अनिश्चितता प्रतिपादक: Difference between revisions

From Vigyanwiki
No edit summary
 
Line 26: Line 26:
  | year = 1993
  | year = 1993
}}
}}
[[Category: अराजकता सिद्धांत]] [[Category: भग्न]]
 




{{fractal-stub}}
{{fractal-stub}}


 
[[Category:All stub articles]]
 
[[Category:Chaos theory stubs]]
[[Category: Machine Translated Page]]
[[Category:Created On 19/05/2023]]
[[Category:Created On 19/05/2023]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page]]
[[Category:Mathematical analysis stubs]]
[[Category:Templates Vigyan Ready]]
[[Category:अराजकता सिद्धांत]]
[[Category:भग्न]]

Latest revision as of 16:51, 12 June 2023

गणित में घातांक अनिश्चितता बेसिन सीमा के फ्रैक्टल आयाम को मापने की विधि है। चाओटिक स्कैटरिंग प्रणाली में सिस्टम का अपरिवर्तनीय सेट सामान्य रूप से सीधे सुलभ नहीं होता है क्योंकि यह गैर-आकर्षक और सामान्यतः माप (गणित) शून्य होता है। इसलिए सदस्यों की उपस्थिति का अनुमान लगाने का एकमात्र उपाय और अपरिवर्तनीय सेट के गुणों का मापन बेसिन ऑफ़ अट्रैक्शन के माध्यम से होता है। ध्यान दें कि एक चाओटिक स्कैटरिंग प्रणाली में आकर्षण के आधार सीमित चक्र नहीं होते हैं इसलिए अपरिवर्तनीय सेट के सदस्यों का गठन नहीं करते हैं।

मान लीजिए कि हम एक यादृच्छिक प्रक्षेपवक्र के साथ प्रारम्भ करते हैं और यादृच्छिक दिशा में छोटी राशि द्वारा इसे अशान्त करते हैं। यदि पुराने से भिन्न बेसिन में नया प्रक्षेपवक्र समाप्त होता है तो इसे अनिश्चित एप्सिलॉन कहा जाता है। यदि हम बड़ी संख्या में ऐसे प्रक्षेपवक्र लेते हैं तो उनमें से अंश जो अनिश्चित एप्सिलॉन हैं वह अंश अनिश्चितता है और हम आशा करते हैं कि यह के साथ घातीय रूप से स्केल करेगा:

इस प्रकार घातांक अनिश्चितता को इस प्रकार परिभाषित किया गया है:

अनिश्चितता के प्रतिपादक को मिंकोव्स्की आयाम का अनुमान लगाने के लिए निम्नलिखित रूप से दिखाया जा सकता है:

जहाँ N एम्बेडिंग आयाम है। आयाम अनिश्चितता के संख्यात्मक विश्लेषण के उदाहरण के लिए कृपया मिंकोव्स्की आयाम की तुलना में अराजक मिश्रण पर लेख देखें।

संदर्भ

  • C. Grebogi, S. W. McDonald, E. Ott and J. A. Yorke, Final state sensitivity: An obstruction to predictability, Phys. Letters 99A: 415-418 (1983).
  • Edward Ott (1993). Chaos in Dynamical Systems. Cambridge University Press.