क्वांटम हाइजेनबर्ग मॉडल: Difference between revisions
mNo edit summary |
mNo edit summary |
||
Line 3: | Line 3: | ||
{{Use American English|date=January 2019}} | {{Use American English|date=January 2019}} | ||
[[वर्नर हाइजेनबर्ग]] द्वारा विकसित क्वांटम हाइजेनबर्ग मॉडल, एक [[सांख्यिकीय यांत्रिकी]] गणितीय मॉडल है जिसका उपयोग चुंबकीय प्रणालियों के महत्वपूर्ण बिंदु (ऊष्मप्रवैगिकी) और [[चरण संक्रमण]] के अध्ययन में किया जाता है, जिसमें चुंबकीय प्रणालियों के [[स्पिन (भौतिकी)|घूर्णन (भौतिकी)]] | [[वर्नर हाइजेनबर्ग]] द्वारा विकसित क्वांटम हाइजेनबर्ग मॉडल, एक [[सांख्यिकीय यांत्रिकी]] गणितीय मॉडल है जिसका उपयोग चुंबकीय प्रणालियों के महत्वपूर्ण बिंदु (ऊष्मप्रवैगिकी) और [[चरण संक्रमण]] के अध्ययन में किया जाता है, जिसमें चुंबकीय प्रणालियों के [[स्पिन (भौतिकी)|घूर्णन (भौतिकी)]] को [[क्वांटम यांत्रिकी]] रूप से संसाधित किया जाता है। यह प्रोटोटाइपिकल(आदर्श) [[आइसिंग मॉडल|ईज़िंग मॉडल]] से संबंधित है, जहां जाली के प्रत्येक स्थल पर एक घूर्णन होती है <math>\sigma_i \in \{ \pm 1\}</math> एक सूक्ष्म चुंबकीय द्विध्रुवीय का प्रतिनिधित्व करता है जिसमें चुंबकीय क्षण या तो ऊपर या नीचे होती है। चुंबकीय द्विध्रुवीय क्षणों के बीच युग्मन को छोड़कर, हाइजेनबर्ग मॉडल का एक बहुध्रुवीय संस्करण भी है जिसे बहुध्रुवीय विनिमय अंतःक्रिया कहा जाता है। | ||
== सिंहावलोकन == | == सिंहावलोकन == | ||
Line 47: | Line 47: | ||
=== XXX मॉडल === | === XXX मॉडल === | ||
हाइजेनबर्ग XXX मॉडल की भौतिकी दृढ़ता से युग्मन स्थिरांक के संकेत पर निर्भर करती है | हाइजेनबर्ग XXX मॉडल की भौतिकी दृढ़ता से युग्मन स्थिरांक के संकेत पर निर्भर करती है <math>J</math> और अंतरिक्ष का आयाम। सकारात्मक के लिए <math>J</math> जमीनी स्थिति हमेशा [[ लोह चुंबकत्व ]] होती है। नकारात्मक पर <math>J</math> जमीनी अवस्था दो और तीन आयामों में [[ प्रतिलौह चुंबकत्व ]] है।<ref>{{cite web|url=http://www.math.ucdavis.edu/~bxn/qs.html|title=हाइजेनबर्ग मॉडल - एक ग्रंथ सूची|author1=Tom Kennedy|author2=Bruno Nachtergaele|access-date=6 Jun 2019}}</ref> एक आयाम में प्रति-लौहचुंबकीय हाइजेनबर्ग मॉडल में सहसंबंधों की प्रकृति चुंबकीय द्विध्रुवों के घूर्णन पर निर्भर करती है। यदि घूर्णन पूर्णांक है तो केवल [[कम दूरी का आदेश]] मौजूद है। अर्ध-पूर्णांक घूर्णन की एक प्रणाली अर्ध-लंबी श्रेणी के क्रम को प्रदर्शित करती है। | ||
<math>J</math> और अंतरिक्ष का आयाम। सकारात्मक के लिए <math>J</math> जमीनी स्थिति हमेशा [[ लोह चुंबकत्व ]] होती है। नकारात्मक पर <math>J</math> जमीनी अवस्था दो और तीन आयामों में [[ प्रतिलौह चुंबकत्व ]] है।<ref>{{cite web|url=http://www.math.ucdavis.edu/~bxn/qs.html|title=हाइजेनबर्ग मॉडल - एक ग्रंथ सूची|author1=Tom Kennedy|author2=Bruno Nachtergaele|access-date=6 Jun 2019}}</ref> एक आयाम में | |||
हाइजेनबर्ग मॉडल का एक सरलीकृत संस्करण एक-आयामी | हाइजेनबर्ग मॉडल का एक सरलीकृत संस्करण एक-आयामी ईज़िंग मॉडल है, जहां अनुप्रस्थ चुंबकीय क्षेत्र X-दिशा में है, और अन्योन्यक्रिया केवल Z-दिशा में है: | ||
:<math>\hat H = -J \sum_{j =1}^{N} \sigma_j^z \sigma_{j+1}^z - gJ \sum_{j =1}^{N} \sigma_j^x </math>. | :<math>\hat H = -J \sum_{j =1}^{N} \sigma_j^z \sigma_{j+1}^z - gJ \sum_{j =1}^{N} \sigma_j^x </math>. | ||
छोटे | छोटे g और बड़े g में, जमीनी अवस्था में गिरावट अलग है, जिसका अर्थ है कि बीच में एक क्वांटम चरण संक्रमण होना चाहिए। द्वैत विश्लेषण का उपयोग करके इसे महत्वपूर्ण बिंदु के लिए ठीक से हल किया जा सकता है।<ref>{{cite book |doi=10.1007/978-1-4020-3463-3_13 |chapter=Duality in low dimensional quantum field theories |title=कम आयामों में मजबूत इंटरैक्शन|series=Physics and Chemistry of Materials with Low-Dimens |year=2004 |last1=Fisher |first1=Matthew P. A. |volume=25 |pages=419–438 |isbn=978-1-4020-1798-8 }}</ref> पाउली आव्यूह का द्वैत संक्रमण है <math display="inline">\sigma_i^z = \prod_{j \leq i}S^x_j</math> और <math>\sigma_i^x = S^z_i S^z_{i+1}</math>, कहाँ <math>S^x</math> और <math>S^z</math> पाउली आव्यूह भी हैं जो पाउली आव्यूह बीजगणित का पालन करते हैं। आवधिक सीमा स्थितियों के तहत, रूपांतरित हैमिल्टन को दिखाया जा सकता है कि वह एक समान रूप का है: | ||
आवधिक सीमा स्थितियों के तहत, रूपांतरित हैमिल्टन को दिखाया जा सकता है कि वह एक समान रूप का है: | |||
:<math>\hat H = -gJ \sum_{j =1}^{N} S_j^z S_{j+1}^z - J \sum_{j =1}^{N} S_j^x </math> | :<math>\hat H = -gJ \sum_{j =1}^{N} S_j^z S_{j+1}^z - J \sum_{j =1}^{N} S_j^x </math> | ||
लेकिन के लिए <math>g</math> घूर्णन | लेकिन के लिए <math>g</math> घूर्णन अन्योन्यक्रिया से जुड़ा हुआ है। यह मानते हुए कि केवल एक महत्वपूर्ण बिंदु है, हम यह निष्कर्ष निकाल सकते हैं कि चरण संक्रमण होता है <math>g=1</math>. | ||
== बेथे दृष्टिकोण द्वारा | == बेथे दृष्टिकोण द्वारा व्याख्या == | ||
{{Main article| | {{Main article|बेथे एनात्ज़}} | ||
=== | ===XXX<sub>1/2</sub> मॉडल === | ||
के दृष्टिकोण के बाद | लुडविग फदीव (1996) के दृष्टिकोण के बाद, XXX मॉडल के लिए हैमिल्टनियन का स्पेक्ट्रम<math display = block>H = \frac{1}{4}\sum_{\alpha, n}(\sigma^\alpha_{n}\sigma^\alpha_{n+1} - 1)</math> | ||
<math display = block>H = \frac{1}{4}\sum_{\alpha, n}(\sigma^\alpha_{n}\sigma^\alpha_{n+1} - 1)</math> | |||
परिवार <math>B(\lambda)</math> साथ ही तीन अन्य परिवार [[स्थानांतरण-मैट्रिक्स विधि|स्थानांतरण-आव्यूह विधि]] से आते हैं <math>T(\lambda)</math> (बदले में एक [[ लक्स मैट्रिक्स | लक्स आव्यूह]] का उपयोग करके परिभाषित किया गया है), जो कार्य करता है <math>\mathcal{H}</math> एक सहायक स्थान के साथ <math>h_a \cong \mathbb{C}^2</math>, और के रूप में लिखा जा सकता है <math>2\times 2</math> प्रविष्टियों के साथ ब्लॉक/खंड आव्यूह <math>\mathrm{End}(\mathcal{H})</math>, | |||
<math display = block>T(\lambda) = \begin{pmatrix}A(\lambda) & B(\lambda) \\ C(\lambda) & D(\lambda)\end{pmatrix},</math> | बेथ एनाटज़ द्वारा निर्धारित किया जा सकता है। इस संदर्भ में, संचालक के उचित रूप से परिभाषित परिवार के लिए <math>B(\lambda)</math> एक वर्णक्रमीय पैरामीटर पर निर्भर करता है <math>\lambda \in \mathbb{C}</math> कुल हिल्बर्ट अंतरिक्ष पर कार्य करता है <math>\mathcal{H} = \bigotimes_{n=1}^N h_n</math> प्रत्येक के साथ <math>h_n \cong \mathbb{C}^2</math>, एक बेथे वेक्टर रूप का एक वेक्टर है | ||
जो बेथ समीकरणों को प्राप्त करने के लिए उपयोग किए जाने वाले यांग-बैक्सटर समीकरण के रूप में मौलिक रूपांतरण संबंधों ( | <math display="block">\Phi(\lambda_1, \cdots, \lambda_m) = B(\lambda_1)\cdots B(\lambda_m)v_0</math> | ||
कहाँ <math>v_0 = \bigotimes_{n=1}^N |\uparrow\,\rangle</math>.अगर <math>\lambda_k</math> बेथे समीकरण को संतुष्ट करते हैं | |||
<math display="block">\left(\frac{\lambda_k + i/2}{\lambda_k - i/2}\right)^N = \prod_{j \neq k}\frac{\lambda_k - \lambda_j + i}{\lambda_k - \lambda_j - i},</math> | |||
तो बेथ वेक्टर का एक आइजनवेक्टर है <math>H</math> आइगेनवैल्यू के साथ <math>-\sum_k \frac{1}{2}\frac{1}{\lambda_k^2 + 1/4}</math>. | |||
परिवार <math>B(\lambda)</math> साथ ही तीन अन्य परिवार [[स्थानांतरण-मैट्रिक्स विधि|स्थानांतरण-आव्यूह विधि]] से आते हैं <math>T(\lambda)</math> (बदले में एक [[ लक्स मैट्रिक्स |लक्स(ढीला) आव्यूह]] का उपयोग करके परिभाषित किया गया है), जो कार्य करता है <math>\mathcal{H}</math> एक सहायक स्थान के साथ <math>h_a \cong \mathbb{C}^2</math>, और के रूप में लिखा जा सकता है <math>2\times 2</math> प्रविष्टियों के साथ ब्लॉक/खंड आव्यूह <math>\mathrm{End}(\mathcal{H})</math>, | |||
<math display="block">T(\lambda) = \begin{pmatrix}A(\lambda) & B(\lambda) \\ C(\lambda) & D(\lambda)\end{pmatrix},</math> | |||
जो बेथ समीकरणों को प्राप्त करने के लिए उपयोग किए जाने वाले यांग-बैक्सटर समीकरण के रूप में मौलिक रूपांतरण संबंधों (FCRs) को संतुष्ट करता है। FCRs यह भी दिखाते हैं कि [[जनरेटिंग फ़ंक्शन|उत्पादक प्रकार्य]] द्वारा दिया गया एक बड़ा रूपांतरण सबलजेब्रा है <math>F(\lambda) = \mathrm{tr}_a(T(\lambda)) = A(\lambda) + D(\lambda)</math>, जैसा <math>[F(\lambda), F(\mu)] = 0</math>, तो कब <math>F(\lambda)</math> में [[बहुपद]] के रूप में लिखा जाता है <math>\lambda</math>, गुणांक सभी आवागमन करते हैं, जो एक रूपांतरण सबलजेब्रा में फैले हुए हैं <math>H</math> का एक तत्व है। बेथे वैक्टर वास्तव में पूरे सबलजेब्रा के लिए एक साथ ईजेनवेक्टर हैं। | |||
===XXX<sub>s</sub> मॉडल === | ===XXX<sub>s</sub> मॉडल === |
Revision as of 18:24, 8 May 2023
वर्नर हाइजेनबर्ग द्वारा विकसित क्वांटम हाइजेनबर्ग मॉडल, एक सांख्यिकीय यांत्रिकी गणितीय मॉडल है जिसका उपयोग चुंबकीय प्रणालियों के महत्वपूर्ण बिंदु (ऊष्मप्रवैगिकी) और चरण संक्रमण के अध्ययन में किया जाता है, जिसमें चुंबकीय प्रणालियों के घूर्णन (भौतिकी) को क्वांटम यांत्रिकी रूप से संसाधित किया जाता है। यह प्रोटोटाइपिकल(आदर्श) ईज़िंग मॉडल से संबंधित है, जहां जाली के प्रत्येक स्थल पर एक घूर्णन होती है एक सूक्ष्म चुंबकीय द्विध्रुवीय का प्रतिनिधित्व करता है जिसमें चुंबकीय क्षण या तो ऊपर या नीचे होती है। चुंबकीय द्विध्रुवीय क्षणों के बीच युग्मन को छोड़कर, हाइजेनबर्ग मॉडल का एक बहुध्रुवीय संस्करण भी है जिसे बहुध्रुवीय विनिमय अंतःक्रिया कहा जाता है।
सिंहावलोकन
क्वांटम यांत्रिक कारणों के लिए (विनिमय बातचीत देखें या Magnetism § Quantum-mechanical origin of magnetism), दो द्विध्रुवों के बीच प्रमुख युग्मन निकटतम-पड़ोसियों के संरेखित होने पर सबसे कम ऊर्जा का कारण हो सकता है। इस धारणा के तहत (ताकि चुंबकीय संपर्क केवल आसन्न द्विध्रुवों के बीच हो) और 1-आयामी आवधिक जाली पर, हैमिल्टनियन (क्वांटम यांत्रिकी) को फॉर्म में लिखा जा सकता है
- ,
कहाँ युग्मन स्थिरांक है और द्विध्रुव शास्त्रीय वैक्टर (या घूर्णन) σ द्वारा दर्शाए जाते हैंj, आवधिक सीमा स्थिति के अधीन . हाइजेनबर्ग मॉडल एक अधिक यथार्थवादी मॉडल है जिसमें यह घूर्णन को क्वांटम-यांत्रिक रूप से व्यवहार करता है, घूर्णन को टेंसर उत्पाद पर काम करने वाले ऑपरेटर की राशि द्वारा प्रतिस्थापित करके , आयाम का . इसे परिभाषित करने के लिए, पाउली मैट्रिसेस | पाउली घूर्णन-1/2 मैट्रिसेस को याद करें
- ,
- ,
- ,
और के लिए और निरूपित , कहाँ है शिनाख्त सांचा। वास्तविक-मूल्यवान युग्मन स्थिरांक के विकल्प को देखते हुए और , हैमिल्टनियन द्वारा दिया गया है
जहां दाहिनी ओर आवधिक सीमा स्थितियों के साथ बाहरी चुंबकीय क्षेत्र को इंगित करता है। इसका उद्देश्य हैमिल्टनियन के स्पेक्ट्रम (कार्यात्मक विश्लेषण) को निर्धारित करना है, जिससे विभाजन समारोह (सांख्यिकीय यांत्रिकी) की गणना की जा सकती है और सिस्टम के ऊष्मप्रवैगिकी का अध्ययन किया जा सकता है।
के मूल्यों के आधार पर मॉडल का नाम देना आम बात है , और : अगर , मॉडल को हाइजेनबर्ग XYZ मॉडल कहा जाता है; के मामले में , यह छह-शीर्ष मॉडल है; अगर , यह हाइजेनबर्ग XXX मॉडल है। घूर्णन 1/2 हाइजेनबर्ग मॉडल को एक आयाम में बिल्कुल बेथे दृष्टिकोण का उपयोग करके हल किया जा सकता है।[1] बीजगणितीय सूत्रीकरण में, ये क्रमशः XXZ और XYZ मामलों में विशेष क्वांटम एफ़िन बीजगणित और अंडाकार क्वांटम समूह से संबंधित हैं।[2] अन्य तरीके बिना बेथे एनात्ज़ के ऐसा करते हैं।[3]
XXX मॉडल
हाइजेनबर्ग XXX मॉडल की भौतिकी दृढ़ता से युग्मन स्थिरांक के संकेत पर निर्भर करती है और अंतरिक्ष का आयाम। सकारात्मक के लिए जमीनी स्थिति हमेशा लोह चुंबकत्व होती है। नकारात्मक पर जमीनी अवस्था दो और तीन आयामों में प्रतिलौह चुंबकत्व है।[4] एक आयाम में प्रति-लौहचुंबकीय हाइजेनबर्ग मॉडल में सहसंबंधों की प्रकृति चुंबकीय द्विध्रुवों के घूर्णन पर निर्भर करती है। यदि घूर्णन पूर्णांक है तो केवल कम दूरी का आदेश मौजूद है। अर्ध-पूर्णांक घूर्णन की एक प्रणाली अर्ध-लंबी श्रेणी के क्रम को प्रदर्शित करती है।
हाइजेनबर्ग मॉडल का एक सरलीकृत संस्करण एक-आयामी ईज़िंग मॉडल है, जहां अनुप्रस्थ चुंबकीय क्षेत्र X-दिशा में है, और अन्योन्यक्रिया केवल Z-दिशा में है:
- .
छोटे g और बड़े g में, जमीनी अवस्था में गिरावट अलग है, जिसका अर्थ है कि बीच में एक क्वांटम चरण संक्रमण होना चाहिए। द्वैत विश्लेषण का उपयोग करके इसे महत्वपूर्ण बिंदु के लिए ठीक से हल किया जा सकता है।[5] पाउली आव्यूह का द्वैत संक्रमण है और , कहाँ और पाउली आव्यूह भी हैं जो पाउली आव्यूह बीजगणित का पालन करते हैं। आवधिक सीमा स्थितियों के तहत, रूपांतरित हैमिल्टन को दिखाया जा सकता है कि वह एक समान रूप का है:
लेकिन के लिए घूर्णन अन्योन्यक्रिया से जुड़ा हुआ है। यह मानते हुए कि केवल एक महत्वपूर्ण बिंदु है, हम यह निष्कर्ष निकाल सकते हैं कि चरण संक्रमण होता है .
बेथे दृष्टिकोण द्वारा व्याख्या
XXX1/2 मॉडल
लुडविग फदीव (1996) के दृष्टिकोण के बाद, XXX मॉडल के लिए हैमिल्टनियन का स्पेक्ट्रम
बेथ एनाटज़ द्वारा निर्धारित किया जा सकता है। इस संदर्भ में, संचालक के उचित रूप से परिभाषित परिवार के लिए एक वर्णक्रमीय पैरामीटर पर निर्भर करता है कुल हिल्बर्ट अंतरिक्ष पर कार्य करता है प्रत्येक के साथ , एक बेथे वेक्टर रूप का एक वेक्टर है
परिवार साथ ही तीन अन्य परिवार स्थानांतरण-आव्यूह विधि से आते हैं (बदले में एक लक्स(ढीला) आव्यूह का उपयोग करके परिभाषित किया गया है), जो कार्य करता है एक सहायक स्थान के साथ , और के रूप में लिखा जा सकता है प्रविष्टियों के साथ ब्लॉक/खंड आव्यूह ,
XXXs मॉडल
उच्च घूर्णन के लिए, घूर्णन कहें , बदलना साथ लाई बीजगणित के लाई बीजगणित प्रतिनिधित्व से आ रहा है , आयाम का . XXXs हैमिल्टनियन
XXZs मॉडल
घूर्णन के लिए और एक पैरामीटर XXX मॉडल से विरूपण के लिए, BAE (बेथ एनाटज़ समीकरण) है
अनुप्रयोग
- एक अन्य महत्वपूर्ण वस्तु (एन्टैंगलमेंट)उलझाव की एन्ट्रॉपी है। इसका वर्णन करने का एक तरीका अद्वितीय जमीनी स्थिति को एक ब्लॉक/खंड (कई अनुक्रमिक घूर्णन) और पर्यावरण (बाकी जमीनी स्थिति) में उप-विभाजित करना है। ब्लॉक/खंड की एन्ट्रापी को उलझाव(एन्टैंगलमेंट) एन्ट्रापी माना जा सकता है। महत्वपूर्ण क्षेत्र (ऊष्मप्रवैगिकी सीमा) में शून्य तापमान पर यह ब्लॉक/खंड के आकार के साथ लघुगणकीय रूप से मापता है। जैसे ही तापमान बढ़ता है लघुगणकीय निर्भरता एक रैखिक कार्य में बदल जाती है।[6] बड़े तापमान के लिए रैखिक निर्भरता ऊष्मप्रवैगिकी के दूसरे नियम से होती है।
- हाइजेनबर्ग मॉडल घनत्व आव्यूह पुनर्सामान्यीकरण को लागू करने के लिए एक महत्वपूर्ण और सुगम सैद्धांतिक उदाहरण प्रदान करता है।
- हाइजेनबर्ग घूर्णन श्रृंखला (बैक्सटर 1982) के लिए बीजगणितीय बेथे एनात्ज़ का उपयोग करके सिक्स-वर्टेक्स मॉडल(बर्फ के प्रकार का मॉडल) को हल किया जा सकता है।
- प्रबल प्रतिकारक अंतःक्रियाओं की सीमा में आधे भरे हुए हबर्ड मॉडल को हाइजेनबर्ग मॉडल पर प्रतिचित्रित किया जा सकता है सुपरएक्सचेंज पारस्परिक क्रिया की ताकत का प्रतिनिधित्व करना।
- जाली के रूप में मॉडल की सीमाएं शून्य पर भेजी जाती हैं (और सिद्धांत में प्रदर्शित होने वाले चर के लिए विभिन्न सीमाएं ली जाती हैं) अभिन्न क्षेत्र सिद्धांतों का वर्णन करती हैं, दोनों गैर-सापेक्षवादी जैसे कि गैर-रैखिक श्रोडिंगर समीकरण, और सापेक्षतावादी, जैसे कि सिग्मा मॉडल, द सिग्मा मॉडल (जो एक प्रमुख काइरल मॉडल भी है) और साइन-गॉर्डन मॉडल।
- समतलीय या बड़े में कुछ सहसंबंध कार्यों की गणना करना N= 4 सुपरसिमेट्रिक यांग-मिल्स सिद्धांत की सीमा[7]
विस्तारित समरूपता
विभिन्न मॉडलों के लिए बड़े समरूपता बीजगणित के अस्तित्व से पूर्णता को रेखांकित किया गया है। XXX प्रकरण के लिए यहयांग्यान है , जबकि XXZ मामले में यह क्वांटम समूह है , affine Lie बीजगणित का q-विरूपण , जैसा कि फदीव (1996) द्वारा दी गयी टिप्पणीयो में समझाया गया है।
ये स्थानांतरण आव्यूह के माध्यम से प्रकट होते हैं, और शर्त यह है कि बेथ वैक्टर एक अवस्था से उत्पन्न होते हैं संतुष्टि देने वाला विस्तारित समरूपता बीजगणित के उच्चतम-वजन प्रतिनिधित्व का भाग होने वाले घोल के अनुरूप है।
यह भी देखें
- शास्त्रीय हाइजेनबर्ग मॉडल
- हाइजेनबर्ग मॉडल का DMRG
- क्वांटम रोटर मॉडल
- t-J मॉडल
- J1 J2 मॉडल
- मजूमदार-घोष मॉडल
- AKLT मॉडल
- बहुध्रुवीय विनिमय सहभागिता
संदर्भ
- R.J. Baxter, Exactly solved models in statistical mechanics, London, Academic Press, 1982
- Heisenberg, W. (1 September 1928). "Zur Theorie des Ferromagnetismus" [On the theory of ferromagnetism]. Zeitschrift für Physik (in German). 49 (9): 619–636. Bibcode:1928ZPhy...49..619H. doi:10.1007/BF01328601. S2CID 122524239.
{{cite journal}}
: CS1 maint: unrecognized language (link) - Bethe, H. (1 March 1931). "Zur Theorie der Metalle" [On the theory of metals]. Zeitschrift für Physik (in German). 71 (3): 205–226. Bibcode:1931ZPhy...71..205B. doi:10.1007/BF01341708. S2CID 124225487.
{{cite journal}}
: CS1 maint: unrecognized language (link)
टिप्पणियाँ
- ↑ Bonechi, F; Celeghini, E; Giachetti, R; Sorace, E; Tarlini, M (7 August 1992). "हाइजेनबर्ग XXZ मॉडल और क्वांटम गैलीली समूह". Journal of Physics A: Mathematical and General. 25 (15): L939–L943. arXiv:hep-th/9204054. Bibcode:1992JPhA...25L.939B. doi:10.1088/0305-4470/25/15/007. S2CID 119046025.
- ↑ Faddeev, L. D. (26 May 1996). "कैसे बीजीय Bethe Ansatz पूर्णांक मॉडल के लिए काम करता है". arXiv:hep-th/9605187v1.
- ↑ Rojas, Onofre; Souza, S.M. de; Corrêa Silva, E.V.; Thomaz, M.T. (December 2001). "बेथे एन्सैट्ज के बिना एक्सएक्सजेड मॉडल के सीमित मामलों की थर्मोडायनामिक्स". Brazilian Journal of Physics. 31 (4): 577–582. Bibcode:2001BrJPh..31..577R. doi:10.1590/s0103-97332001000400008.
- ↑ Tom Kennedy; Bruno Nachtergaele. "हाइजेनबर्ग मॉडल - एक ग्रंथ सूची". Retrieved 6 Jun 2019.
- ↑ Fisher, Matthew P. A. (2004). "Duality in low dimensional quantum field theories". कम आयामों में मजबूत इंटरैक्शन. Physics and Chemistry of Materials with Low-Dimens. Vol. 25. pp. 419–438. doi:10.1007/978-1-4020-3463-3_13. ISBN 978-1-4020-1798-8.
- ↑ Korepin, V. E. (5 March 2004). "एक आयामी गैपलेस मॉडल में एंट्रॉपी स्केलिंग की सार्वभौमिकता". Physical Review Letters. 92 (9): 096402. arXiv:cond-mat/0311056. Bibcode:2004PhRvL..92i6402K. doi:10.1103/PhysRevLett.92.096402. PMID 15089496. S2CID 20620724.
- ↑ Beisert, Niklas (1 December 2004). "The dilatation operator of N=4 super Yang–Mills theory and integrability". Physics Reports. 405 (1): 1–202. arXiv:hep-th/0407277. doi:10.1016/j.physrep.2004.09.007. S2CID 118949332.
[Category:Werner Heisenbe