahti|display-editors= etal}}</ref><ref name= PR>{{cite journal|first=S. |last=Popescu |author2= Rohrlich, D.|title= एक स्वयंसिद्ध के रूप में गैर-स्थानीयता|journal= [[Foundations of Physics]]|volume= 24|issue=3|pages= 379–385|year=1994|doi=10.1007/BF02058098|s2cid=120333148 }}</ref> उपकरण-स्वतंत्र पुनर्निर्माण का उद्देश्य यह दिखाना है कि ऐसे सभी सुपर-क्वांटम उदाहरण एक उचित भौतिक सिद्धांत द्वारा रोके गए हैं। | ||
अब तक प्रस्तावित भौतिक सिद्धांतों में नो-सिग्नलिंग | अब तक प्रस्तावित भौतिक सिद्धांतों में नो-सिग्नलिंग सम्मिलित है,<ref name=PR/> गैर-सामान्य संचार जटिलता,<ref name=NTCC>{{cite journal|last=Brassard|first= G| author2= Buhrman, H|author3= Linden, N|author4= Methot, AA|author5= Tapp, A| author6= Unger, F |title=किसी भी दुनिया में गैर-मौजूदगी की सीमा जिसमें संचार जटिलता तुच्छ नहीं है| journal=[[Physical Review Letters]]|volume= 96|pages= 250401|year=2006|issue= 25|doi= 10.1103/PhysRevLett.96.250401|pmid= 16907289|arxiv= quant-ph/0508042|bibcode= 2006PhRvL..96y0401B|s2cid= 6135971}}</ref> गैर-उपस्थान संगणना के लिए नो-एडवांटेज,<ref name=NANLC>{{cite journal|first=N. |last=Linden|author2= Popescu, S.|author3= Short, A. J.| author4= Winter, A. |title= Quantum Nonlocality and Beyond: Limits from Nonlocal Computation|journal=[[Physical Review Letters]]|volume= 99|issue=18| pages=180502| year=2007|doi=10.1103/PhysRevLett.99.180502|pmid=17995388|bibcode=2007PhRvL..99r0502L|arxiv=quant-ph/0610097}}</ref> सूचना करणीय,<ref name=IC>{{cite journal | last1 = Pawlowski| first1 = M. | last2 = Paterek | first2=T. | last3= Kaszlikowski | first3 = D. | last4= Scarani | first4 = V. | last5 = Winter | first5 = A.| last6= Zukowski | first6 = M.| title = एक भौतिक सिद्धांत के रूप में सूचना करणीयता| journal = [[Nature (journal)|Nature]] | volume = 461 | pages = 1101–1104 |date=October 2009 | doi = 10.1038/nature08400 | pmid = 19847260 | issue = 7267 |bibcode = 2009Natur.461.1101P |arxiv = 0905.2292 | s2cid = 4428663 }}</ref> मैक्रोस्कोपिक लोकैलिटी,<ref name=ML>{{cite journal|first=M. |last=Navascués|author2= H. Wunderlich|title= क्वांटम मॉडल से परे एक नज़र|journal= [[Proc. R. Soc. A]]|volume= 466|issue=2115|pages=881–890|year=2009|doi=10.1098/rspa.2009.0453|doi-access=free}}</ref> और उपस्थान रूढ़िवादिता है।<ref name =LO>{{cite journal|first=T. |last=Fritz|author2= Sainz, A. B.|author3= Augusiak, R.|author4= Brask, J. B.|author5= Chaves, R.|author6= Leverrier, A.|author7= Acín, A.|title= क्वांटम सहसंबंधों के लिए एक बहुदलीय सिद्धांत के रूप में स्थानीय रूढ़िवादिता|journal= [[Nature Communications]]|volume= 4|pages= 2263 |year=2013|doi= 10.1038/ncomms3263|pmid=23948952|bibcode=2013NatCo...4.2263F|arxiv=1210.3018|s2cid=14759956}}</ref> ये सभी सिद्धांत गैर-सामान्य विधियों से संभावित सहसंबंधों के समुच्चय को सीमित करते हैं। इसके अतिरिक्त, वे सभी उपकरण-स्वतंत्र हैं । इसका कारण यह है कि उन्हें इस धारणा के अनुसार गलत सिद्ध किया जा सकता है कि हम यह तय कर सकते हैं कि दो या दो से अधिक घटनाएं अंतरिक्ष की तरह अलग हैं या नहीं है। उपकरण-स्वतंत्र दृष्टिकोण का दोष यह है कि, जब एक साथ लिया जाता है । तब भी उपरोक्त सभी भौतिक सिद्धांत क्वांटम सहसंबंधों के समुच्चय को अलग करने के लिए पर्याप्त नहीं होते हैं।<ref name=AQ>{{cite journal|first=M. |last=Navascués|author2= Guryanova, Y.|author3= Hoban, M. J.|author4= Acín, A.|title= लगभग क्वांटम सहसंबंध|journal= [[Nature Communications]] |volume=6|pages= 6288|year= 2015|doi= 10.1038/ncomms7288|pmid=25697645|bibcode=2015NatCo...6.6288N|arxiv=1403.4621|s2cid=12810715}}</ref> दूसरे शब्दों में: ऐसे सभी पुनर्निर्माण आंशिक हैं। | ||
==क्वांटम सिद्धांत की व्याख्या== | ==क्वांटम सिद्धांत की व्याख्या== | ||
{{main| | {{main|क्वांटम यांत्रिकी की व्याख्या}} | ||
क्वांटम सिद्धांत की व्याख्या इसके गणितीय औपचारिकता और भौतिक घटना के तत्वों के बीच एक | क्वांटम सिद्धांत की व्याख्या इसके गणितीय औपचारिकता और भौतिक घटना के तत्वों के बीच एक अनुरूपता है। उदाहरण के लिए, [[ पायलट तरंग सिद्धांत ]] में, [[तरंग क्रिया]] की व्याख्या एक ऐसे क्षेत्र के रूप में की जाती है जो कण प्रक्षेपवक्र का मार्गदर्शन करता है और इसके साथ युग्मित विभेदक समीकरणों की एक प्रणाली के माध्यम से विकसित होता है। [[मापन समस्या]] को हल करने की इच्छा से क्वांटम सिद्धांत की अधिकांश व्याख्याएं उत्पन्न होती हैं। | ||
==क्वांटम सिद्धांत का विस्तार== | ==क्वांटम सिद्धांत का विस्तार== | ||
क्वांटम और | क्वांटम और मौलिक भौतिकी में सामंजस्य स्थापित करने के प्रयास में, या एक गतिशील कारण संरचना के साथ गैर-मौलिक मॉडल की पहचान करने के लिए, क्वांटम सिद्धांत के कुछ संशोधन प्रस्तावित किए गए हैं। | ||
=== मॉडल संक्षिप्त करें === | === मॉडल संक्षिप्त करें === | ||
[[उद्देश्य-पतन सिद्धांत]] प्राकृतिक प्रक्रियाओं के अस्तित्व को प्रस्तुत करता है जो समय-समय पर तरंग-कार्य को | [[उद्देश्य-पतन सिद्धांत]] प्राकृतिक प्रक्रियाओं के अस्तित्व को प्रस्तुत करता है जो समय-समय पर तरंग-कार्य को उपस्थान बनाते हैं।<ref name=GRW>{{cite journal|first=G. C.|last= Ghirardi|author2= A. Rimini|author3= T. Weber|title= माइक्रोस्कोपिक और मैक्रोस्कोपिक सिस्टम के लिए एकीकृत गतिकी|journal= [[Physical Review D]]|volume= 34|pages= 470–491|year=1986|issue= 2| doi=10.1103/PhysRevD.34.470|pmid= 9957165|bibcode= 1986PhRvD..34..470G}}</ref> इस तरह के सिद्धांत [[एकात्मकता (भौतिकी)]] को छोड़ने और ऊर्जा के स्पष्ट संरक्षण की कीमत पर मैक्रोस्कोपिक वस्तुओं के सुपरपोज़िशन के गैर-अस्तित्व के लिए एक स्पष्टीकरण प्रदान करते हैं। | ||
=== क्वांटम माप सिद्धांत === | === क्वांटम माप सिद्धांत === | ||
[[राफेल सॉर्किन]] के क्वांटम माप सिद्धांत (QMT) में, भौतिक प्रणालियों को एकात्मक किरणों और हर्मिटियन ऑपरेटरों के माध्यम से नहीं बनाया गया है, | [[राफेल सॉर्किन]] के क्वांटम माप सिद्धांत (QMT) में, भौतिक प्रणालियों को एकात्मक किरणों और हर्मिटियन ऑपरेटरों के माध्यम से नहीं बनाया गया है, किन्तु एक मैट्रिक्स जैसी वस्तु के माध्यम से, डीकोहेरेंस कार्यात्मक है।<ref name=SORKIN>{{cite journal|first=R. D.|last= Sorkin|authorlink=Rafael Sorkin |title= क्वांटम यांत्रिकी क्वांटम माप सिद्धांत के रूप में|journal= [[Mod. Phys. Lett. A]]|volume=9 |pages=3119–3128|year=1994|issue= 33|doi=10.1142/S021773239400294X|arxiv=gr-qc/9401003|bibcode= 1994MPLA....9.3119S|s2cid= 18938710}}</ref> डीकोहेरेंस कार्यात्मक की प्रविष्टियां मौलिक इतिहास के दो या दो से अधिक विभिन्न समुच्चयों के साथ-साथ प्रत्येक प्रयोगात्मक परिणाम की संभावनाओं के बीच प्रयोगात्मक रूप से भेदभाव करने की व्यवहार्यता निर्धारित करती हैं। क्यूएमटी के कुछ मॉडलों में डीकोहेरेंस कार्यात्मक सकारात्मक अर्धनिश्चित (मजबूत सकारात्मकता) होने के लिए और अधिक विवश है। यहां तक कि मजबूत सकारात्मकता की धारणा के अनुसार, क्यूएमटी के ऐसे मॉडल उपस्थित हैं जो क्वांटम बेल सहसंबंधों से अधिक मजबूत उत्पन्न करते हैं।<ref name=HISTORIES>{{cite journal|first=F. |last=Dowker|authorlink=Fay Dowker |author2= Henson, J.|author3= Wallden, P.|title= क्वांटम गैर-स्थानीयता की विशेषता पर एक इतिहास परिप्रेक्ष्य|journal= [[New Journal of Physics]]| volume= 16|year= 2014|issue=3|page=033033|doi= 10.1088/1367-2630/16/3/033033|bibcode=2014NJPh...16c3033D|doi-access= free}}</ref> | ||
=== आकस्मिक क्वांटम प्रक्रियाएं === | === आकस्मिक क्वांटम प्रक्रियाएं === | ||
प्रक्रिया मेट्रिसेस की औपचारिकता अवलोकन से शुरू होती है, जो क्वांटम | प्रक्रिया मेट्रिसेस की औपचारिकता अवलोकन से शुरू होती है, जो क्वांटम स्तरों की संरचना को देखते हुए, व्यवहार्य क्वांटम संचालन का समुच्चय सकारात्मक विचारों से अनुसरण करता है। अर्थात्, स्तरों से संभावनाओं के किसी भी रैखिक मानचित्र के लिए एक भौतिक प्रणाली मिल सकती है जहां यह नक्शा भौतिक माप से मेल खाता है। इसी तरह, कोई भी रैखिक परिवर्तन जो संयुक्त स्तरों को मैप करता है, कुछ भौतिक प्रणाली में एक वैध संचालन से मेल खाता है। इस प्रवृत्ति को देखते हुए, यह मानना उचित है कि क्वांटम उपकरणों (अर्थात्, माप प्रक्रियाओं) से लेकर संभावनाओं तक कोई भी उच्च-क्रम का नक्शा भी भौतिक रूप से वसूली योग्य होना चाहिए।<ref name=ACAUSAL>{{cite journal|first=O. |last=Oreshkov|author2= Costa, F.|author3= Brukner, C.|title= बिना किसी कारण क्रम के क्वांटम सहसंबंध|journal= [[Nature Communications]] |volume=3|pages= 1092–|year=2012|doi= 10.1038/ncomms2076|pmid=23033068|pmc=3493644|arxiv=1105.4464|bibcode=2012NatCo...3.1092O|doi-access= free}}</ref> ऐसे किसी भी मानचित्र को प्रक्रिया मैट्रिक्स कहा जाता है। जैसा कि ओरेशकोव एट अल द्वारा दिखाया गया है।<ref name=ACAUSAL/>कुछ प्रक्रिया आव्यूह उन स्थितियों का वर्णन करते हैं जहां वैश्विक कार्य-कारण की धारणा टूटती है। | ||
इस दावे का शुरुआती बिंदु निम्नलिखित मानसिक प्रयोग है: दो पक्ष, [[ऐलिस और बॉब]], एक इमारत में प्रवेश करते हैं और अलग-अलग कमरों में समाप्त हो जाते हैं। कमरों में आने वाले और बाहर जाने वाले चैनल हैं जिनसे क्वांटम सिस्टम समय-समय पर कमरे में प्रवेश करता है और छोड़ देता है। जबकि वे प्रणालियाँ प्रयोगशाला में हैं, ऐलिस और बॉब उनके साथ किसी भी तरह से बातचीत करने में सक्षम हैं; विशेष रूप से, वे अपनी कुछ संपत्तियों को माप सकते हैं। | इस दावे का शुरुआती बिंदु निम्नलिखित मानसिक प्रयोग है: दो पक्ष, [[ऐलिस और बॉब]], एक इमारत में प्रवेश करते हैं और अलग-अलग कमरों में समाप्त हो जाते हैं। कमरों में आने वाले और बाहर जाने वाले चैनल हैं जिनसे क्वांटम सिस्टम समय-समय पर कमरे में प्रवेश करता है और छोड़ देता है। जबकि वे प्रणालियाँ प्रयोगशाला में हैं, ऐलिस और बॉब उनके साथ किसी भी तरह से बातचीत करने में सक्षम हैं; विशेष रूप से, वे अपनी कुछ संपत्तियों को माप सकते हैं। | ||
चूंकि ऐलिस और बॉब की बातचीत को क्वांटम उपकरणों द्वारा प्रतिरूपित किया जा सकता है, जब वे एक उपकरण या किसी अन्य को | चूंकि ऐलिस और बॉब की बातचीत को क्वांटम उपकरणों द्वारा प्रतिरूपित किया जा सकता है, जब वे एक उपकरण या किसी अन्य को प्रयुक्त करते हैं तो वे जो आँकड़े देखते हैं, वे एक प्रक्रिया मैट्रिक्स द्वारा दिए जाते हैं। जैसा कि यह पता चला है, वहाँ प्रक्रिया मैट्रिसेस उपस्थित हैं जो यह गारंटी देंगे कि ऐलिस और बॉब द्वारा एकत्र किए गए माप आँकड़े ऐलिस के साथ असंगत हैं, बॉब के पहले या बाद में, या इन तीन स्थितियों के किसी भी उत्तल संयोजन के साथ उसके सिस्टम के साथ बातचीत कर रहे हैं।<ref name=ACAUSAL/>ऐसी प्रक्रियाओं को आकस्मिक कहा जाता है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 15:13, 24 May 2023
क्वांटम फ़ाउंडेशन विज्ञान का एक अनुशासन है । जो क्वांटम यांत्रिकी के प्रति-सही ज्ञान युक्त तथ्यों को समझने का प्रयास करता है । इसे सुधारता है और यहां तक कि इसके नए सामान्यीकरण भी प्रस्तावित करता है। अन्य भौतिक सिद्धांतों के विपरीत, जैसे कि सामान्य सापेक्षता, क्वांटम सिद्धांत के परिभाषित सिद्धांत अधिक तदर्थ हैं । जिनमें कोई स्पष्ट भौतिक अंतर्ज्ञान नहीं है। जबकि वे सही प्रायोगिक पूर्वानुमानो की ओर ले जाते हैं । वे संसार की मानसिक चित्र के साथ नहीं आते हैं । जहाँ वे फिट होते हैं।
इस वैचारिक अंतर को हल करने के लिए विभिन्न दृष्टिकोण उपस्थित हैं ।
- सबसे पहले, मौलिक भौतिकी के विपरीत क्वांटम भौतिकी को रखा जा सकता है । बेल परीक्षण प्रयोग जैसे परिदृश्यों की पहचान करके, जहां क्वांटम सिद्धांत मूल रूप से मौलिक पूर्वानुमानो से विचलित हो जाता है । क्वांटम भौतिकी की संरचना पर भौतिक अंतर्दृष्टि प्राप्त करने की उम्मीद करता है।
- दूसरा, परिचालन सिद्धांत के संदर्भ में क्वांटम औपचारिकता की पुन: व्युत्पत्ति खोजने का प्रयास किया जा सकता है।
- तीसरा, क्वांटम रूपरेखा के गणितीय तत्वों और भौतिक घटनाओं के बीच पूर्ण अनुरूपता की खोज की जा सकती है । ऐसे किसी भी अनुरूपता को क्वांटम यांत्रिकी की व्याख्या कहा जाता है।
- चौथा, कोई क्वांटम सिद्धांत को पूरी तरह से त्याग सकता है और संसार के एक अलग मॉडल का प्रस्ताव कर सकता है।
क्वांटम फ़ाउंडेशन में अनुसंधान इन सड़कों के साथ संरचित है।
क्वांटम सिद्धांत की गैर-मौलिक विशेषताएं
क्वांटम गैर-स्थानीयता
क्वांटम स्तर पर मापन करने वाले दो या दो से अधिक अलग-अलग पार्टियां उन सहसंबंधों का निरीक्षण कर सकती हैं । जिन्हें किसी छिपे हुए चर सिद्धांत के साथ नहीं समझाया जा सकता है।[1][2] क्या इसे यह सिद्ध करने के रूप में माना जाना चाहिए कि भौतिक संसार स्वयं गैर-उपस्थान है । [3][4] किन्तु क्वांटम गैर-स्थानीयता की शब्दावली सामान्य है। क्वांटम फ़ाउंडेशन में गैर-स्थानिकता अनुसंधान प्रयास उन स्पष्ट सीमाओं को निर्धारित करने पर ध्यान केंद्रित करते हैं । जो मौलिक या क्वांटम भौतिकी बेल प्रयोग या अधिक जटिल कारण परिदृश्यों में देखे गए सहसंबंधों पर प्रयुक्त होती हैं।[5] इस खोज प्रोग्राम में अब तक बेल के प्रमेय का एक सामान्यीकरण प्रदान किया है । जो सभी मौलिक सिद्धांतों को एक अतिसूक्ष्म, फिर भी परिमित, छिपे हुए प्रभाव के साथ गलत सिद्ध करने की अनुमति देता है।[6]
क्वांटम संदर्भ
गैर-स्थानिकता को क्वांटम संदर्भ के उदाहरण के रूप में समझा जा सकता है। एक स्थिति प्रासंगिक होती है । जब एक अवलोकन योग्य का मूल्य उस संदर्भ पर निर्भर करता है । जिसमें इसे मापा जाता है (अर्थात्, जिस पर अन्य अवलोकनों को भी मापा जा रहा है)। माप की संदर्भ की मूल परिभाषा को स्तर की तैयारियों और यहां तक कि सामान्य भौतिक परिवर्तनों तक बढ़ाया जा सकता है।[7]
क्वांटम तरंग क्रिया के लिए एपिस्टेमिक मॉडल
एक भौतिक प्रोपर्टी एपिस्टेमिक है । जब यह एक दूसरे, अधिक मौलिक विशेषता के मूल्य पर हमारे ज्ञान या विश्वासों का प्रतिनिधित्व करती है। किसी घटना के घटित होने की प्रायिकता गुण का एक उदाहरण है। इसके विपरीत, एक गैर-एपिस्टेमिक या ओन्टिक चर विचाराधीन प्रणाली की "वास्तविक" प्रोपर्टी की धारणा को पकड़ लेता है।
इस बात पर बहस चल रही है कि क्या तरंग क्रिया अभी तक खोजे जाने वाले ऑनटिक वैरिएबल की एपिस्टेमिक अवस्था का प्रतिनिधित्व करता है या इसके विपरीत, यह एक मौलिक इकाई है।[8] कुछ भौतिक धारणाओं के अनुसार, पीबीआर प्रमेय पुसे-बैरेट-रूडोल्फ (पीबीआर) प्रमेय क्वांटम स्तरों की असंगति को एपिस्टेमिक स्तरों के रूप में प्रदर्शित करता है, ऊपर के अर्थ में [9] ध्यान दें कि, क्यूबिज़्म में [10] और कोपेनहेगन व्याख्या-प्रकार [11] विचार, क्वांटम स्तरों को अभी भी एपिस्टेमिक के रूप में माना जाता है, कुछ ओन्टिक चर के संबंध में नहीं, किन्तु भविष्य के प्रयोगात्मक परिणामों के बारे में किसी की अपेक्षाओं के अनुसार पीबीआर प्रमेय क्वांटम स्तरों पर इस तरह के एपिस्टेमिक संबंधी विचारों को बाहर नहीं करता है।
सिद्धांत पुनर्निर्माण
क्वांटम सिद्धांत के कुछ प्रति-सही तथ्य, साथ ही इसे विस्तारित करने में कठिनाई, इस तथ्य से अनुसरण करते हैं कि इसके परिभाषित सिद्धांतो में शारीरिक प्रेरणा का अभाव है। क्वांटम फ़ाउंडेशन में अनुसंधान का एक सक्रिय क्षेत्र इसलिए क्वांटम सिद्धांत के वैकल्पिक योगों को खोजना है । जो शारीरिक रूप से सम्मोहक सिद्धांतों पर निर्भर करते हैं। सिद्धांत के विवरण के वांछित स्तर के आधार पर वे प्रयास दो सुगंध में आते हैं । तथाकथित सामान्यीकृत संभाव्य सिद्धांत दृष्टिकोण और ब्लैक बॉक्स दृष्टिकोण है ।
सामान्यीकृत संभाव्य सिद्धांतों की रूपरेखा
सामान्यीकृत संभाव्यता सिद्धांत (जीपीटी) इच्छानुसार भौतिक सिद्धांतों की परिचालन विशेषताओं का वर्णन करने के लिए एक सामान्य रुपरेखा है। अनिवार्य रूप से, वे स्तर की तैयारी, परिवर्तन और माप के संयोजन वाले किसी भी प्रयोग का सांख्यिकीय विवरण प्रदान करते हैं। जीपीटी की रूपरेखा मौलिक और क्वांटम भौतिकी, साथ ही काल्पनिक गैर-क्वांटम भौतिक सिद्धांतों को समायोजित कर सकती है । जो फिर भी क्वांटम सिद्धांत की सबसे उल्लेखनीय विशेषताएं हैं, जैसे कि उलझाव या टेलीपोर्टेशन [12] विशेष रूप से, शारीरिक रूप से प्रेरित सिद्धांतो का एक छोटा सा समुच्चय क्वांटम सिद्धांत के जीपीटी प्रतिनिधित्व को अलग करने के लिए पर्याप्त है।[13]
लूसियन हार्डी ने मूलभूत भौतिक सिद्धांतों से क्वांटम सिद्धांत को फिर से प्राप्त करने के प्रयास में 2001 में जीपीटी की अवधारणा प्रस्तुत किया था।[13] चूँकि हार्डी का काम बहुत प्रभावशाली था । (नीचे अनुवर्ती देखें), उनके एक सिद्धांत को असंतोषजनक माना गया था । यह निर्धारित किया गया था कि, सभी सिद्धांतों के बाकी सिद्धांतों के साथ संगत सभी भौतिक सिद्धांतों में से एक को सबसे सरल चुनना चाहिए।[14] डाकिक और सीस्लाव ब्रुकनर के काम ने इस "सरलता के सिद्धांत" को समाप्त कर दिया और तीन भौतिक सिद्धांतों के आधार पर क्वांटम सिद्धांत का पुनर्निर्माण प्रदान किया।[14] इसके बाद मसान और मुलर का अधिक कठोर पुनर्निर्माण किया गया।[15]
इन तीन पुनर्निर्माणों के सामान्य अभिगृहीत हैं ।
- उपस्थान सिद्धांत: सिस्टम जो समान मात्रा में जानकारी संग्रहीत कर सकते हैं । भौतिक रूप से समतुल्य हैं।
- उपस्थान टोमोग्राफी: एक समग्र प्रणाली की स्थिति को चिह्नित करने के लिए यह प्रत्येक भाग पर माप करने के लिए पर्याप्त है।
- उत्क्रमणीयता: किसी भी दो चरम अवस्थाओं के लिए अर्थात, वे स्तर जो अन्य स्तरों के सांख्यिकीय मिश्रण नहीं हैं, एक प्रतिवर्ती भौतिक परिवर्तन उपस्थित है । जो एक को दूसरे में मैप करता है।
चिरिबेला एट अल द्वारा प्रस्तावित एक वैकल्पिक जीपीटी पुनर्निर्माण [16][17] लगभग उसी समय पर भी आधारित है ।
- शोधन सिद्धांत: किसी भी स्तर के लिए एक भौतिक प्रणाली ए में एक द्विदलीय भौतिक प्रणाली उपस्थित है । और एक चरम स्थिति (या शोधन) ऐसा है कि का प्रतिबंध है । प्रणाली के लिए . इसके अतिरिक्त, कोई दो ऐसे शोधन का सिस्टम पर एक प्रतिवर्ती भौतिक परिवर्तन के माध्यम से एक दूसरे में मैप किया जा सकता है ।
क्वांटम सिद्धांत को चित्रित करने के लिए शोधन के उपयोग की इस आधार पर आलोचना की गई है कि यह स्पेकेंस टॉय मॉडल में भी प्रयुक्त होता है।[18]
जीपीटी दृष्टिकोण की सफलता के लिए, यह प्रतिवाद किया जा सकता है कि ऐसे सभी कार्य केवल परिमित आयामी क्वांटम सिद्धांत को पुनः प्राप्त करते हैं। इसके अतिरिक्त, पिछले सिद्धांतो में से कोई भी प्रयोगात्मक रूप से गलत नहीं हो सकता है । जब तक कि माप उपकरण को क्वांटम टोमोग्राफी नहीं माना जाता है।
श्रेणीबद्ध क्वांटम यांत्रिकी या प्रक्रिया सिद्धांत
श्रेणीबद्ध क्वांटम यांत्रिकी (सीक्यूएम) या प्रक्रिया सिद्धांत भौतिक सिद्धांतों का वर्णन करने के लिए एक सामान्य रुपरेखा है । जिसमें प्रक्रियाओं और उनकी रचनाओं पर जोर दिया गया है।[19] इसका नेतृत्व सैमसन अब्राम्स्की और बॉब कोएके ने किया था। क्वांटम फ़ाउंडेशन में इसके प्रभाव के अतिरिक्त, विशेष रूप से आरेखीय औपचारिकता का उपयोग, सीक्यूएम भी क्वांटम प्रौद्योगिकियों में एक महत्वपूर्ण भूमिका निभाता है । विशेष रूप से जेडएक्स-पथरी के रूप में इसका उपयोग भौतिकी के बाहर के सिद्धांतों को मॉडल करने के लिए भी किया गया है, उदाहरण के लिए डिस्कोकैट रचनात्मक मॉडल है ।
ब्लैक बॉक्स की रूपरेखा
ब्लैक बॉक्स या उपकरण-स्वतंत्र रूपरेखा में, एक प्रयोग को ब्लैक बॉक्स के रूप में माना जाता है । जहां प्रयोगवादी एक इनपुट (प्रयोग का प्रकार) प्रस्तुत करता है और एक आउटपुट (प्रयोग का परिणाम) प्राप्त करता है। अलग-अलग प्रयोगशालाओं में दो या दो से अधिक टीमो द्वारा किए गए प्रयोग इसलिए केवल उनके सांख्यिकीय सहसंबंधों द्वारा वर्णित हैं।
बेल के प्रमेय से, हम जानते हैं कि मौलिक और क्वांटम भौतिकी अनुमत सहसंबंधों के विभिन्न समुच्चयों की पूर्वानुमान करती है। इसलिए, यह उम्मीद की जाती है कि दूर-से-क्वांटम भौतिक सिद्धांतों को क्वांटम समुच्चय से परे सहसंबंधों की पूर्वानुमान करनी चाहिए। वास्तव में, सैद्धांतिक गैर-क्वांटम सहसंबंधों के उदाहरण उपस्थित हैं । जो एक प्राथमिकता, भौतिक रूप से असंभव नहीं लगते हैं।[20][21][22] उपकरण-स्वतंत्र पुनर्निर्माण का उद्देश्य यह दिखाना है कि ऐसे सभी सुपर-क्वांटम उदाहरण एक उचित भौतिक सिद्धांत द्वारा रोके गए हैं।
अब तक प्रस्तावित भौतिक सिद्धांतों में नो-सिग्नलिंग सम्मिलित है,[22] गैर-सामान्य संचार जटिलता,[23] गैर-उपस्थान संगणना के लिए नो-एडवांटेज,[24] सूचना करणीय,[25] मैक्रोस्कोपिक लोकैलिटी,[26] और उपस्थान रूढ़िवादिता है।[27] ये सभी सिद्धांत गैर-सामान्य विधियों से संभावित सहसंबंधों के समुच्चय को सीमित करते हैं। इसके अतिरिक्त, वे सभी उपकरण-स्वतंत्र हैं । इसका कारण यह है कि उन्हें इस धारणा के अनुसार गलत सिद्ध किया जा सकता है कि हम यह तय कर सकते हैं कि दो या दो से अधिक घटनाएं अंतरिक्ष की तरह अलग हैं या नहीं है। उपकरण-स्वतंत्र दृष्टिकोण का दोष यह है कि, जब एक साथ लिया जाता है । तब भी उपरोक्त सभी भौतिक सिद्धांत क्वांटम सहसंबंधों के समुच्चय को अलग करने के लिए पर्याप्त नहीं होते हैं।[28] दूसरे शब्दों में: ऐसे सभी पुनर्निर्माण आंशिक हैं।
क्वांटम सिद्धांत की व्याख्या
क्वांटम सिद्धांत की व्याख्या इसके गणितीय औपचारिकता और भौतिक घटना के तत्वों के बीच एक अनुरूपता है। उदाहरण के लिए, पायलट तरंग सिद्धांत में, तरंग क्रिया की व्याख्या एक ऐसे क्षेत्र के रूप में की जाती है जो कण प्रक्षेपवक्र का मार्गदर्शन करता है और इसके साथ युग्मित विभेदक समीकरणों की एक प्रणाली के माध्यम से विकसित होता है। मापन समस्या को हल करने की इच्छा से क्वांटम सिद्धांत की अधिकांश व्याख्याएं उत्पन्न होती हैं।
क्वांटम सिद्धांत का विस्तार
क्वांटम और मौलिक भौतिकी में सामंजस्य स्थापित करने के प्रयास में, या एक गतिशील कारण संरचना के साथ गैर-मौलिक मॉडल की पहचान करने के लिए, क्वांटम सिद्धांत के कुछ संशोधन प्रस्तावित किए गए हैं।
मॉडल संक्षिप्त करें
उद्देश्य-पतन सिद्धांत प्राकृतिक प्रक्रियाओं के अस्तित्व को प्रस्तुत करता है जो समय-समय पर तरंग-कार्य को उपस्थान बनाते हैं।[29] इस तरह के सिद्धांत एकात्मकता (भौतिकी) को छोड़ने और ऊर्जा के स्पष्ट संरक्षण की कीमत पर मैक्रोस्कोपिक वस्तुओं के सुपरपोज़िशन के गैर-अस्तित्व के लिए एक स्पष्टीकरण प्रदान करते हैं।
क्वांटम माप सिद्धांत
राफेल सॉर्किन के क्वांटम माप सिद्धांत (QMT) में, भौतिक प्रणालियों को एकात्मक किरणों और हर्मिटियन ऑपरेटरों के माध्यम से नहीं बनाया गया है, किन्तु एक मैट्रिक्स जैसी वस्तु के माध्यम से, डीकोहेरेंस कार्यात्मक है।[30] डीकोहेरेंस कार्यात्मक की प्रविष्टियां मौलिक इतिहास के दो या दो से अधिक विभिन्न समुच्चयों के साथ-साथ प्रत्येक प्रयोगात्मक परिणाम की संभावनाओं के बीच प्रयोगात्मक रूप से भेदभाव करने की व्यवहार्यता निर्धारित करती हैं। क्यूएमटी के कुछ मॉडलों में डीकोहेरेंस कार्यात्मक सकारात्मक अर्धनिश्चित (मजबूत सकारात्मकता) होने के लिए और अधिक विवश है। यहां तक कि मजबूत सकारात्मकता की धारणा के अनुसार, क्यूएमटी के ऐसे मॉडल उपस्थित हैं जो क्वांटम बेल सहसंबंधों से अधिक मजबूत उत्पन्न करते हैं।[31]
आकस्मिक क्वांटम प्रक्रियाएं
प्रक्रिया मेट्रिसेस की औपचारिकता अवलोकन से शुरू होती है, जो क्वांटम स्तरों की संरचना को देखते हुए, व्यवहार्य क्वांटम संचालन का समुच्चय सकारात्मक विचारों से अनुसरण करता है। अर्थात्, स्तरों से संभावनाओं के किसी भी रैखिक मानचित्र के लिए एक भौतिक प्रणाली मिल सकती है जहां यह नक्शा भौतिक माप से मेल खाता है। इसी तरह, कोई भी रैखिक परिवर्तन जो संयुक्त स्तरों को मैप करता है, कुछ भौतिक प्रणाली में एक वैध संचालन से मेल खाता है। इस प्रवृत्ति को देखते हुए, यह मानना उचित है कि क्वांटम उपकरणों (अर्थात्, माप प्रक्रियाओं) से लेकर संभावनाओं तक कोई भी उच्च-क्रम का नक्शा भी भौतिक रूप से वसूली योग्य होना चाहिए।[32] ऐसे किसी भी मानचित्र को प्रक्रिया मैट्रिक्स कहा जाता है। जैसा कि ओरेशकोव एट अल द्वारा दिखाया गया है।[32]कुछ प्रक्रिया आव्यूह उन स्थितियों का वर्णन करते हैं जहां वैश्विक कार्य-कारण की धारणा टूटती है।
इस दावे का शुरुआती बिंदु निम्नलिखित मानसिक प्रयोग है: दो पक्ष, ऐलिस और बॉब, एक इमारत में प्रवेश करते हैं और अलग-अलग कमरों में समाप्त हो जाते हैं। कमरों में आने वाले और बाहर जाने वाले चैनल हैं जिनसे क्वांटम सिस्टम समय-समय पर कमरे में प्रवेश करता है और छोड़ देता है। जबकि वे प्रणालियाँ प्रयोगशाला में हैं, ऐलिस और बॉब उनके साथ किसी भी तरह से बातचीत करने में सक्षम हैं; विशेष रूप से, वे अपनी कुछ संपत्तियों को माप सकते हैं।
चूंकि ऐलिस और बॉब की बातचीत को क्वांटम उपकरणों द्वारा प्रतिरूपित किया जा सकता है, जब वे एक उपकरण या किसी अन्य को प्रयुक्त करते हैं तो वे जो आँकड़े देखते हैं, वे एक प्रक्रिया मैट्रिक्स द्वारा दिए जाते हैं। जैसा कि यह पता चला है, वहाँ प्रक्रिया मैट्रिसेस उपस्थित हैं जो यह गारंटी देंगे कि ऐलिस और बॉब द्वारा एकत्र किए गए माप आँकड़े ऐलिस के साथ असंगत हैं, बॉब के पहले या बाद में, या इन तीन स्थितियों के किसी भी उत्तल संयोजन के साथ उसके सिस्टम के साथ बातचीत कर रहे हैं।[32]ऐसी प्रक्रियाओं को आकस्मिक कहा जाता है।
यह भी देखें
- दूरी पर कार्रवाई
- भौतिकी का दर्शन
- क्वांटम कम्प्यूटिंग
- स्टर्न-गेरलाच प्रयोग
- कोचेन-स्पीकर प्रमेय
संदर्भ
- ↑ Bell, J. S. (1964). "आइंस्टीन पोडॉल्स्की रोसेन विरोधाभास पर" (PDF). Physics Physique Физика. 1 (3): 195–200. doi:10.1103/PhysicsPhysiqueFizika.1.195.
- ↑ Mermin, N. David (July 1993). "छिपे हुए चर और जॉन बेल के दो प्रमेय". Reviews of Modern Physics. 65 (3): 803–15. arXiv:1802.10119. Bibcode:1993RvMP...65..803M. doi:10.1103/RevModPhys.65.803. S2CID 119546199.
- ↑ Werner, R. F. (2014). "'बेल ने क्या किया' पर टिप्पणी करें". Journal of Physics A. 47 (42): 424011. Bibcode:2014JPhA...47P4011W. doi:10.1088/1751-8113/47/42/424011. S2CID 122180759.
- ↑ Żukowski, M.; Brukner, Č. (2014). "Quantum non-locality—it ain't necessarily so...". Journal of Physics A. 47 (42): 424009. arXiv:1501.04618. doi:10.1088/1751-8113/47/42/424009. S2CID 119220867.
- ↑ Fritz, T. (2012). "Beyond Bell's Theorem: Correlation Scenarios". New Journal of Physics. 14 (10): 103001. arXiv:1206.5115. Bibcode:2012NJPh...14j3001F. doi:10.1088/1367-2630/14/10/103001.
- ↑ Bancal, Jean-Daniel; Pironio, Stefano; Acín, Antonio; Liang, Yeong-Cherng; Scarani, Valerio; Gisin, Nicolas (2012). "परिमित-गति के कारण प्रभावों के आधार पर क्वांटम गैर-स्थानिकता सुपरल्यूमिनल सिग्नलिंग की ओर ले जाती है". Nature Physics. 8 (12): 867–870. arXiv:1110.3795. Bibcode:2012NatPh...8..867B. doi:10.1038/nphys2460.
- ↑ Spekkens, R. W. (2005). "तैयारी, परिवर्तन और सटीक माप के लिए प्रासंगिकता". Physical Review A. 71 (5): 052108. arXiv:quant-ph/0406166. Bibcode:2005PhRvA..71e2108S. doi:10.1103/PhysRevA.71.052108. S2CID 38186461.
- ↑ Harrigan, N.; R. W. Spekkens (2010). "आइंस्टीन, अपूर्णता, और क्वांटम स्टेट्स का महामारी दृश्य". Foundations of Physics. 40 (2): 125–157. arXiv:0706.2661. Bibcode:2010FoPh...40..125H. doi:10.1007/s10701-009-9347-0. S2CID 32755624.
- ↑ Pusey, M. F.; Barrett, J.; Rudolph, T. (2012). "क्वांटम राज्य की वास्तविकता पर". Nature Physics. 8 (6): 475–478. arXiv:1111.3328. Bibcode:2012NatPh...8..476P. doi:10.1038/nphys2309. S2CID 14618942.
- ↑ Fuchs, C. A. (2010). "QBism, क्वांटम बायेसियनवाद की परिधि". arXiv:1003.5209 [quant-ph].
- ↑ Schlosshauer, M.; Kofler, J.; Zeilinger, A. (2013). "क्वांटम यांत्रिकी के प्रति मूलभूत दृष्टिकोण का एक स्नैपशॉट". Studies in History and Philosophy of Science Part B. 44 (3): 222–230. arXiv:1301.1069. Bibcode:2013SHPMP..44..222S. doi:10.1016/j.shpsb.2013.04.004. S2CID 55537196.
- ↑ Barnum, H.; Barrett, J.; Leifer, M.; Wilce, A. (2012). S. Abramsky and M. Mislove (ed.). सामान्य संभाव्य सिद्धांतों में टेलीपोर्टेशन. AMS Proceedings of Symposia in Applied Mathematics. American Mathematical Society, Providence.
- ↑ 13.0 13.1 Hardy, L. (2001). "क्वांटम थ्योरी फ्रॉम फाइव रीजनेबल एक्सिओम्स". arXiv:quant-ph/0101012.
- ↑ 14.0 14.1 Dakic, B.; Brukner, Č. (2011). "Quantum Theory and Beyond: Is Entanglement Special?". In H. Halvorson (ed.). Deep Beauty: Understanding the Quantum World through Mathematical Innovation. Cambridge University Press. pp. 365–392.
- ↑ Masanes, L.; Müller, M. (2011). "भौतिक आवश्यकताओं से क्वांटम सिद्धांत की व्युत्पत्ति". New Journal of Physics. 13 (6): 063001. arXiv:1004.1483. Bibcode:2011NJPh...13f3001M. doi:10.1088/1367-2630/13/6/063001. S2CID 4806946.
- ↑ Chiribella, G.; D'Ariano, G. M.; Perinotti, P. (2011). "क्वांटम थ्योरी की सूचनात्मक व्युत्पत्ति". Phys. Rev. A. 84 (1): 012311. arXiv:1011.6451. Bibcode:2011PhRvA..84a2311C. doi:10.1103/PhysRevA.84.012311. S2CID 15364117.
- ↑ D'Ariano, G. M.; Chiribella, G.; Perinotti, P. (2017). Quantum Theory from First Principles: An Informational Approach. Cambridge University Press. ISBN 9781107338340. OCLC 972460315.
- ↑ Appleby, M.; Fuchs, C. A.; Stacey, B. C.; Zhu, H. (2017). "Introducing the Qplex: a novel arena for quantum theory". European Physical Journal D. 71 (7): 197. arXiv:1612.03234. Bibcode:2017EPJD...71..197A. doi:10.1140/epjd/e2017-80024-y. S2CID 119240836.
- ↑ Coecke, Bob; Kissinger, Aleks (2017). Picturing Quantum Processes: a first course in quantum theory and diagrammatic reasoning. Cambridge, United Kingdom: Cambridge University Press. ISBN 978-1-316-21931-7. OCLC 983730394.
- ↑ Rastall, Peter (1985). "स्थानीयता, बेल की प्रमेय और क्वांटम यांत्रिकी". Foundations of Physics. 15 (9): 963–972. Bibcode:1985FoPh...15..963R. doi:10.1007/bf00739036. S2CID 122298281.
- ↑ Khalfin, L.A.; Tsirelson, B. S. (1985). Lahti; et al. (eds.). बेल असमानताओं के क्वांटम और अर्ध-शास्त्रीय अनुरूप. Symposium on the Foundations of Modern Physics. World Sci. Publ. pp. 441–460.
- ↑ 22.0 22.1 Popescu, S.; Rohrlich, D. (1994). "एक स्वयंसिद्ध के रूप में गैर-स्थानीयता". Foundations of Physics. 24 (3): 379–385. doi:10.1007/BF02058098. S2CID 120333148.
- ↑ Brassard, G; Buhrman, H; Linden, N; Methot, AA; Tapp, A; Unger, F (2006). "किसी भी दुनिया में गैर-मौजूदगी की सीमा जिसमें संचार जटिलता तुच्छ नहीं है". Physical Review Letters. 96 (25): 250401. arXiv:quant-ph/0508042. Bibcode:2006PhRvL..96y0401B. doi:10.1103/PhysRevLett.96.250401. PMID 16907289. S2CID 6135971.
- ↑ Linden, N.; Popescu, S.; Short, A. J.; Winter, A. (2007). "Quantum Nonlocality and Beyond: Limits from Nonlocal Computation". Physical Review Letters. 99 (18): 180502. arXiv:quant-ph/0610097. Bibcode:2007PhRvL..99r0502L. doi:10.1103/PhysRevLett.99.180502. PMID 17995388.
- ↑ Pawlowski, M.; Paterek, T.; Kaszlikowski, D.; Scarani, V.; Winter, A.; Zukowski, M. (October 2009). "एक भौतिक सिद्धांत के रूप में सूचना करणीयता". Nature. 461 (7267): 1101–1104. arXiv:0905.2292. Bibcode:2009Natur.461.1101P. doi:10.1038/nature08400. PMID 19847260. S2CID 4428663.
- ↑ Navascués, M.; H. Wunderlich (2009). "क्वांटम मॉडल से परे एक नज़र". Proc. R. Soc. A. 466 (2115): 881–890. doi:10.1098/rspa.2009.0453.
- ↑ Fritz, T.; Sainz, A. B.; Augusiak, R.; Brask, J. B.; Chaves, R.; Leverrier, A.; Acín, A. (2013). "क्वांटम सहसंबंधों के लिए एक बहुदलीय सिद्धांत के रूप में स्थानीय रूढ़िवादिता". Nature Communications. 4: 2263. arXiv:1210.3018. Bibcode:2013NatCo...4.2263F. doi:10.1038/ncomms3263. PMID 23948952. S2CID 14759956.
- ↑ Navascués, M.; Guryanova, Y.; Hoban, M. J.; Acín, A. (2015). "लगभग क्वांटम सहसंबंध". Nature Communications. 6: 6288. arXiv:1403.4621. Bibcode:2015NatCo...6.6288N. doi:10.1038/ncomms7288. PMID 25697645. S2CID 12810715.
- ↑ Ghirardi, G. C.; A. Rimini; T. Weber (1986). "माइक्रोस्कोपिक और मैक्रोस्कोपिक सिस्टम के लिए एकीकृत गतिकी". Physical Review D. 34 (2): 470–491. Bibcode:1986PhRvD..34..470G. doi:10.1103/PhysRevD.34.470. PMID 9957165.
- ↑ Sorkin, R. D. (1994). "क्वांटम यांत्रिकी क्वांटम माप सिद्धांत के रूप में". Mod. Phys. Lett. A. 9 (33): 3119–3128. arXiv:gr-qc/9401003. Bibcode:1994MPLA....9.3119S. doi:10.1142/S021773239400294X. S2CID 18938710.
- ↑ Dowker, F.; Henson, J.; Wallden, P. (2014). "क्वांटम गैर-स्थानीयता की विशेषता पर एक इतिहास परिप्रेक्ष्य". New Journal of Physics. 16 (3): 033033. Bibcode:2014NJPh...16c3033D. doi:10.1088/1367-2630/16/3/033033.
- ↑ 32.0 32.1 32.2 Oreshkov, O.; Costa, F.; Brukner, C. (2012). "बिना किसी कारण क्रम के क्वांटम सहसंबंध". Nature Communications. 3: 1092–. arXiv:1105.4464. Bibcode:2012NatCo...3.1092O. doi:10.1038/ncomms2076. PMC 3493644. PMID 23033068.