पीयूसेलियर-लिपकिन लिंकेज: Difference between revisions
No edit summary |
No edit summary |
||
(4 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Mechanical linkage capable of transforming rotary motion into linear motion}} | {{Short description|Mechanical linkage capable of transforming rotary motion into linear motion}} | ||
[[File:Peaucellier-Lipkin Inversor.gif|thumb|पीयूसेलियर-लिपकिन लिंकेज के लिए एनिमेशन:<br><br>आयाम:<br>सियान लिंक्स = a<br>ग्रीन लिंक्स = b<br>येलो लिंक्स = c]]1864 में आविष्कृत पीयूसेलियर-लिपकिन लिंकेज (या पीउसेलियर-लिपकिन सेल, या पीउसेलियर-लिपकिन इनवर्सर), पहला सच्चा | [[File:Peaucellier-Lipkin Inversor.gif|thumb|पीयूसेलियर-लिपकिन लिंकेज के लिए एनिमेशन:<br><br>आयाम:<br>सियान लिंक्स = a<br>ग्रीन लिंक्स = b<br>येलो लिंक्स = c]]1864 में आविष्कृत पीयूसेलियर-लिपकिन लिंकेज (या पीउसेलियर-लिपकिन सेल, या पीउसेलियर-लिपकिन इनवर्सर), पहला सच्चा नियोजक [[ सीधी रेखा तंत्र |सीधी रेखा तंत्र]] था - पहला समतल [[लिंकेज (मैकेनिकल)]] जो [[ रोटरी गति |रोटरी गति]] को उत्तम [[ सीधी रेखा गति |सीधी रेखा गति]] में बदलने में सक्षम था। और इसके विपरीत इसका नाम [[चार्ल्स-निकोलस पीयूसेलियर]] (1832-1913) एक फ्रांसीसी सेना अधिकारी और [[योम तोव लिपमैन लिपकिन]] (1846-1876), एक [[लिथुआनियाई यहूदी]] और प्रसिद्ध रब्बी [[इज़राइल सैलेंटर]] के बेटे के नाम पर रखा गया है।<ref>{{cite web|url=http://kmoddl.library.cornell.edu/tutorials/11/ |title=Mathematical tutorial of the Peaucellier–Lipkin linkage |publisher=Kmoddl.library.cornell.edu |accessdate=2011-12-06}}</ref><ref>{{cite web|last=Taimina |first=Daina |url=http://kmoddl.library.cornell.edu/tutorials/04/ |title=Daina Taimina द्वारा एक सीधी रेखा कैसे खींची जाती है|publisher=Kmoddl.library.cornell.edu |accessdate=2011-12-06}}</ref> | ||
इस आविष्कार से पहले | इस आविष्कार से पहले संदर्भ दिशानिर्देशों के बिना स्पष्ट सीधी-रेखा गति को परिपत्र गति में परिवर्तित करने के लिए कोई समतल विधि उपस्थित नहीं थी। 1864 में सारी शक्ति भाप के इंजनों से आती थी, जिसमें एक [[पिस्टन]] एक सीधी रेखा में एक सिलेंडर के ऊपर और नीचे चलता था। ड्राइविंग माध्यम को बनाए रखने के लिए और लीक के कारण ऊर्जा दक्षता खोने के लिए इस पिस्टन को सिलेंडर के साथ एक अच्छी मुहर रखने की जरूरत है। पिस्टन सिलेंडर की धुरी के लंबवत शेष रहकर अपनी सीधी-रेखा गति को बनाए रखते हुए ऐसा करता है। पिस्टन की सीधी-रेखा गति को वृत्ताकार गति में परिवर्तित करना महत्वपूर्ण महत्व का था। अधिकांश यदि सभी नहीं तो इन भाप इंजनों के अनुप्रयोग रोटरी थे। | ||
पीयूसेलियर-लिपकिन लिंकेज का गणित सीधे एक वृत्त की व्युत्क्रम ज्यामिति से संबंधित है। | पीयूसेलियर-लिपकिन लिंकेज का गणित सीधे एक वृत्त की व्युत्क्रम ज्यामिति से संबंधित है। | ||
== पहले के [[सारस लिंकेज]] == | == पहले के [[सारस लिंकेज]] == | ||
एक प्रारंभिक सीधी-रेखा तंत्र है, जिसका इतिहास अच्छी तरह से ज्ञात नहीं है | एक प्रारंभिक सीधी-रेखा तंत्र है, जिसका इतिहास अच्छी तरह से ज्ञात नहीं है जिसे सर्रस लिंकेज कहा जाता है। यह लिंकेज पीयूसेलियर-लिपकिन लिंकेज से 11 साल पहले का है और इसमें हिंगेड आयताकार प्लेटों की एक श्रृंखला होती है जिनमें से दो समानांतर रहती हैं किन्तु सामान्य रूप से एक-दूसरे को स्थानांतरित की जा सकती हैं। सारस का लिंकेज एक त्रि-आयामी वर्ग का है जिसे कभी-कभी [[अंतरिक्ष क्रैंक]] के रूप में जाना जाता है पीयूसेलियर-लिपकिन लिंकेज के विपरीत जो एक समतल तंत्र है। | ||
== ज्यामिति == | == ज्यामिति == | ||
[[File:PeaucellierApparatus.PNG|thumb|right|पीयूसेलियर लिंकेज का ज्यामितीय आरेख]]उपकरण के ज्यामितीय आरेख में, निश्चित लंबाई के छह बार देखे जा सकते हैं: {{mvar|{{overline|OA}}}}, {{mvar|{{overline|OC}}}}, {{mvar|{{overline|AB}}}}, {{mvar|{{overline|BC}}}}, {{mvar|{{overline|CD}}}}, {{mvar|{{overline|DA}}}}. इसकी लंबाई {{mvar|{{overline|OA}}}} की लंबाई के समान है {{mvar|{{overline|OC}}}}, और की लंबाई {{mvar|{{overline|AB}}}}, {{mvar|{{overline|BC}}}}, {{mvar|{{overline|CD}}}}, और {{mvar|{{overline|DA}}}} सभी समान हैं और एक समचतुर्भुज बनाते हैं। साथ ही, बिंदु {{mvar|O}} निश्चित है। फिर, यदि बिंदु {{mvar|B}} एक वृत्त के साथ चलने के लिए विवश है (उदाहरण के लिए, इसे बीच की लंबाई के साथ एक बार से जोड़कर {{mvar|O}} और {{mvar|B}}; लाल रंग में दिखाया गया रास्ता) जो {{mvar|O}} से होकर गुजरता है | [[File:PeaucellierApparatus.PNG|thumb|right|पीयूसेलियर लिंकेज का ज्यामितीय आरेख]]उपकरण के ज्यामितीय आरेख में, निश्चित लंबाई के छह बार देखे जा सकते हैं: {{mvar|{{overline|OA}}}}, {{mvar|{{overline|OC}}}}, {{mvar|{{overline|AB}}}}, {{mvar|{{overline|BC}}}}, {{mvar|{{overline|CD}}}}, {{mvar|{{overline|DA}}}}. इसकी लंबाई {{mvar|{{overline|OA}}}} की लंबाई के समान है {{mvar|{{overline|OC}}}}, और की लंबाई {{mvar|{{overline|AB}}}}, {{mvar|{{overline|BC}}}}, {{mvar|{{overline|CD}}}}, और {{mvar|{{overline|DA}}}} सभी समान हैं और एक समचतुर्भुज बनाते हैं। साथ ही, बिंदु {{mvar|O}} निश्चित है। फिर, यदि बिंदु {{mvar|B}} एक वृत्त के साथ चलने के लिए विवश है (उदाहरण के लिए, इसे बीच की लंबाई के साथ एक बार से जोड़कर {{mvar|O}} और {{mvar|B}}; लाल रंग में दिखाया गया रास्ता) जो {{mvar|O}} से होकर गुजरता है फिर इंगित करें {{mvar|D}} को आवश्यक रूप से एक सीधी रेखा में चलना होगा (नीले रंग में दिखाया गया है)। दूसरी ओर यदि बिंदु {{mvar|B}} एक रेखा के साथ जाने के लिए विवश किया गया था ({{mvar|O}} से होकर नहीं), तो बिंदु {{mvar|D}} को आवश्यक रूप से एक वृत्त ({{mvar|O}} से गुजरते हुए) के साथ चलना होगा। | ||
== अवधारणा का गणितीय प्रमाण == | == अवधारणा का गणितीय प्रमाण == | ||
=== संरेखता === | === संरेखता === | ||
सबसे पहले | सबसे पहले यह सिद्ध होना चाहिए कि अंक {{mvar|O}}, {{mvar|B}}, {{mvar|D}} संरेखता हैं। यह देखकर आसानी से देखा जा सकता है कि लिंकेज लाइन {{mvar|OD}} के बारे में दर्पण-सममित है तो बिंदु {{mvar|B}} उस रेखा पर पड़ना चाहिए। | ||
अधिक औपचारिक रूप से, त्रिकोण {{math|△''BAD''}} और {{math|△''BCD''}} सर्वांगसम हैं क्योंकि भुजा {{mvar|{{overline|BD}}}} स्वयं, पक्ष के अनुरूप है भुजा {{mvar|{{overline|BA}}}} भुजा {{mvar|{{overline|BC}}}} के सर्वांगसम है , और भुजा {{mvar|{{overline|AD}}}} भुजा {{mvar|{{overline|CD}}}} के सर्वांगसम है इसलिए, कोण {{math|∠''ABD''}} और {{math|∠''CBD''}} समान हैं। | अधिक औपचारिक रूप से, त्रिकोण {{math|△''BAD''}} और {{math|△''BCD''}} सर्वांगसम हैं क्योंकि भुजा {{mvar|{{overline|BD}}}} स्वयं, पक्ष के अनुरूप है भुजा {{mvar|{{overline|BA}}}} भुजा {{mvar|{{overline|BC}}}} के सर्वांगसम है , और भुजा {{mvar|{{overline|AD}}}} भुजा {{mvar|{{overline|CD}}}} के सर्वांगसम है इसलिए, कोण {{math|∠''ABD''}} और {{math|∠''CBD''}} समान हैं। | ||
Line 20: | Line 20: | ||
अगला, त्रिकोण {{math|△''OBA''}} और {{math|△''OBC''}} सर्वांगसम हैं, चूँकि भुजाएँ हैं {{mvar|{{overline|OA}}}} और {{mvar|{{overline|OC}}}} सर्वांगसम हैं, पार्श्व {{mvar|{{overline|OB}}}} स्वयं और भुजाओं के सर्वांगसम है {{mvar|{{overline|BA}}}} और {{mvar|{{overline|BC}}}} सर्वांगसम हैं। इसलिए, कोण {{math|∠''OBA''}} और {{math|∠''OBC''}} समान हैं। | अगला, त्रिकोण {{math|△''OBA''}} और {{math|△''OBC''}} सर्वांगसम हैं, चूँकि भुजाएँ हैं {{mvar|{{overline|OA}}}} और {{mvar|{{overline|OC}}}} सर्वांगसम हैं, पार्श्व {{mvar|{{overline|OB}}}} स्वयं और भुजाओं के सर्वांगसम है {{mvar|{{overline|BA}}}} और {{mvar|{{overline|BC}}}} सर्वांगसम हैं। इसलिए, कोण {{math|∠''OBA''}} और {{math|∠''OBC''}} समान हैं। | ||
अंत में | अंत में क्योंकि वे एक पूर्ण वृत्त बनाते हैं हमारे पास है | ||
:<math> \angle OBA + \angle ABD + \angle DBC + \angle CBO = 360^\circ</math> | :<math> \angle OBA + \angle ABD + \angle DBC + \angle CBO = 360^\circ</math> | ||
किन्तु | किन्तु समरूपता के कारण, {{math|1=∠''OBA'' = ∠''OBC''}} और {{math|1=∠''DBA'' = ∠''DBC''}}, इस प्रकार | ||
:<math>\begin{align} | :<math>\begin{align} | ||
& 2 \times \angle OBA + 2 \times \angle DBA = 360^\circ \\ | & 2 \times \angle OBA + 2 \times \angle DBA = 360^\circ \\ | ||
Line 30: | Line 30: | ||
=== व्युत्क्रम बिंदु === | === व्युत्क्रम बिंदु === | ||
माना बिंदु {{mvar|P}} रेखा {{mvar|AC}} और {{mvar|BD}} का प्रतिच्छेदन है। तब | माना बिंदु {{mvar|P}} रेखा {{mvar|AC}} और {{mvar|BD}} का प्रतिच्छेदन है। तब चूँकि {{mvar|ABCD}} एक समचतुर्भुज है, {{mvar|P}} रेखाखंड {{mvar|{{overline|BD}}}} और {{mvar|{{overline|AC}}}} दोनों का मध्यबिंदु है। इसलिए, लंबाई {{mvar|{{overline|BP}}}} = लंबाई {{mvar|{{overline|PD}}}} । | ||
त्रिकोण {{math|△''BPA''}} त्रिभुज {{math|△''DPA''}} के सर्वांगसम है क्योंकि भुजा {{mvar|{{overline|BP}}}} भुजा {{mvar|{{overline|DP}}}} के सर्वांगसम है, भुजा {{mvar|{{overline|AP}}}} स्वयं के सर्वांगसम है और भुजा {{mvar|{{overline|AB}}}} भुजा {{mvar|{{overline|AD}}}} के सर्वांगसम है। इसलिए कोण {{math|∠''BPA''}} = कोण {{math|∠''DPA''}}. किन्तु फिर {{math|1=∠''BPA'' + ∠''DPA'' = 180°}}, तब {{math|1=2 × ∠''BPA'' = 180°}}, {{math|1=∠''BPA'' = 90°}}, और {{math|1=∠''DPA'' = 90°}}. | त्रिकोण {{math|△''BPA''}} त्रिभुज {{math|△''DPA''}} के सर्वांगसम है क्योंकि भुजा {{mvar|{{overline|BP}}}} भुजा {{mvar|{{overline|DP}}}} के सर्वांगसम है, भुजा {{mvar|{{overline|AP}}}} स्वयं के सर्वांगसम है और भुजा {{mvar|{{overline|AB}}}} भुजा {{mvar|{{overline|AD}}}} के सर्वांगसम है। इसलिए कोण {{math|∠''BPA''}} = कोण {{math|∠''DPA''}}. किन्तु फिर {{math|1=∠''BPA'' + ∠''DPA'' = 180°}}, तब {{math|1=2 × ∠''BPA'' = 180°}}, {{math|1=∠''BPA'' = 90°}}, और {{math|1=∠''DPA'' = 90°}}. | ||
Line 51: | Line 51: | ||
=== व्युत्क्रम ज्यामिति === | === व्युत्क्रम ज्यामिति === | ||
इस प्रकार | इस प्रकार व्युत्क्रम ज्यामिति के गुणों द्वारा चूँकि बिंदु {{mvar|D}} द्वारा पता लगाया गया चित्र बिंदु {{mvar|B}} द्वारा खींचे गए चित्र का व्युत्क्रम है, यदि {{mvar|B}} व्युत्क्रम {{mvar|O}} के केंद्र से गुजरने वाले एक वृत्त का पता लगाता है, तो {{mvar|D}} एक सीधी रेखा का पता लगाने के लिए विवश है। किन्तु यदि {{mvar|B}} , {{mvar|O}} से न होकर एक सीधी रेखा खींचता है, तो {{mvar|D}} को {{mvar|O}} से गुजरने वाले वृत्त का एक चाप बनाना चाहिए। | ||
=== एक विशिष्ट | === एक विशिष्ट चालक === | ||
[[File:The Peaucellier-Lipkin linkage with a rocker-slider four-bar as its driver.gif|thumb|right|स्लाइडर-रॉकर फोर-बार पीयूसेलियर-लिपकिन लिंकेज के चालक के रूप में कार्य करता है]]पीयूसेलियर-लिपकिन लिंकेज (पीएलएल) में कई व्युत्क्रम हो सकते हैं। एक विशिष्ट उदाहरण विपरीत आकृति में दिखाया गया है, जिसमें एक रॉकर-स्लाइडर चार-बार इनपुट ड्राइवर के रूप में कार्य करता है। स्पष्ट होने के लिए, स्लाइडर इनपुट के रूप में कार्य करता है, जो बदले में पीएलएल के सही ग्राउंडेड लिंक को ड्राइव करता है, इस प्रकार संपूर्ण पीएलएल को ड्राइव करता है। | [[File:The Peaucellier-Lipkin linkage with a rocker-slider four-bar as its driver.gif|thumb|right|स्लाइडर-रॉकर फोर-बार पीयूसेलियर-लिपकिन लिंकेज के चालक के रूप में कार्य करता है]]पीयूसेलियर-लिपकिन लिंकेज (पीएलएल) में कई व्युत्क्रम हो सकते हैं। एक विशिष्ट उदाहरण विपरीत आकृति में दिखाया गया है, जिसमें एक रॉकर-स्लाइडर चार-बार इनपुट ड्राइवर के रूप में कार्य करता है। स्पष्ट होने के लिए, स्लाइडर इनपुट के रूप में कार्य करता है, जो बदले में पीएलएल के सही ग्राउंडेड लिंक को ड्राइव करता है, इस प्रकार संपूर्ण पीएलएल को ड्राइव करता है। | ||
=== ऐतिहासिक नोट्स === | === ऐतिहासिक नोट्स === | ||
[[जेम्स जोसेफ सिल्वेस्टर]] (कलेक्टेड वर्क्स, वॉल्यूम 3, पेपर 2) लिखते हैं कि जब उन्होंने [[लॉर्ड केल्विन]] को एक मॉडल दिखाया, तो उन्होंने "इसकी देखभाल की जैसे कि यह उनका अपना बच्चा हो, और जब उन्हें इससे मुक्त करने के लिए एक प्रस्ताव बनाया गया था, उत्तर दिया 'नहीं! मेरे पास लगभग पर्याप्त नहीं था - यह मेरे जीवन में अब तक की सबसे खूबसूरत चीज है।'" | [[जेम्स जोसेफ सिल्वेस्टर]] (कलेक्टेड वर्क्स, वॉल्यूम 3, पेपर 2) लिखते हैं कि जब उन्होंने [[लॉर्ड केल्विन]] को एक मॉडल दिखाया, तो उन्होंने "इसकी देखभाल की जैसे कि यह उनका अपना बच्चा हो, और जब उन्हें इससे मुक्त करने के लिए एक प्रस्ताव बनाया गया था, उत्तर दिया 'नहीं! मेरे पास लगभग पर्याप्त नहीं था - यह मेरे जीवन में अब तक की सबसे खूबसूरत चीज है।'" | ||
== सांस्कृतिक संदर्भ == | == सांस्कृतिक संदर्भ == | ||
इलुमिनेटेड स्ट्रट्स में लिंकेज को प्रयुक्त करने वाली एक स्मारक-मापदंड की मूर्तिकला आइंडहोवन | इलुमिनेटेड स्ट्रट्स में लिंकेज को प्रयुक्त करने वाली एक स्मारक-मापदंड की मूर्तिकला आइंडहोवन नीदरलैंड्स में स्थायी प्रदर्शनी पर है। कलाकृति मापती है {{convert|22|x|15|x|16|m}}, वजन {{convert|6600|kg}}, और सामान्य जनता के लिए सुलभ [[नियंत्रण कक्ष (इंजीनियरिंग)]] से संचालित किया जा सकता है।<ref name="Schoofs">{{cite web|title=सिर्फ इसलिए कि आप एक चरित्र हैं, इसका मतलब यह नहीं है कि आपके पास चरित्र है|url=https://ivoschoofs.com/project/just-because-you-are-a-character-doesnt-mean-you-have-character/|website=Ivo Schoofs|accessdate=2017-08-14}}</ref> | ||
== यह भी देखें == | == यह भी देखें == | ||
* लिंकेज (मैकेनिकल) | * लिंकेज (मैकेनिकल) | ||
Line 92: | Line 90: | ||
{{Piston engine configurations|state=uncollapsed}} | {{Piston engine configurations|state=uncollapsed}} | ||
{{DEFAULTSORT:Peaucellier-Lipkin Linkage}} | {{DEFAULTSORT:Peaucellier-Lipkin Linkage}} | ||
[[Category: | [[Category:Collapse templates|Peaucellier-Lipkin Linkage]] | ||
[[Category:Created On 02/05/2023]] | [[Category:Commons category link is locally defined|Peaucellier-Lipkin Linkage]] | ||
[[Category:Created On 02/05/2023|Peaucellier-Lipkin Linkage]] | |||
[[Category:Lua-based templates|Peaucellier-Lipkin Linkage]] | |||
[[Category:Machine Translated Page|Peaucellier-Lipkin Linkage]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists|Peaucellier-Lipkin Linkage]] | |||
[[Category:Pages with script errors|Peaucellier-Lipkin Linkage]] | |||
[[Category:Sidebars with styles needing conversion|Peaucellier-Lipkin Linkage]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Vigyan Ready|Peaucellier-Lipkin Linkage]] | |||
[[Category:Templates generating microformats|Peaucellier-Lipkin Linkage]] | |||
[[Category:Templates that add a tracking category|Peaucellier-Lipkin Linkage]] | |||
[[Category:Templates that are not mobile friendly|Peaucellier-Lipkin Linkage]] | |||
[[Category:Templates that generate short descriptions|Peaucellier-Lipkin Linkage]] | |||
[[Category:Templates using TemplateData|Peaucellier-Lipkin Linkage]] | |||
[[Category:Wikipedia metatemplates|Peaucellier-Lipkin Linkage]] | |||
[[Category:प्रमाण युक्त लेख|Peaucellier-Lipkin Linkage]] | |||
[[Category:रेखीय गति|Peaucellier-Lipkin Linkage]] | |||
[[Category:लिंकेज (मैकेनिकल)|Peaucellier-Lipkin Linkage]] | |||
[[Category:सीधी रेखा तंत्र|Peaucellier-Lipkin Linkage]] |
Latest revision as of 16:44, 12 June 2023
1864 में आविष्कृत पीयूसेलियर-लिपकिन लिंकेज (या पीउसेलियर-लिपकिन सेल, या पीउसेलियर-लिपकिन इनवर्सर), पहला सच्चा नियोजक सीधी रेखा तंत्र था - पहला समतल लिंकेज (मैकेनिकल) जो रोटरी गति को उत्तम सीधी रेखा गति में बदलने में सक्षम था। और इसके विपरीत इसका नाम चार्ल्स-निकोलस पीयूसेलियर (1832-1913) एक फ्रांसीसी सेना अधिकारी और योम तोव लिपमैन लिपकिन (1846-1876), एक लिथुआनियाई यहूदी और प्रसिद्ध रब्बी इज़राइल सैलेंटर के बेटे के नाम पर रखा गया है।[1][2]
इस आविष्कार से पहले संदर्भ दिशानिर्देशों के बिना स्पष्ट सीधी-रेखा गति को परिपत्र गति में परिवर्तित करने के लिए कोई समतल विधि उपस्थित नहीं थी। 1864 में सारी शक्ति भाप के इंजनों से आती थी, जिसमें एक पिस्टन एक सीधी रेखा में एक सिलेंडर के ऊपर और नीचे चलता था। ड्राइविंग माध्यम को बनाए रखने के लिए और लीक के कारण ऊर्जा दक्षता खोने के लिए इस पिस्टन को सिलेंडर के साथ एक अच्छी मुहर रखने की जरूरत है। पिस्टन सिलेंडर की धुरी के लंबवत शेष रहकर अपनी सीधी-रेखा गति को बनाए रखते हुए ऐसा करता है। पिस्टन की सीधी-रेखा गति को वृत्ताकार गति में परिवर्तित करना महत्वपूर्ण महत्व का था। अधिकांश यदि सभी नहीं तो इन भाप इंजनों के अनुप्रयोग रोटरी थे।
पीयूसेलियर-लिपकिन लिंकेज का गणित सीधे एक वृत्त की व्युत्क्रम ज्यामिति से संबंधित है।
पहले के सारस लिंकेज
एक प्रारंभिक सीधी-रेखा तंत्र है, जिसका इतिहास अच्छी तरह से ज्ञात नहीं है जिसे सर्रस लिंकेज कहा जाता है। यह लिंकेज पीयूसेलियर-लिपकिन लिंकेज से 11 साल पहले का है और इसमें हिंगेड आयताकार प्लेटों की एक श्रृंखला होती है जिनमें से दो समानांतर रहती हैं किन्तु सामान्य रूप से एक-दूसरे को स्थानांतरित की जा सकती हैं। सारस का लिंकेज एक त्रि-आयामी वर्ग का है जिसे कभी-कभी अंतरिक्ष क्रैंक के रूप में जाना जाता है पीयूसेलियर-लिपकिन लिंकेज के विपरीत जो एक समतल तंत्र है।
ज्यामिति
उपकरण के ज्यामितीय आरेख में, निश्चित लंबाई के छह बार देखे जा सकते हैं: OA, OC, AB, BC, CD, DA. इसकी लंबाई OA की लंबाई के समान है OC, और की लंबाई AB, BC, CD, और DA सभी समान हैं और एक समचतुर्भुज बनाते हैं। साथ ही, बिंदु O निश्चित है। फिर, यदि बिंदु B एक वृत्त के साथ चलने के लिए विवश है (उदाहरण के लिए, इसे बीच की लंबाई के साथ एक बार से जोड़कर O और B; लाल रंग में दिखाया गया रास्ता) जो O से होकर गुजरता है फिर इंगित करें D को आवश्यक रूप से एक सीधी रेखा में चलना होगा (नीले रंग में दिखाया गया है)। दूसरी ओर यदि बिंदु B एक रेखा के साथ जाने के लिए विवश किया गया था (O से होकर नहीं), तो बिंदु D को आवश्यक रूप से एक वृत्त (O से गुजरते हुए) के साथ चलना होगा।
अवधारणा का गणितीय प्रमाण
संरेखता
सबसे पहले यह सिद्ध होना चाहिए कि अंक O, B, D संरेखता हैं। यह देखकर आसानी से देखा जा सकता है कि लिंकेज लाइन OD के बारे में दर्पण-सममित है तो बिंदु B उस रेखा पर पड़ना चाहिए।
अधिक औपचारिक रूप से, त्रिकोण △BAD और △BCD सर्वांगसम हैं क्योंकि भुजा BD स्वयं, पक्ष के अनुरूप है भुजा BA भुजा BC के सर्वांगसम है , और भुजा AD भुजा CD के सर्वांगसम है इसलिए, कोण ∠ABD और ∠CBD समान हैं।
अगला, त्रिकोण △OBA और △OBC सर्वांगसम हैं, चूँकि भुजाएँ हैं OA और OC सर्वांगसम हैं, पार्श्व OB स्वयं और भुजाओं के सर्वांगसम है BA और BC सर्वांगसम हैं। इसलिए, कोण ∠OBA और ∠OBC समान हैं।
अंत में क्योंकि वे एक पूर्ण वृत्त बनाते हैं हमारे पास है
किन्तु समरूपता के कारण, ∠OBA = ∠OBC और ∠DBA = ∠DBC, इस प्रकार
इसलिए अंक O, B, और D संरेख हैं।
व्युत्क्रम बिंदु
माना बिंदु P रेखा AC और BD का प्रतिच्छेदन है। तब चूँकि ABCD एक समचतुर्भुज है, P रेखाखंड BD और AC दोनों का मध्यबिंदु है। इसलिए, लंबाई BP = लंबाई PD ।
त्रिकोण △BPA त्रिभुज △DPA के सर्वांगसम है क्योंकि भुजा BP भुजा DP के सर्वांगसम है, भुजा AP स्वयं के सर्वांगसम है और भुजा AB भुजा AD के सर्वांगसम है। इसलिए कोण ∠BPA = कोण ∠DPA. किन्तु फिर ∠BPA + ∠DPA = 180°, तब 2 × ∠BPA = 180°, ∠BPA = 90°, और ∠DPA = 90°.
होने देना:
तब:
- (पाइथागोरस प्रमेय के कारण)
- (एक ही अभिव्यक्ति का विस्तार हुआ)
- (पाइथागोरस प्रमेय)
चूँकि OA और AD दोनों निश्चित लंबाई हैं, तो OB और OD का गुणनफल एक स्थिर है:
और अंक के बाद से O, B, D संरेख हैं तो केंद्र O और त्रिज्या k वाले वृत्त (O,k) के संबंध में D, B का व्युत्क्रम है।
व्युत्क्रम ज्यामिति
इस प्रकार व्युत्क्रम ज्यामिति के गुणों द्वारा चूँकि बिंदु D द्वारा पता लगाया गया चित्र बिंदु B द्वारा खींचे गए चित्र का व्युत्क्रम है, यदि B व्युत्क्रम O के केंद्र से गुजरने वाले एक वृत्त का पता लगाता है, तो D एक सीधी रेखा का पता लगाने के लिए विवश है। किन्तु यदि B , O से न होकर एक सीधी रेखा खींचता है, तो D को O से गुजरने वाले वृत्त का एक चाप बनाना चाहिए।
एक विशिष्ट चालक
पीयूसेलियर-लिपकिन लिंकेज (पीएलएल) में कई व्युत्क्रम हो सकते हैं। एक विशिष्ट उदाहरण विपरीत आकृति में दिखाया गया है, जिसमें एक रॉकर-स्लाइडर चार-बार इनपुट ड्राइवर के रूप में कार्य करता है। स्पष्ट होने के लिए, स्लाइडर इनपुट के रूप में कार्य करता है, जो बदले में पीएलएल के सही ग्राउंडेड लिंक को ड्राइव करता है, इस प्रकार संपूर्ण पीएलएल को ड्राइव करता है।
ऐतिहासिक नोट्स
जेम्स जोसेफ सिल्वेस्टर (कलेक्टेड वर्क्स, वॉल्यूम 3, पेपर 2) लिखते हैं कि जब उन्होंने लॉर्ड केल्विन को एक मॉडल दिखाया, तो उन्होंने "इसकी देखभाल की जैसे कि यह उनका अपना बच्चा हो, और जब उन्हें इससे मुक्त करने के लिए एक प्रस्ताव बनाया गया था, उत्तर दिया 'नहीं! मेरे पास लगभग पर्याप्त नहीं था - यह मेरे जीवन में अब तक की सबसे खूबसूरत चीज है।'"
सांस्कृतिक संदर्भ
इलुमिनेटेड स्ट्रट्स में लिंकेज को प्रयुक्त करने वाली एक स्मारक-मापदंड की मूर्तिकला आइंडहोवन नीदरलैंड्स में स्थायी प्रदर्शनी पर है। कलाकृति मापती है 22 by 15 by 16 metres (72 ft × 49 ft × 52 ft), वजन 6,600 kilograms (14,600 lb), और सामान्य जनता के लिए सुलभ नियंत्रण कक्ष (इंजीनियरिंग) से संचालित किया जा सकता है।[3]
यह भी देखें
- लिंकेज (मैकेनिकल)
- सीधी रेखा तंत्र
संदर्भ
- ↑ "Mathematical tutorial of the Peaucellier–Lipkin linkage". Kmoddl.library.cornell.edu. Retrieved 2011-12-06.
- ↑ Taimina, Daina. "Daina Taimina द्वारा एक सीधी रेखा कैसे खींची जाती है". Kmoddl.library.cornell.edu. Retrieved 2011-12-06.
- ↑ "सिर्फ इसलिए कि आप एक चरित्र हैं, इसका मतलब यह नहीं है कि आपके पास चरित्र है". Ivo Schoofs. Retrieved 2017-08-14.
ग्रन्थसूची
- Ogilvy, C. S. (1990), Excursions in Geometry, Dover, pp. 46–48, ISBN 0-486-26530-7
- Bryant, John; Sangwin, Chris (2008). How round is your circle? : where engineering and mathematics meet. Princeton: Princeton University Press. pp. 33–38, 60–63. ISBN 978-0-691-13118-4. — proof and discussion of Peaucellier–Lipkin linkage, mathematical and real-world mechanical models
- Coxeter HSM, Greitzer SL (1967). Geometry Revisited. Washington: MAA. pp. 108–111. ISBN 978-0-88385-619-2. (and references cited therein)
- Hartenberg, R.S. & J. Denavit (1964) Kinematic synthesis of linkages, pp 181–5, New York: McGraw–Hill, weblink from Cornell University.
- Johnson RA (1960). Advanced Euclidean Geometry: An elementary treatise on the geometry of the triangle and the circle (reprint of 1929 edition by Houghton Mifflin ed.). New York: Dover Publications. pp. 46–51. ISBN 978-0-486-46237-0.
- Wells D (1991). The Penguin Dictionary of Curious and Interesting Geometry. New York: Penguin Books. p. 120. ISBN 0-14-011813-6.
बाहरी संबंध
- How to Draw a Straight Line, online video clips of linkages with interactive applets.
- How to Draw a Straight Line, historical discussion of linkage design
- Interactive Java Applet with proof.
- Java animated Peaucellier–Lipkin linkage
- Jewish Encyclopedia article on Lippman Lipkin and his father Israel Salanter
- Peaucellier Apparatus features an interactive applet
- A simulation using the Molecular Workbench software
- A related linkage called Hart's Inversor.
- Modified Peaucellier robotic arm linkage (Vex Team 1508 video)