चार्ज त्रिज्या: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Measure of the size of atomic nuclei}} {{Use American English|date = February 2019}} मूल माध्य वर्ग आवेश त्रिज्...")
 
No edit summary
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Measure of the size of atomic nuclei}}
{{Short description|Measure of the size of atomic nuclei}}
{{Use American English|date = February 2019}}
rms आवेश त्रिज्या एक परमाणु नाभिक के आकार का विशेष रूप से प्रोटॉन वितरण एक उपाय है। प्रोटॉन त्रिज्या लगभग एक फेम्टोमीटर = 10<sup>−15</sup> मीटर है। इसे नाभिक द्वारा इलेक्ट्रॉनों के प्रकीर्णन द्वारा मापा जा सकता है। औसत वर्गीय नाभिकीय आवेश वितरण में सापेक्ष परिवर्तनों को परमाणु स्पेक्ट्रोस्कोपी से सटीक रूप से मापा जा सकता है।
मूल माध्य वर्ग आवेश त्रिज्या एक [[परमाणु नाभिक]] के आकार का एक माप है, विशेष रूप से [[प्रोटॉन]] वितरण। प्रोटॉन त्रिज्या लगभग एक [[ femtometer ]] = है {{val|e=-15|u=[[metre]]s}}. इसे नाभिक द्वारा [[इलेक्ट्रॉन]]ों के प्रकीर्णन द्वारा मापा जा सकता है। मीन स्क्वायर न्यूक्लियर चार्ज डिस्ट्रीब्यूशन में सापेक्ष परिवर्तनों को [[परमाणु स्पेक्ट्रोस्कोपी]] से सटीक रूप से मापा जा सकता है।


== परिभाषा ==
=== परिभाषा ===
परमाणु नाभिक के लिए त्रिज्या को परिभाषित करने की समस्या में परमाणु त्रिज्या को परिभाषित करने की समस्या में कुछ समानता है; न ही अच्छी तरह से परिभाषित सीमाएँ हैं। हालांकि, नाभिक का मूल [[तरल ड्रॉप मॉडल]] न्यूक्लियंस के काफी समान घनत्व की कल्पना करता है, सैद्धांतिक रूप से एक परमाणु की तुलना में एक नाभिक को एक अधिक पहचानने योग्य सतह देता है, बाद वाला घनत्व धीरे-धीरे केंद्र से कम होने वाले घनत्व के साथ अत्यधिक फैलाने वाले इलेक्ट्रॉन बादलों से बना होता है। व्यक्तिगत प्रोटॉन और [[न्यूट्रॉन]] या छोटे नाभिकों के लिए, आकार और सीमा की अवधारणाएँ कम स्पष्ट हो सकती हैं। एक एकल न्यूक्लियॉन को तीन [[वैलेंस [[क्वार्क]]]], बाध्यकारी ग्लूऑन और क्वार्क-एंटीक्वार्क जोड़े के तथाकथित समुद्र के [[रंग बंधन]] बैग के रूप में माना जाना चाहिए। इसके अतिरिक्त, न्यूक्लियॉन अपने [[युकावा इंटेला सी जमीन का तापमान]] से घिरा हुआ है जो मजबूत परमाणु बल के लिए जिम्मेदार है। यह तय करना मुश्किल हो सकता है कि आसपास के युकावा मेसन क्षेत्र को प्रोटॉन या न्यूक्लियॉन आकार के हिस्से के रूप में शामिल किया जाए या इसे एक अलग इकाई के रूप में माना जाए।
परमाणु नाभिक के लिए एक त्रिज्या को परिभाषित करने की समस्या में कुछ समानता है जो पूरे परमाणु के लिए एक त्रिज्या को परिभाषित करने की है; न ही अच्छी तरह से परिभाषित सीमाएँ हैं। यद्यपि , नाभिक के बुनियादी द्रव ड्रॉप मॉडल नाभिको के समान घनत्व की कल्पना करते हैं, सैद्धांतिक रूप से एक परमाणु की तुलना में एक नाभिक को अधिक पहचानने योग्य सतह देते हैं, बाद वाला घनत्व केंद्र से धीरे-धीरे कम होने वाले घनत्व के साथ अत्यधिक फैलाने वाले इलेक्ट्रॉन बादलों से बना होता है व्यक्तिगत प्रोटॉन और न्यूट्रॉन या छोटे नाभिकों के लिए, आकार और सीमा की अवधारणाएँ कम स्पष्ट हो सकती हैं। एक एकल न्यूक्लियॉन को तीन संयोजक क्वार्क, बाइंडिंग ग्लून् और तथाकथित क्वार्क-एंटीक्वार्क जोड़े के "समुद्र" के "रंग सीमित" बैग के रूप में माना जाना चाहिए। इसके अतिरिक्त, न्यूक्लियॉन मजबूत परमाणु शक्ति के लिए उत्तरदायी अपने युकावा पिओन क्षेत्र से घिरा हुआ है। यह तय करना मुश्किल हो सकता है कि आसपास के युकावा मेसन क्षेत्र को प्रोटॉन या न्यूक्लियॉन आकार के हिस्से के रूप में सम्मिलित किया जाए और इसे एक अलग इकाई के रूप में माना जाए।


मौलिक रूप से महत्वपूर्ण आकार के कुछ पहलू को मापने के लिए प्राप्य प्रायोगिक प्रक्रियाएं हैं, जो कि परमाणुओं और नाभिक के क्वांटम दायरे में हो सकता है। सबसे पहले, नाभिक को [[इलेक्ट्रॉन प्रकीर्णन]] प्रयोगों की व्याख्या के लिए सकारात्मक आवेश के एक क्षेत्र के रूप में वैज्ञानिक रूप से प्रतिरूपित किया जा सकता है: इलेक्ट्रॉन क्रॉस-सेक्शन की एक श्रृंखला देखते हैं, जिसके लिए एक माध्य लिया जा सकता है। आरएमएस की योग्यता (मूल माध्य वर्ग के लिए) उत्पन्न होती है क्योंकि यह परमाणु [[क्रॉस सेक्शन (भौतिकी)]] | क्रॉस-सेक्शन है, जो त्रिज्या के वर्ग के आनुपातिक है, जो इलेक्ट्रॉन बिखरने के लिए निर्धारित कर रहा है।
मौलिक रूप से महत्वपूर्ण आकार के कुछ पहलू को मापने के लिए प्राप्य प्रायोगिक अभिक्रियाएँ हैं, जो कि परमाणुओं और नाभिक के क्वांटम दायरे में हो सकता है। सबसे पहले, नाभिक को इलेक्ट्रॉन प्रकीर्णन प्रयोगों की व्याख्या के लिए धनात्मक आवेश के एक क्षेत्र के रूप में तैयार किया जा सकता है: इलेक्ट्रॉन अनुप्रस्थ काट की एक श्रृंखला को "देखते हैं", जिसके लिए एक माध्य लिया जा सकता है। "rms" ("वर्गमूल औसत का वर्ग" के लिए) की योग्यता उत्पन्न होती है क्योंकि यह परमाणु अनुप्रस्थ काट है, r त्रिज्या के वर्ग के आनुपातिक है, जो इलेक्ट्रॉन को बिखरने के लिए निर्धारित कर रहा है।


आवेश त्रिज्या की यह परिभाषा अक्सर मिश्रित [[हैड्रान]] जैसे प्रोटॉन, न्यूट्रॉन, पिओन, या [[खाना]] पर लागू होती है, जो एक से अधिक क्वार्क से बने होते हैं। एक एंटी-मैटर बेरोन (उदाहरण के लिए एक एंटी-प्रोटॉन), और कुछ कणों के शुद्ध शून्य विद्युत आवेश के मामले में, इलेक्ट्रॉन प्रकीर्णन प्रयोगों की व्याख्या के लिए समग्र कण को ​​धनात्मक विद्युत आवेश के बजाय ऋणात्मक क्षेत्र के रूप में प्रतिरूपित किया जाना चाहिए। . इन मामलों में, कण के आवेश त्रिज्या के वर्ग को ऋणात्मक के रूप में परिभाषित किया गया है, समान निरपेक्ष मान के साथ लंबाई की इकाई धनात्मक वर्ग आवेश त्रिज्या के बराबर होती है, जो कि अन्य सभी मामलों में समान होने पर होता कण में प्रत्येक क्वार्क में विपरीत विद्युत आवेश था (आवेश त्रिज्या के साथ एक मान है जो लंबाई की इकाइयों के साथ एक काल्पनिक संख्या है)।<ref>See, e.g., Abouzaid, et al., "A Measurement of the K0 Charge Radius and a CP Violating Asymmetry Together with a Search for CP Violating E1 Direct Photon Emission in the Rare Decay KL->pi+pi-e+e-", Phys. Rev. Lett. 96:101801 (2006) DOI: 10.1103/PhysRevLett.96.101801 https://arxiv.org/abs/hep-ex/0508010 (determining that the neutral kaon has a negative mean squared charge radius of -0.077 ± 0.007(stat) ± 0.011(syst)fm<sup>2</sup>).</ref> यह प्रथागत है जब चार्ज त्रिज्या एक कण के लिए चार्ज त्रिज्या के बजाय चार्ज त्रिज्या के नकारात्मक मूल्यवान वर्ग की रिपोर्ट करने के लिए एक काल्पनिक क्रमांकित मान लेता है।
आवेश त्रिज्या की यह परिभाषा प्रायः मिश्रित हैड्रोन जैसे प्रोटॉन, न्यूट्रॉन, पिओन, या काओन पर लागू होती है, जो एक से अधिक क्वार्क से बने होते हैं। एक प्रति द्रव्य बेरोन (उदाहरण के लिए एक प्रति -प्रोटॉन), और कुछ कणों के शुद्ध शून्य विद्युत आवेश के मामले में, इलेक्ट्रॉन प्रकीर्णन प्रयोगों की व्याख्या के लिए समग्र कण को ​​धनात्मक विद्युत आवेश के बजाय ऋणात्मक क्षेत्र के रूप में प्रतिरूपित किया जाना चाहिए। इन मामलों में, कण के आवेश त्रिज्या का वर्ग परिभाषित किया गया है इन मामलों में, कण के आवेश त्रिज्या के वर्ग को ऋणात्मक के रूप में परिभाषित किया गया है, समान निरपेक्ष मान के साथ लंबाई की इकाई धनात्मक वर्ग आवेश त्रिज्या के बराबर होती है, जो कि अन्य सभी मामलों में समान होने पर कण में प्रत्येक क्वार्क में विपरीत विद्युत आवेश की उपस्थिति को दर्शाता था (आवेश त्रिज्या के साथ एक मान है जो लंबाई की इकाइयों के साथ एक काल्पनिक संख्या है)।<ref>See, e.g., Abouzaid, et al., "A Measurement of the K0 Charge Radius and a CP Violating Asymmetry Together with a Search for CP Violating E1 Direct Photon Emission in the Rare Decay KL->pi+pi-e+e-", Phys. Rev. Lett. 96:101801 (2006) DOI: 10.1103/PhysRevLett.96.101801 https://arxiv.org/abs/hep-ex/0508010 (determining that the neutral kaon has a negative mean squared charge radius of -0.077 ± 0.007(stat) ± 0.011(syst)fm<sup>2</sup>).</ref> यह प्रथागत है जब चार्ज त्रिज्या एक कण के लिए चार्ज त्रिज्या के अतिरिक्त चार्ज त्रिज्या के ऋणात्मक मूल्यवान वर्ग की रिपोर्ट करने के लिए एक काल्पनिक क्रमांकित मान लेता है।


ऋणात्मक वर्ग आवेश त्रिज्या वाला सबसे प्रसिद्ध कण न्यूट्रॉन है। समग्र तटस्थ विद्युत आवेश के बावजूद, न्यूट्रॉन का वर्गाकार आवेश त्रिज्या ऋणात्मक क्यों है, इसकी अनुमानी व्याख्या यह है कि यह मामला है क्योंकि इसके नकारात्मक रूप से आवेशित डाउन क्वार्क, औसतन, न्यूट्रॉन के बाहरी भाग में स्थित होते हैं, जबकि इसके सकारात्मक रूप से आवेशित क्वार्क, औसतन, न्यूट्रॉन के केंद्र की ओर स्थित होता है। कण के भीतर आवेश का यह असममित वितरण समग्र रूप से कण के लिए एक छोटे नकारात्मक वर्गाकार आवेश त्रिज्या को जन्म देता है। लेकिन, यह केवल विभिन्न प्रकार के सैद्धांतिक मॉडलों में से सबसे सरल है, जिनमें से कुछ अधिक विस्तृत हैं, जिनका उपयोग न्यूट्रॉन की इस संपत्ति को समझाने के लिए किया जाता है।<ref>See, e.g., J. Byrne, "The mean square charge radius of the neutron", Neutron News Vol. 5, Issue 4, pg. 15-17 (1994) (comparing different theoretical explanations for the neutron's observed negative squared charge radius to the data) DOI:10.1080/10448639408217664 http://www.tandfonline.com/doi/abs/10.1080/10448639408217664#.U3GYaPldVUA</ref>
ऋणात्मक वर्ग आवेश त्रिज्या वाला सबसे प्रसिद्ध कण न्यूट्रॉन है। समग्र तटस्थ विद्युत आवेश के बाद भी, न्यूट्रॉन की वर्गाकार आवेश त्रिज्या ऋणात्मक क्यों है, इसकी अनुमानी व्याख्या यह है कि यह मामला है क्योंकि इसके ऋणात्मक रूप से आवेशित डाउन क्वार्क, औसतन, न्यूट्रॉन के बाहरी भाग में स्थित होते हैं, जबकि इसके धनात्मकरूप से आवेशित क्वार्क, औसतन, न्यूट्रॉन के केंद्र की ओर स्थित होता है।कण के भीतर आवेश का यह असममित वितरण समग्र रूप से कण के लिए एक छोटे ऋणात्मक वर्गाकार आवेश त्रिज्या को जन्म देता है। लेकिन, यह विभिन्न प्रकार के सैद्धांतिक मॉडलों में से केवल सबसे सरल है, जिनमें से कुछ अधिक विस्तृत हैं, जिनका उपयोग न्यूट्रॉन के इस गुण को समझाने के लिए किया जाता है।<ref>See, e.g., J. Byrne, "The mean square charge radius of the neutron", Neutron News Vol. 5, Issue 4, pg. 15-17 (1994) (comparing different theoretical explanations for the neutron's observed negative squared charge radius to the data) DOI:10.1080/10448639408217664 http://www.tandfonline.com/doi/abs/10.1080/10448639408217664#.U3GYaPldVUA</ref>ड्यूटेरॉन और उच्च नाभिकों के लिए, बिखरने वाले आवेश त्रिज्या, rd (प्रकीर्णन डेटा से प्राप्त), और बाध्य-अवस्था आवेश त्रिज्या, Rd के बीच अंतर करना पारंपरिक है, जिसमें व्यवहार के लिए खाते में डार्विन-फोल्डी शब्द सम्मिलित है। एक विद्युत चुम्बकीय क्षेत्र में चुंबकीय क्षण<ref>{{citation | first = L. L. | last = [[Leslie Lawrance Foldy|Foldy]] | title = Neutron–Electron Interaction | journal = Rev. Mod. Phys. | volume = 30 | issue = 2 | pages = 471–81 | year = 1958 | doi = 10.1103/RevModPhys.30.471|bibcode = 1958RvMP...30..471F }}.</ref><ref>{{citation | first1 = J. L. | last1 = Friar | first2 = J. | last2 = Martorell | first3 = D. W. L. | last3 = Sprung | title = Nuclear sizes and the isotope shift | journal = Phys. Rev. A | volume = 56 | issue = 6 | pages = 4579–86 | year = 1997 | doi = 10.1103/PhysRevA.56.4579|arxiv = nucl-th/9707016 |bibcode = 1997PhRvA..56.4579F | s2cid = 16441189 }}.</ref> और जो स्पेक्ट्रोस्कोपिक डेटा के उपचार के लिए उपयुक्त है।<ref name="CODATA98">{{CODATA 1998}}</ref> दो राडियों से संबंधित हैं
ड्यूटेरॉन और उच्च नाभिक के लिए, बिखरने वाले चार्ज त्रिज्या, आर के बीच अंतर करना पारंपरिक है<sub>d</sub> (बिखरने वाले डेटा से प्राप्त), और बाउंड-स्टेट चार्ज त्रिज्या, आर<sub>d</sub>, जिसमें विद्युत चुम्बकीय क्षेत्र में [[विषम चुंबकीय क्षण]] के व्यवहार के लिए डार्विन-फोल्डी शब्द शामिल है<ref>{{citation | first = L. L. | last = [[Leslie Lawrance Foldy|Foldy]] | title = Neutron–Electron Interaction | journal = Rev. Mod. Phys. | volume = 30 | issue = 2 | pages = 471–81 | year = 1958 | doi = 10.1103/RevModPhys.30.471|bibcode = 1958RvMP...30..471F }}.</ref><ref>{{citation | first1 = J. L. | last1 = Friar | first2 = J. | last2 = Martorell | first3 = D. W. L. | last3 = Sprung | title = Nuclear sizes and the isotope shift | journal = Phys. Rev. A | volume = 56 | issue = 6 | pages = 4579–86 | year = 1997 | doi = 10.1103/PhysRevA.56.4579|arxiv = nucl-th/9707016 |bibcode = 1997PhRvA..56.4579F | s2cid = 16441189 }}.</ref> और जो स्पेक्ट्रोस्कोपिक डेटा के इलाज के लिए उपयुक्त है।<ref name="CODATA98">{{CODATA 1998}}</ref> दो राडियों से संबंधित हैं
:<math>R_{\rm d} = \sqrt{r_{\rm d}^2 + \frac{3}{4}\left(\frac{m_{\rm e}}{m_{\rm d}}\right)^2 \left(\frac{\lambda_{\rm C}}{2\pi}\right)^2},</math>
:<math>R_{\rm d} = \sqrt{r_{\rm d}^2 + \frac{3}{4}\left(\frac{m_{\rm e}}{m_{\rm d}}\right)^2 \left(\frac{\lambda_{\rm C}}{2\pi}\right)^2},</math>
जहां एम<sub>e</sub> और एम<sub>d</sub> क्रमशः इलेक्ट्रॉन और ड्यूटेरॉन के द्रव्यमान हैं जबकि λ<sub>C</sub> इलेक्ट्रॉन का कॉम्पटन तरंग दैर्ध्य है।<ref name="CODATA98"/>प्रोटॉन के लिए, दोनों त्रिज्याएँ समान होती हैं।<ref name="CODATA98"/>
जहाँ m<sub>e</sub>और m<sub>d</sub> क्रमशः इलेक्ट्रॉन और ड्यूटेरॉन के द्रव्यमान हैं जबकि λC इलेक्ट्रॉन का कॉम्पटन तरंगदैर्घ्य है।<ref name="CODATA98"/>प्रोटॉन के लिए, दो त्रिज्याएँ समान हैं।<ref name="CODATA98"/>
=== इतिहास ===
{{Main|गीजर-मार्सडेन प्रयोग}}
1909 में हंस गीजर और अर्नेस्ट मार्सडेन द्वारा मैनचेस्टर विश्वविद्यालय, ब्रिटेन के भौतिक प्रयोगशालाओं में अर्नेस्ट रदरफोर्ड के निर्देशन में परमाणु चार्ज त्रिज्या का पहला अनुमान लगाया गया था,।<ref>{{citation | last1 = Geiger | first1 = H. | author-link1 = Hans Geiger | last2 = Marsden | first2 = E. | author-link2 = Ernest Marsden | title = On a Diffuse Reflection of the α-Particles | journal = [[Proceedings of the Royal Society A]] | year = 1909 | volume = 82 | issue = 557 | pages = 495–500 | doi=10.1098/rspa.1909.0054 |bibcode = 1909RSPSA..82..495G | doi-access = free }}.</ref>  इस प्रसिद्ध प्रयोग में सोने की पन्नी द्वारा α-कणों का प्रकीर्णन सम्मिलित था, जिसमें से कुछ कण 90° से अधिक के कोणों के माध्यम से बिखरे हुए थे, जो α-स्रोत के रूप में पन्नी के उसी तरफ वापस आ रहे थे। रदरफोर्ड सोने के नाभिक की त्रिज्या की ऊपरी सीमा निर्धारित करने में सक्षम था।<ref>{{citation | last = Rutherford | first = E. | author-link = Ernest Rutherford | title = The Scattering of α and β Particles by Matter and the Structure of the Atom | journal = Phil. Mag. |series=6th Series | year = 1911 | volume = 21 | issue = 125 | pages = 669–88 | doi=10.1080/14786440508637080 }}.</ref>बाद के अध्ययनों में भारी नाभिक (A > 20) के लिए आवेश त्रिज्या और द्रव्यमान संख्या, A के बीच एक अनुभवजन्य संबंध पाया गया:
: ''R'' ≈ ''r''<sub>0</sub>''A''<sup>1⁄3</sup>
जहां 1.2-1.5 fm के अनुभवजन्य स्थिरांक r0 की व्याख्या प्रोटॉन के कॉम्पटन तरंग दैर्ध्य के रूप में की जा सकती है। यह लगभग 7.69 fm के सोने के नाभिक (A = 197) के लिए चार्ज त्रिज्या देता है।<ref>{{citation | first1 = John M. | last1 = Blatt | first2 = Victor F. | last2 = Weisskopf | title = Theoretical Nuclear Physics | publisher = Wiley | location = New York | year = 1952 | pages = 14–16}}.</ref>
=== आधुनिक माप ===
आधुनिक प्रत्यक्ष माप हाइड्रोजन और ड्यूटेरियम में परमाणु ऊर्जा स्तरों के सटीक मापन और नाभिक द्वारा इलेक्ट्रॉनों के प्रकीर्णन के मापन पर आधारित होते हैं।<ref>{{citation | last = Sick | first = Ingo | year = 2003 | title = On the rms-radius of the proton | journal = Phys. Lett. B | volume = 576 | issue = 1–2 | pages = 62–67 | doi = 10.1016/j.physletb.2003.09.092|arxiv = nucl-ex/0310008 |bibcode = 2003PhLB..576...62S | s2cid = 119339313 }}.</ref><ref>{{citation | last1 = Sick | first1 = Ingo | first2 = Dirk | last2 = Trautmann | year = 1998 | title = On the rms radius of the deuteron | journal = Nucl. Phys. A | volume = 637 | issue = 4 | pages = 559–75 | doi = 10.1016/S0375-9474(98)00334-0|bibcode = 1998NuPhA.637..559S }}.</ref>प्रोटॉन और ड्यूटेरॉन की आवेश त्रिज्या को जानने में सबसे अधिक रुचि है, क्योंकि इनकी तुलना परमाणु हाइड्रोजन/ड्यूटेरियम के स्पेक्ट्रम से की जा सकती है: नाभिक का अशून्य आकार इलेक्ट्रॉनिक ऊर्जा स्तरों में बदलाव का कारण बनता है जो परिवर्तन के रूप में दिखाई देता है। वर्णक्रमीय रेखाओं की आवृत्ति।<ref name="CODATA98" />इस तरह की तुलना क्वांटम विद्युत् गतिकी (QED) की एक परीक्षा है। 2002 के बाद से, भौतिक स्थिरांक के लिए अनुशंसित मानों के CODATA सेट में प्रोटॉन और ड्यूटेरॉन चार्ज रेडी को स्वतंत्र रूप से परिष्कृत पैरामीटर किया गया है, जो कि अवकीर्णन डेटा और स्पेक्ट्रोस्कोपिक डेटा दोनों का उपयोग अनुशंसित मूल्यों को निर्धारित करने के लिए किया जाता है<ref name="CODATA02">{{CODATA 2002}}</ref>2018 कोडाटा अनुशंसित मूल्य हैं<ref name="CODATA 2018">{{cite web |title = स्थिरांक, इकाइयों और अनिश्चितताओं पर एनआईएसटी संदर्भ|url=https://physics.nist.gov/cuu/Constants/index.html |website= www.nist.gov}}</ref>
: प्रोटॉन: Rp= 8.414(19)×10<sup>-16 मी
: ड्यूटेरॉन: Rd  = 2.127 99(74)×10<sup>-15</sup> मी


 
म्यूओनिक हाइड्रोजन (एक प्रोटॉन और एक ऋणात्मक म्यूऑन से युक्त एक विदेशी परमाणु) में लैम्ब स्थानांतरण का हालिया माप प्रोटॉन चार्ज त्रिज्या के लिए काफी कम मान इंगित करता है, 0.84087(39) fm: इस विसंगति का कारण स्पष्ट नहीं है।<ref name="Chargeradius">{{Cite journal | last1 = Antognini | first1 = A. | last2 = Nez | first2 = F. | last3 = Schuhmann | first3 = K. | last4 = Amaro | first4 = F. D. | last5 = Biraben | first5 = F. | last6 = Cardoso | first6 = J. M. R. | last7 = Covita | first7 = D. S. | last8 = Dax | first8 = A. | last9 = Dhawan | first9 = S. | last10 = Diepold | doi = 10.1126/science.1230016 | first10 = M. | last11 = Fernandes | first11 = L. M. P. | last12 = Giesen | first12 = A. | last13 = Gouvea | first13 = A. L. | last14 = Graf | first14 = T. | last15 = Hänsch | first15 = T. W. | last16 = Indelicato | first16 = P. | last17 = Julien | first17 = L. | last18 = Kao | first18 = C. -Y. | last19 = Knowles | first19 = P. | last20 = Kottmann | first20 = F. | last21 = Le Bigot | first21 = E. -O. | last22 = Liu | first22 = Y. -W. | last23 = Lopes | first23 = J. A. M. | last24 = Ludhova | first24 = L. | last25 = Monteiro | first25 = C. M. B. | last26 = Mulhauser | first26 = F. | last27 = Nebel | first27 = T. | last28 = Rabinowitz | first28 = P. | last29 = Dos Santos | first29 = J. M. F. | last30 = Schaller | first30 = L. A. | title = Proton Structure from the Measurement of 2S-2P Transition Frequencies of Muonic Hydrogen | journal = Science | volume = 339 | issue = 6118 | pages = 417–420 | year = 2013 | pmid =  23349284|bibcode = 2013Sci...339..417A | hdl = 10316/79993 | s2cid = 346658 | hdl-access = free }}</ref>
== इतिहास ==
===संदर्भ===
{{Main|Geiger–Marsden experiment}}
1909 में [[हंस गीजर]] और [[अर्नेस्ट मार्सडेन]] द्वारा परमाणु चार्ज त्रिज्या का पहला अनुमान लगाया गया था।<ref>{{citation | last1 = Geiger | first1 = H. | author-link1 = Hans Geiger | last2 = Marsden | first2 = E. | author-link2 = Ernest Marsden | title = On a Diffuse Reflection of the α-Particles | journal = [[Proceedings of the Royal Society A]] | year = 1909 | volume = 82 | issue = 557 | pages = 495–500 | doi=10.1098/rspa.1909.0054 |bibcode = 1909RSPSA..82..495G | doi-access = free }}.</ref> ब्रिटेन के [[मैनचेस्टर विश्वविद्यालय]] की भौतिक प्रयोगशालाओं में [[अर्नेस्ट रदरफोर्ड]] के निर्देशन में। प्रसिद्ध प्रयोग में सोने की पन्नी द्वारा α-कणों का प्रकीर्णन शामिल था, जिसमें से कुछ कण 90° से अधिक के कोणों के माध्यम से बिखरे हुए थे, जो α-स्रोत के रूप में पन्नी के उसी तरफ वापस आ रहे थे। रदरफोर्ड 34 फेम्टोमीटर#एसआई मीटर के प्रीफ़िक्स्ड रूपों के सोने के नाभिक की त्रिज्या पर एक ऊपरी सीमा लगाने में सक्षम थे।<ref>{{citation | last = Rutherford | first = E. | author-link = Ernest Rutherford | title = The Scattering of α and β Particles by Matter and the Structure of the Atom | journal = Phil. Mag. |series=6th Series | year = 1911 | volume = 21 | issue = 125 | pages = 669–88 | doi=10.1080/14786440508637080 }}.</ref>
बाद के अध्ययनों में भारी नाभिक (A > 20) के लिए आवेश त्रिज्या और द्रव्यमान संख्या, A के बीच एक अनुभवजन्य संबंध पाया गया:
: आर ≈ आर<sub>0</sub>A<sup>{{frac|1|3}}</sup>
जहां अनुभवजन्य स्थिरांक आर<sub>0</sub> 1.2–1.5 fm की व्याख्या प्रोटॉन के कॉम्पटन तरंग दैर्ध्य के रूप में की जा सकती है। यह लगभग 7.69 fm के सोने के नाभिक (A = 197) के लिए चार्ज त्रिज्या देता है।<ref>{{citation | first1 = John M. | last1 = Blatt | first2 = Victor F. | last2 = Weisskopf | title = Theoretical Nuclear Physics | publisher = Wiley | location = New York | year = 1952 | pages = 14–16}}.</ref>
 
 
== आधुनिक माप ==
आधुनिक प्रत्यक्ष माप हाइड्रोजन और ड्यूटेरियम में परमाणु [[ऊर्जा स्तर]]ों के सटीक मापन और इलेक्ट्रॉन प्रकीर्णन के मापन पर आधारित हैं।<ref>{{citation | last = Sick | first = Ingo | year = 2003 | title = On the rms-radius of the proton | journal = Phys. Lett. B | volume = 576 | issue = 1–2 | pages = 62–67 | doi = 10.1016/j.physletb.2003.09.092|arxiv = nucl-ex/0310008 |bibcode = 2003PhLB..576...62S | s2cid = 119339313 }}.</ref><ref>{{citation | last1 = Sick | first1 = Ingo | first2 = Dirk | last2 = Trautmann | year = 1998 | title = On the rms radius of the deuteron | journal = Nucl. Phys. A | volume = 637 | issue = 4 | pages = 559–75 | doi = 10.1016/S0375-9474(98)00334-0|bibcode = 1998NuPhA.637..559S }}.</ref> प्रोटॉन और ड्यूटेरॉन की आवेश त्रिज्या को जानने में सबसे अधिक रुचि है, क्योंकि इनकी तुलना परमाणु [[हाइड्रोजन]]/[[ड्यूटेरियम]] के स्पेक्ट्रम से की जा सकती है: नाभिक का अशून्य आकार इलेक्ट्रॉनिक ऊर्जा स्तरों में बदलाव का कारण बनता है जो परिवर्तन के रूप में दिखाई देता है। [[वर्णक्रमीय रेखा]]ओं की आवृत्ति।<ref name="CODATA98"/>इस तरह की तुलना [[क्वांटम इलेक्ट्रोडायनामिक्स]] (QED) के [[QED का सटीक परीक्षण]] है। 2002 के बाद से, भौतिक स्थिरांक के लिए अनुशंसित मूल्यों के [[CODATA]] सेट में प्रोटॉन और ड्यूटेरॉन चार्ज रेडी को स्वतंत्र रूप से परिष्कृत पैरामीटर किया गया है, जो कि बिखरने वाले डेटा और स्पेक्ट्रोस्कोपिक डेटा दोनों का उपयोग अनुशंसित मूल्यों को निर्धारित करने के लिए किया जाता है।<ref name="CODATA02">{{CODATA 2002}}</ref>
2018 CODATA अनुशंसित मान हैं:<ref name="CODATA 2018">{{cite web |title = स्थिरांक, इकाइयों और अनिश्चितताओं पर एनआईएसटी संदर्भ|url=https://physics.nist.gov/cuu/Constants/index.html |website= www.nist.gov}}</ref>
: प्रोटॉन: आर<sub>p</sub> = 8.414(19)×10<sup>-16 मी
: ड्यूटेरॉन: आर<sub>d</sub> = 2.127 99(74)×10<sup>-15</sup> मी
 
[[म्यूओनिक हाइड्रोजन]] (प्रोटॉन और ऋणात्मक म्यूऑन से युक्त एक [[विदेशी परमाणु]]) में [[मेमने की पारी]] का हालिया माप प्रोटॉन चार्ज त्रिज्या के लिए काफी कम मान दर्शाता है, {{val|0.84087|(39)|u=fm}}: इस विसंगति का कारण स्पष्ट नहीं है।<ref name="Chargeradius">{{Cite journal | last1 = Antognini | first1 = A. | last2 = Nez | first2 = F. | last3 = Schuhmann | first3 = K. | last4 = Amaro | first4 = F. D. | last5 = Biraben | first5 = F. | last6 = Cardoso | first6 = J. M. R. | last7 = Covita | first7 = D. S. | last8 = Dax | first8 = A. | last9 = Dhawan | first9 = S. | last10 = Diepold | doi = 10.1126/science.1230016 | first10 = M. | last11 = Fernandes | first11 = L. M. P. | last12 = Giesen | first12 = A. | last13 = Gouvea | first13 = A. L. | last14 = Graf | first14 = T. | last15 = Hänsch | first15 = T. W. | last16 = Indelicato | first16 = P. | last17 = Julien | first17 = L. | last18 = Kao | first18 = C. -Y. | last19 = Knowles | first19 = P. | last20 = Kottmann | first20 = F. | last21 = Le Bigot | first21 = E. -O. | last22 = Liu | first22 = Y. -W. | last23 = Lopes | first23 = J. A. M. | last24 = Ludhova | first24 = L. | last25 = Monteiro | first25 = C. M. B. | last26 = Mulhauser | first26 = F. | last27 = Nebel | first27 = T. | last28 = Rabinowitz | first28 = P. | last29 = Dos Santos | first29 = J. M. F. | last30 = Schaller | first30 = L. A. | title = Proton Structure from the Measurement of 2S-2P Transition Frequencies of Muonic Hydrogen | journal = Science | volume = 339 | issue = 6118 | pages = 417–420 | year = 2013 | pmid =  23349284|bibcode = 2013Sci...339..417A | hdl = 10316/79993 | s2cid = 346658 | hdl-access = free }}</ref>
 
 
==संदर्भ==
{{Reflist|2}}
{{Reflist|2}}


{{Authority control}}
 
[[Category: भौतिक स्थिरांक]] [[Category: परमाणु रसायन]] [[Category: परमाणु भौतिकी]]


[[hu:Atommag#Atommagok tulajdonságai]]
[[hu:Atommag#Atommagok tulajdonságai]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 18/05/2023]]
[[Category:Created On 18/05/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:परमाणु भौतिकी]]
[[Category:परमाणु रसायन]]
[[Category:भौतिक स्थिरांक]]

Latest revision as of 08:45, 13 June 2023

rms आवेश त्रिज्या एक परमाणु नाभिक के आकार का विशेष रूप से प्रोटॉन वितरण एक उपाय है। प्रोटॉन त्रिज्या लगभग एक फेम्टोमीटर = 10−15 मीटर है। इसे नाभिक द्वारा इलेक्ट्रॉनों के प्रकीर्णन द्वारा मापा जा सकता है। औसत वर्गीय नाभिकीय आवेश वितरण में सापेक्ष परिवर्तनों को परमाणु स्पेक्ट्रोस्कोपी से सटीक रूप से मापा जा सकता है।

परिभाषा

परमाणु नाभिक के लिए एक त्रिज्या को परिभाषित करने की समस्या में कुछ समानता है जो पूरे परमाणु के लिए एक त्रिज्या को परिभाषित करने की है; न ही अच्छी तरह से परिभाषित सीमाएँ हैं। यद्यपि , नाभिक के बुनियादी द्रव ड्रॉप मॉडल नाभिको के समान घनत्व की कल्पना करते हैं, सैद्धांतिक रूप से एक परमाणु की तुलना में एक नाभिक को अधिक पहचानने योग्य सतह देते हैं, बाद वाला घनत्व केंद्र से धीरे-धीरे कम होने वाले घनत्व के साथ अत्यधिक फैलाने वाले इलेक्ट्रॉन बादलों से बना होता है व्यक्तिगत प्रोटॉन और न्यूट्रॉन या छोटे नाभिकों के लिए, आकार और सीमा की अवधारणाएँ कम स्पष्ट हो सकती हैं। एक एकल न्यूक्लियॉन को तीन संयोजक क्वार्क, बाइंडिंग ग्लून् और तथाकथित क्वार्क-एंटीक्वार्क जोड़े के "समुद्र" के "रंग सीमित" बैग के रूप में माना जाना चाहिए। इसके अतिरिक्त, न्यूक्लियॉन मजबूत परमाणु शक्ति के लिए उत्तरदायी अपने युकावा पिओन क्षेत्र से घिरा हुआ है। यह तय करना मुश्किल हो सकता है कि आसपास के युकावा मेसन क्षेत्र को प्रोटॉन या न्यूक्लियॉन आकार के हिस्से के रूप में सम्मिलित किया जाए और इसे एक अलग इकाई के रूप में माना जाए।

मौलिक रूप से महत्वपूर्ण आकार के कुछ पहलू को मापने के लिए प्राप्य प्रायोगिक अभिक्रियाएँ हैं, जो कि परमाणुओं और नाभिक के क्वांटम दायरे में हो सकता है। सबसे पहले, नाभिक को इलेक्ट्रॉन प्रकीर्णन प्रयोगों की व्याख्या के लिए धनात्मक आवेश के एक क्षेत्र के रूप में तैयार किया जा सकता है: इलेक्ट्रॉन अनुप्रस्थ काट की एक श्रृंखला को "देखते हैं", जिसके लिए एक माध्य लिया जा सकता है। "rms" ("वर्गमूल औसत का वर्ग" के लिए) की योग्यता उत्पन्न होती है क्योंकि यह परमाणु अनुप्रस्थ काट है, r त्रिज्या के वर्ग के आनुपातिक है, जो इलेक्ट्रॉन को बिखरने के लिए निर्धारित कर रहा है।

आवेश त्रिज्या की यह परिभाषा प्रायः मिश्रित हैड्रोन जैसे प्रोटॉन, न्यूट्रॉन, पिओन, या काओन पर लागू होती है, जो एक से अधिक क्वार्क से बने होते हैं। एक प्रति द्रव्य बेरोन (उदाहरण के लिए एक प्रति -प्रोटॉन), और कुछ कणों के शुद्ध शून्य विद्युत आवेश के मामले में, इलेक्ट्रॉन प्रकीर्णन प्रयोगों की व्याख्या के लिए समग्र कण को ​​धनात्मक विद्युत आवेश के बजाय ऋणात्मक क्षेत्र के रूप में प्रतिरूपित किया जाना चाहिए। इन मामलों में, कण के आवेश त्रिज्या का वर्ग परिभाषित किया गया है इन मामलों में, कण के आवेश त्रिज्या के वर्ग को ऋणात्मक के रूप में परिभाषित किया गया है, समान निरपेक्ष मान के साथ लंबाई की इकाई धनात्मक वर्ग आवेश त्रिज्या के बराबर होती है, जो कि अन्य सभी मामलों में समान होने पर कण में प्रत्येक क्वार्क में विपरीत विद्युत आवेश की उपस्थिति को दर्शाता था (आवेश त्रिज्या के साथ एक मान है जो लंबाई की इकाइयों के साथ एक काल्पनिक संख्या है)।[1] यह प्रथागत है जब चार्ज त्रिज्या एक कण के लिए चार्ज त्रिज्या के अतिरिक्त चार्ज त्रिज्या के ऋणात्मक मूल्यवान वर्ग की रिपोर्ट करने के लिए एक काल्पनिक क्रमांकित मान लेता है।

ऋणात्मक वर्ग आवेश त्रिज्या वाला सबसे प्रसिद्ध कण न्यूट्रॉन है। समग्र तटस्थ विद्युत आवेश के बाद भी, न्यूट्रॉन की वर्गाकार आवेश त्रिज्या ऋणात्मक क्यों है, इसकी अनुमानी व्याख्या यह है कि यह मामला है क्योंकि इसके ऋणात्मक रूप से आवेशित डाउन क्वार्क, औसतन, न्यूट्रॉन के बाहरी भाग में स्थित होते हैं, जबकि इसके धनात्मकरूप से आवेशित क्वार्क, औसतन, न्यूट्रॉन के केंद्र की ओर स्थित होता है।कण के भीतर आवेश का यह असममित वितरण समग्र रूप से कण के लिए एक छोटे ऋणात्मक वर्गाकार आवेश त्रिज्या को जन्म देता है। लेकिन, यह विभिन्न प्रकार के सैद्धांतिक मॉडलों में से केवल सबसे सरल है, जिनमें से कुछ अधिक विस्तृत हैं, जिनका उपयोग न्यूट्रॉन के इस गुण को समझाने के लिए किया जाता है।[2]ड्यूटेरॉन और उच्च नाभिकों के लिए, बिखरने वाले आवेश त्रिज्या, rd (प्रकीर्णन डेटा से प्राप्त), और बाध्य-अवस्था आवेश त्रिज्या, Rd के बीच अंतर करना पारंपरिक है, जिसमें व्यवहार के लिए खाते में डार्विन-फोल्डी शब्द सम्मिलित है। एक विद्युत चुम्बकीय क्षेत्र में चुंबकीय क्षण[3][4] और जो स्पेक्ट्रोस्कोपिक डेटा के उपचार के लिए उपयुक्त है।[5] दो राडियों से संबंधित हैं

जहाँ meऔर md क्रमशः इलेक्ट्रॉन और ड्यूटेरॉन के द्रव्यमान हैं जबकि λC इलेक्ट्रॉन का कॉम्पटन तरंगदैर्घ्य है।[5]प्रोटॉन के लिए, दो त्रिज्याएँ समान हैं।[5]

इतिहास

1909 में हंस गीजर और अर्नेस्ट मार्सडेन द्वारा मैनचेस्टर विश्वविद्यालय, ब्रिटेन के भौतिक प्रयोगशालाओं में अर्नेस्ट रदरफोर्ड के निर्देशन में परमाणु चार्ज त्रिज्या का पहला अनुमान लगाया गया था,।[6] इस प्रसिद्ध प्रयोग में सोने की पन्नी द्वारा α-कणों का प्रकीर्णन सम्मिलित था, जिसमें से कुछ कण 90° से अधिक के कोणों के माध्यम से बिखरे हुए थे, जो α-स्रोत के रूप में पन्नी के उसी तरफ वापस आ रहे थे। रदरफोर्ड सोने के नाभिक की त्रिज्या की ऊपरी सीमा निर्धारित करने में सक्षम था।[7]बाद के अध्ययनों में भारी नाभिक (A > 20) के लिए आवेश त्रिज्या और द्रव्यमान संख्या, A के बीच एक अनुभवजन्य संबंध पाया गया:

Rr0A1⁄3

जहां 1.2-1.5 fm के अनुभवजन्य स्थिरांक r0 की व्याख्या प्रोटॉन के कॉम्पटन तरंग दैर्ध्य के रूप में की जा सकती है। यह लगभग 7.69 fm के सोने के नाभिक (A = 197) के लिए चार्ज त्रिज्या देता है।[8]

आधुनिक माप

आधुनिक प्रत्यक्ष माप हाइड्रोजन और ड्यूटेरियम में परमाणु ऊर्जा स्तरों के सटीक मापन और नाभिक द्वारा इलेक्ट्रॉनों के प्रकीर्णन के मापन पर आधारित होते हैं।[9][10]प्रोटॉन और ड्यूटेरॉन की आवेश त्रिज्या को जानने में सबसे अधिक रुचि है, क्योंकि इनकी तुलना परमाणु हाइड्रोजन/ड्यूटेरियम के स्पेक्ट्रम से की जा सकती है: नाभिक का अशून्य आकार इलेक्ट्रॉनिक ऊर्जा स्तरों में बदलाव का कारण बनता है जो परिवर्तन के रूप में दिखाई देता है। वर्णक्रमीय रेखाओं की आवृत्ति।[5]इस तरह की तुलना क्वांटम विद्युत् गतिकी (QED) की एक परीक्षा है। 2002 के बाद से, भौतिक स्थिरांक के लिए अनुशंसित मानों के CODATA सेट में प्रोटॉन और ड्यूटेरॉन चार्ज रेडी को स्वतंत्र रूप से परिष्कृत पैरामीटर किया गया है, जो कि अवकीर्णन डेटा और स्पेक्ट्रोस्कोपिक डेटा दोनों का उपयोग अनुशंसित मूल्यों को निर्धारित करने के लिए किया जाता है[11]2018 कोडाटा अनुशंसित मूल्य हैं[12]

प्रोटॉन: Rp= 8.414(19)×10-16 मी
ड्यूटेरॉन: Rd = 2.127 99(74)×10-15 मी

म्यूओनिक हाइड्रोजन (एक प्रोटॉन और एक ऋणात्मक म्यूऑन से युक्त एक विदेशी परमाणु) में लैम्ब स्थानांतरण का हालिया माप प्रोटॉन चार्ज त्रिज्या के लिए काफी कम मान इंगित करता है, 0.84087(39) fm: इस विसंगति का कारण स्पष्ट नहीं है।[13]

संदर्भ

  1. See, e.g., Abouzaid, et al., "A Measurement of the K0 Charge Radius and a CP Violating Asymmetry Together with a Search for CP Violating E1 Direct Photon Emission in the Rare Decay KL->pi+pi-e+e-", Phys. Rev. Lett. 96:101801 (2006) DOI: 10.1103/PhysRevLett.96.101801 https://arxiv.org/abs/hep-ex/0508010 (determining that the neutral kaon has a negative mean squared charge radius of -0.077 ± 0.007(stat) ± 0.011(syst)fm2).
  2. See, e.g., J. Byrne, "The mean square charge radius of the neutron", Neutron News Vol. 5, Issue 4, pg. 15-17 (1994) (comparing different theoretical explanations for the neutron's observed negative squared charge radius to the data) DOI:10.1080/10448639408217664 http://www.tandfonline.com/doi/abs/10.1080/10448639408217664#.U3GYaPldVUA
  3. Foldy, L. L. (1958), "Neutron–Electron Interaction", Rev. Mod. Phys., 30 (2): 471–81, Bibcode:1958RvMP...30..471F, doi:10.1103/RevModPhys.30.471.
  4. Friar, J. L.; Martorell, J.; Sprung, D. W. L. (1997), "Nuclear sizes and the isotope shift", Phys. Rev. A, 56 (6): 4579–86, arXiv:nucl-th/9707016, Bibcode:1997PhRvA..56.4579F, doi:10.1103/PhysRevA.56.4579, S2CID 16441189.
  5. 5.0 5.1 5.2 5.3 Mohr, Peter J.; Taylor, Barry N. (1999). "CODATA recommended values of the fundamental physical constants: 1998" (PDF). Journal of Physical and Chemical Reference Data. 28 (6): 1713–1852. Bibcode:1999JPCRD..28.1713M. doi:10.1063/1.556049. Archived from the original (PDF) on 2017-10-01.
  6. Geiger, H.; Marsden, E. (1909), "On a Diffuse Reflection of the α-Particles", Proceedings of the Royal Society A, 82 (557): 495–500, Bibcode:1909RSPSA..82..495G, doi:10.1098/rspa.1909.0054.
  7. Rutherford, E. (1911), "The Scattering of α and β Particles by Matter and the Structure of the Atom", Phil. Mag., 6th Series, 21 (125): 669–88, doi:10.1080/14786440508637080.
  8. Blatt, John M.; Weisskopf, Victor F. (1952), Theoretical Nuclear Physics, New York: Wiley, pp. 14–16.
  9. Sick, Ingo (2003), "On the rms-radius of the proton", Phys. Lett. B, 576 (1–2): 62–67, arXiv:nucl-ex/0310008, Bibcode:2003PhLB..576...62S, doi:10.1016/j.physletb.2003.09.092, S2CID 119339313.
  10. Sick, Ingo; Trautmann, Dirk (1998), "On the rms radius of the deuteron", Nucl. Phys. A, 637 (4): 559–75, Bibcode:1998NuPhA.637..559S, doi:10.1016/S0375-9474(98)00334-0.
  11. Mohr, Peter J.; Taylor, Barry N. (2005). "CODATA recommended values of the fundamental physical constants: 2002" (PDF). Reviews of Modern Physics. 77 (1): 1–107. Bibcode:2005RvMP...77....1M. doi:10.1103/RevModPhys.77.1. Archived from the original (PDF) on 2017-10-01.
  12. "स्थिरांक, इकाइयों और अनिश्चितताओं पर एनआईएसटी संदर्भ". www.nist.gov.
  13. Antognini, A.; Nez, F.; Schuhmann, K.; Amaro, F. D.; Biraben, F.; Cardoso, J. M. R.; Covita, D. S.; Dax, A.; Dhawan, S.; Diepold, M.; Fernandes, L. M. P.; Giesen, A.; Gouvea, A. L.; Graf, T.; Hänsch, T. W.; Indelicato, P.; Julien, L.; Kao, C. -Y.; Knowles, P.; Kottmann, F.; Le Bigot, E. -O.; Liu, Y. -W.; Lopes, J. A. M.; Ludhova, L.; Monteiro, C. M. B.; Mulhauser, F.; Nebel, T.; Rabinowitz, P.; Dos Santos, J. M. F.; Schaller, L. A. (2013). "Proton Structure from the Measurement of 2S-2P Transition Frequencies of Muonic Hydrogen". Science. 339 (6118): 417–420. Bibcode:2013Sci...339..417A. doi:10.1126/science.1230016. hdl:10316/79993. PMID 23349284. S2CID 346658.