आणविक भौतिकी: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 40: Line 40:
{{Physics-footer}}
{{Physics-footer}}
{{Authority control}}
{{Authority control}}
[[Category: आण्विक भौतिकी | आण्विक भौतिकी ]] [[Category: परमाणु, आणविक और ऑप्टिकल भौतिकी]]
 




{{AMO-physics-stub}}
{{AMO-physics-stub}}


 
[[Category:All stub articles]]
 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category: Machine Translated Page]]
[[Category:Atomic, molecular, and optical physics stubs]]
[[Category:Collapse templates]]
[[Category:Created On 18/05/2023]]
[[Category:Created On 18/05/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Multi-column templates]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages using div col with small parameter]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Portal templates with redlinked portals]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Templates using under-protected Lua modules]]
[[Category:Wikipedia fully protected templates|Div col]]
[[Category:Wikipedia metatemplates]]
[[Category:आण्विक भौतिकी| आण्विक भौतिकी ]]
[[Category:परमाणु, आणविक और ऑप्टिकल भौतिकी]]

Latest revision as of 07:52, 13 June 2023

प्रोटीन अल्फा हेलिक्स का एक ऊष्मीय रूप से उत्तेजित खंड। विद्युतिए क्वांटम राज्यों के अतिरिक्त, अणुओं में घूर्णी और कंपन गति के अनुरूप स्वतंत्रता की आंतरिक डिग्री होती है। प्रशंसनीय तापमान पर, इनमें से कई नए गतिमान मोड उत्तेजित होते है, जिसके परिणामस्वरूप निरंतर गति होती है जैसा कि ऊपर देखा गया है।

आणविक भौतिकी अणुओं और आणविक गतिकी के भौतिक गुणों का अध्ययन होता है। यह क्षेत्र भौतिक रसायन विज्ञान, रासायनिक भौतिकी और क्वांटम रसायन विज्ञान के साथ महत्वपूर्ण रूप से अतिव्याप्त करता है। इसे अधिकांशतः परमाणु, आणविक और ऑप्टिकल भौतिकी के उप-क्षेत्र के रूप में माना जाता है। आणविक भौतिकी का अध्ययन करने वाले अनुसंधान समूहों को सामान्यतः इन क्षेत्रों में से एक के रूप में नामित किया जाता है। आणविक भौतिकी अणुओं के भीतर आणविक संरचना और व्यक्तिगत परमाणु प्रक्रियाओं दोनों के कारण घटना को संबोधित करता है। परमाणु भौतिकी की तरह, यह विद्युत चुम्बकीय विकिरण और पदार्थ का वर्णन करने के लिए मौलिक यांत्रिकी और क्वांटम यांत्रिकी के संयोजन पर निर्भर होते है। क्षेत्र में प्रयोग अधिकांशतः परमाणु भौतिकी से उधार ली गई तकनीकों जैसे स्पेक्ट्रोस्कोपी और बिखरने पर अधिक निर्भर होते है।

आणविक संरचना

एक अणु में, इलेक्ट्रॉनों और परमाणु नाभिक दोनों परस्पर से समान पैमाने की ऊर्जा का अनुभव करते है। चूंकि, अणु में नाभिक लगभग निश्चित स्थानों पर रहते है जबकि इलेक्ट्रॉन महत्वपूर्ण रूप से चलते है। एक अणु की यह तस्वीर इस विचार पर आधारित है कि न्यूक्लियॉन इलेक्ट्रॉनों की तुलना में बहुत अधिक भारी होते है, इसलिए इनकी समान बल की प्रतिक्रिया में बहुत कम गति होती है। इस विवरण को सत्यापित करने के लिए अणुओं पर न्यूट्रॉन प्रकीर्णन प्रयोगों का उपयोग किया जाता है।[1]

आणविक ऊर्जा स्तर और स्पेक्ट्रा

एक अणु के भीतर घूर्णी और कंपन ऊर्जा स्तरों से जुड़ी गति। विभिन्न घूर्णी और कंपन स्तर रोटेशन या दोलन की विभिन्न दरों के अनुरूप होते है। यहाँ दिखाया गया उदाहरण एक साधारण डायटोमिक अणु है, लेकिन सिद्धांत बड़े और अधिक जटिल संरचनाओं के लिए समान है।

जब परमाणु अणुओं में जुड़ते है, तो उनके आंतरिक इलेक्ट्रॉन अपने मूल नाभिक से बंधे रहते है, जबकि बाहरी संयोजी इलेक्ट्रॉन अणु के चारों ओर वितरित होते है। इन अणु की संयोजन क्षमता का आवेश वितरण एक अणु के विद्युतिए ऊर्जा स्तर को निर्धारित करता है, और आणविक कक्षीय सिद्धांत द्वारा वर्णित किया जा सकता है, जो एकल परमाणुओं के लिए उपयोग किए जाने वाले परमाणु कक्षीय का बारीकी से अनुसरण करता है। यह मानते हुए कि इलेक्ट्रॉनों का संवेग ħ/a के क्रम में होते है (जहाँ ħ घटी हुई प्लांक स्थिरांक है और a अणु के भीतर औसत आंतरिक दूरी है, ~1Å), विद्युतिए अवस्थाओं के लिए ऊर्जा के परिमाण का अनुमान लगाया जा सकता है। यह सबसे कम आणविक ऊर्जा होती है, और विद्युत चुम्बकीय वर्णक्रम के दृश्य और पराबैंगनी क्षेत्रों में संक्रमण के अनुरूप होते है।[1][2]

परमाणुओं के साथ साझा किए गए विद्युतिए ऊर्जा स्तरों के अतिरिक्त, अणुओं में कंपन और घूर्णी अवस्थाओं के अनुरूप अतिरिक्त परिमाणीकरण (भौतिकी) ऊर्जा स्तर होते है। कंपन ऊर्जा स्तर अणु में उनके संतुलन की स्थिति के बारे में नाभिक की गति को संदर्भित करते है। अणु द्वारा उत्पादित विद्युत क्षमता में प्रत्येक नाभिक को क्वांटम हार्मोनिक ऑसिलेटर के रूप में मानकर और समान क्षमता का अनुभव करने वाले इलेक्ट्रॉन की संबंधित आवृत्ति की तुलना करके इन स्तरों की अनुमानित ऊर्जा का अनुमान लगाया जा सकता है। परिणाम यह है कि विद्युतिए स्तरों के लिए ऊर्जा की दूरी लगभग 100 गुना कम होती है। इस अनुमान के अनुरूप, कंपन वर्णक्रम निकट अवरक्त (लगभग 1 - 5 μm) में संक्रमण दिखते है।[2] अंत में, घूर्णी ऊर्जा पूरे अणु के अर्ध-कठोर रोटेशन का वर्णन करते है और दूर अवरक्त और माइक्रोवेव क्षेत्रों (लगभग 100-10,000 माइक्रोमीटर | तरंग दैर्ध्य में μm) में संक्रमण तरंग दैर्ध्य का उत्पादन करते है। ये सबसे छोटे ऊर्जा अंतराल होता है, और उनके आकार को एक वैलेंस इलेक्ट्रॉन की ऊर्जा (~ħ/a के रूप में ऊपर अनुमानित) के आंतरिक परमाणु ~1Å के साथ एक द्विपरमाणुक अणु की ऊर्जा की तुलना करके समझा जा सकता है।[1]

वास्तविक आणविक भी संक्रमण दिखाते है जो एक साथ विद्युतिए, कंपन और घूर्णी अवस्थाओं को जोड़ते है। उदाहरण के लिए, घूर्णी और कंपन दोनों अवस्थाओं से जुड़े संक्रमणों को अधिकांशतः घूर्णी-कंपन या रोविब्रेशनल संक्रमण कहा जाता है। वाइब्रोनिक कपलिंग संक्रमण विद्युतिए और वाइब्रेशनल संक्रमण को जोड़ती है, और रोविब्रोनिक युग्मन संक्रमण विद्युतिए, रोटेशनल और वाइब्रेशनल संक्रमण को जोड़ती है। प्रत्येक प्रकार के संक्रमण से जुड़ी बहुत भिन्न आवृत्तियों के कारण, इन मिश्रित संक्रमणों से जुड़ी तरंग दैर्ध्य विद्युत चुम्बकीय वर्णक्रम में भिन्न होते है।[2]

प्रयोग

समयतः, आणविक भौतिकी प्रयोगों के लक्ष्य और आकार, विद्युत और चुंबकीय गुण, आंतरिक ऊर्जा स्तर, और अणुओं के लिए आयनीकरण ऊर्जा और पृथक्करण ऊर्जा को चिह्नित करते है। आकार के संदर्भ में, घूर्णी स्पेक्ट्रा और कंपन स्पेक्ट्रा के आणविक क्षणों के निर्धारण की अनुमति देते है, जो अणुओं में आंतरिक दूरी की गणना के लिए अनुमति देते है। एक्स-रे विवर्तन, विशेष रूप से भारी तत्वों वाले अणुओं के लिए सीधे आंतरिक परमाणु के निर्धारण की अनुमति देते है।[2] स्पेक्ट्रोस्कोपी की सभी शाखाएं लागू ऊर्जा की विस्तृत श्रृंखला के कारण आणविक ऊर्जा स्तरों के निर्धारण में योगदान करते है।

वर्तमान शोध

परमाणु, आणविक और ऑप्टिकल भौतिकी के भीतर, मानक मॉडल से परे भौतिकी के लिए मौलिक स्थिरांक और जांच को सत्यापित करने के लिए अणुओं का उपयोग करने वाले कई अध्ययन होते है। कुछ आणविक संरचनाओं को नई भौतिकी घटनाओं के प्रति संवेदनशील होने की भविष्यवाणी की जाती है, जैसे समता (भौतिकी)[3] और टी-समरूपता | समय-उलट[4] उल्लंघन होता है। ट्रैप्ड आयन क्वांटम कंप्यूटर के लिए अणु को एक संभावित भविष्य का मंच भी माना जाता है, क्योंकि उनकी अधिक जटिल ऊर्जा स्तर संरचना व्यक्तिगत परमाणुओं की तुलना में क्वांटम जानकारी की उच्च दक्षता एन्कोडिंग की सुविधा प्रदान कर सकती है।[5] एक रासायनिक भौतिकी के दृष्टिकोण से, इंट्रामोल्युलर कंपन ऊर्जा पुनर्वितरण प्रयोग कंपन संबंधी स्पेक्ट्रा का उपयोग यह निर्धारित करने के लिए करते है कि कंपन से उत्तेजित अणु के विभिन्न क्वांटम स्थतियों के बीच ऊर्जा का पुनर्वितरण कैसे किया जाता है।[6]

यह भी देखें

स्रोत

  • परमाणु, आणविक और ऑप्टिकल भौतिकी: एल.टी. द्वारा नया शोध। चेन; नोवा साइंस पब्लिशर्स, इंक। न्यूयॉर्क

संदर्भ

  1. 1.0 1.1 1.2 Bransden, B.H.; Joachain, C.J. (1990). परमाणुओं और अणुओं का भौतिकी. New York: John Wiley & Sons,Inc. ISBN 0-470-20424-9.
  2. 2.0 2.1 2.2 2.3 Williams, Dudley, ed. (1962). Methods of Experimental Physics, Volume 3: Molecular Physics. New York and London: Academic Press.
  3. D. DeMille; S. B. Cahn; D. Murphree; D. A. Rahmlow; M. G. Kozlov (2008). "परमाणु स्पिन-निर्भर समता उल्लंघन को मापने के लिए अणुओं का उपयोग करना". Physical Review Letters. 100 (2). doi:10.1103/PhysRevLett.100.023003.
  4. Ivan Kozyryev; Nicholas R. Hutzler (2017). "लेजर-कूल्ड पॉलीएटोमिक अणु के साथ टाइम-रिवर्सल समरूपता उल्लंघन का सटीक मापन". Physical Review Letters. 119 (13). doi:10.1103/PhysRevLett.119.133002.
  5. S. F. Yelin; K. Kirby; Robin Côté (1978). "ध्रुवीय अणुओं के साथ मजबूत क्वांटम संगणना के लिए योजनाएँ". Physical Review Letters. 74 (5). doi:10.1103/PhysRevA.74.050301.
  6. T.F.Deutsch; S.R.J.Brueck (1978). "Collisionless intramolecular energy transfer in vibrationally excited SF6". Chemical Physics Letters. 54 (2). doi:10.1016/0009-2614(78)80096-7.