ध्रुवीयता (पारस्परिक अधिष्ठापन): Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Magnetically coupled transformer winding polarities}} {{About|magnetically coupled transformer winding polarities|motor winding polarity|Electric motor}} {...")
 
No edit summary
 
(10 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Magnetically coupled transformer winding polarities}}
{{Short description|Magnetically coupled transformer winding polarities}}
{{About|magnetically coupled transformer winding polarities|motor winding polarity|Electric motor}}
{{About|चुंबकीय रूप से युग्मित ट्रांसफार्मर घुमावदार ध्रुवीयता|मोटर वाइंडिंग पोलरिटी|विद्युत मोटर}}
{{Redir|Dot convention|similar terms|Dot notation (disambiguation)}}
{{Redir|बिंदु सम्मेलन|समान शब्द|बिंदु सम्मेलन (बहुविकल्पी)}}
{{Use dmy dates|date=July 2022|cs1-dates=y}}
{{Use list-defined references|date=July 2022}}
[[Image:Instrument Transformer HV terminals.jpg|thumb|180px| एक उपकरण ट्रांसफॉर्मर, डॉट कन्वेंशन और एच 1 मार्किंग के साथ हाई वोल्टेज साइड को देख रहा है।]]
[[Image:Instrument Transformer LV terminals.jpg|thumb|180px|इंस्ट्रूमेंट ट्रांसफॉर्मर का लो वोल्टेज साइड, डॉट और X1 मार्किंग के साथ। X1 और H1 टर्मिनल आसन्न हैं।]][[ विद्युत अभियन्त्रण ]] में, डॉट मार्किंग कन्वेंशन, या अल्फ़ान्यूमेरिक मार्किंग कन्वेंशन, या दोनों का उपयोग दो म्युचुअल इंडक्शन # कपल्ड इंडक्टर्स और ट्रांसफॉर्मर वाइंडिंग्स के बीच म्यूचुअल इंडक्शन घटकों के समान सापेक्ष तात्कालिक विद्युत ध्रुवता को दर्शाने के लिए किया जा सकता है। ये चिह्न टर्मिनलों, वाइंडिंग लीड्स, नेमप्लेट्स, योजनाबद्ध और वायरिंग आरेखों के बगल में ट्रांसफॉर्मर मामलों पर पाए जा सकते हैं।


सम्मेलन यह है कि एक डॉट के साथ चिह्नित वाइंडिंग के अंत में एक [[ट्रांसफार्मर]] में प्रवेश करने से, उनके बिंदीदार सिरों पर अन्य वाइंडिंग्स से बाहर निकलने का उत्पादन होगा।{{citation needed|date=May 2020}}
[[Image:Instrument Transformer HV terminals.jpg|thumb|180px| एक उपकरण ट्रांसफॉर्मर, डॉट कन्वेंशन और एच 1 मार्किंग के साथ उच्च वोल्टेज साइड को देख रहा है।]]
[[Image:Instrument Transformer LV terminals.jpg|thumb|180px|इंस्ट्रूमेंट ट्रांसफॉर्मर का निम्न वोल्टेज साइड, डॉट और X1 मार्किंग के साथ। X1 और H1 टर्मिनल आसन्न हैं।]][[ विद्युत अभियन्त्रण | विद्युत अभियन्त्रण]] में डॉट मार्किंग कन्वेंशन, या अल्फ़ान्यूमेरिक मार्किंग कन्वेंशन या दोनों का उपयोग दो म्युचुअल इंडक्शन या कपल्ड इंडक्टर्स और ट्रांसफॉर्मर वाइंडिंग्स के बीच म्यूचुअल इंडक्शन घटकों के समान सापेक्ष तात्कालिक विद्युत ध्रुवता को दर्शाने के लिए किया जा सकता है। ये चिह्न टर्मिनलों, वाइंडिंग लीड्स, नेमप्लेट्स, योजनाबद्ध और वायरिंग आरेखों के बगल में ट्रांसफॉर्मर स्थितियों पर पाए जा सकते हैं।


बिजली व्यवस्था की सुरक्षा, माप और नियंत्रण प्रणालियों में उचित ध्रुवीयता बनाए रखना महत्वपूर्ण है। एक उलटा साधन ट्रांसफॉर्मर वाइंडिंग [[सुरक्षात्मक रिले]] को विफल कर सकता है, गलत शक्ति और ऊर्जा माप दे सकता है, या नकारात्मक शक्ति कारक प्रदर्शित कर सकता है। समानान्तर ट्रांसफॉर्मर वाइंडिंग के उलट कनेक्शन परिसंचारी धाराओं या एक प्रभावी [[ शार्ट सर्किट ]] का कारण बनेंगे। सिग्नल सर्किट में, ट्रांसफॉर्मर वाइंडिंग्स के उल्टे कनेक्शन के परिणामस्वरूप एम्पलीफायरों और स्पीकर सिस्टम का गलत संचालन हो सकता है, या उन सिग्नलों को रद्द किया जा सकता है जो जोड़ने के लिए हैं।
सम्मेलन यह है कि एक डॉट के साथ चिह्नित वाइंडिंग के अंत में एक [[ट्रांसफार्मर]] में प्रवेश करने से उनके बिंदीदार सिरों पर अन्य वाइंडिंग्स से बाहर निकलने का उत्पादन होगा।


विद्युत् व्यवस्था की सुरक्षा माप और नियंत्रण प्रणालियों में उचित ध्रुवीयता बनाए रखना महत्वपूर्ण है। एक विपरीत साधन ट्रांसफॉर्मर वाइंडिंग [[सुरक्षात्मक रिले]] को विफल कर सकता है गलत शक्ति और ऊर्जा माप दे सकता है या ऋणात्मक शक्ति कारक प्रदर्शित कर सकता है। समानान्तर ट्रांसफॉर्मर वाइंडिंग के उलट कनेक्शन परिसंचारी धाराओं या एक प्रभावी [[ शार्ट सर्किट |लघु परिपथ]] का कारण बनेंगे संकेत परिपथ में ट्रांसफॉर्मर वाइंडिंग्स के विपरीत कनेक्शन के परिणामस्वरूप एम्पलीफायरों और स्पीकर प्रणाली का गलत संचालन हो सकता है, या उन संकेतो को समाप्त किया जा सकता है जो जोड़ने के लिए हैं।
== ध्रुवीयता ==
== ध्रुवीयता ==
प्राइमरी और सेकेंडरी वाइंडिंग के लीड्स को एक ही पोलरिटी का कहा जाता है, जब प्राइमरी वाइंडिंग लीड में प्रवेश करने वाले तात्कालिक करंट सेकेंडरी वाइंडिंग लीड को छोड़कर तात्कालिक करंट में प्रवेश करते हैं, हालांकि दो लीड एक निरंतर सर्किट थे।<ref name="Knowlton_1949"/><ref name="Alexander_2009"/>समानांतर में एक ही कोर के चारों ओर दो घुमावों के घाव के मामले में, उदाहरण के लिए, ध्रुवता समान सिरों पर समान होगी: पहले कॉइल में एक अचानक (तात्कालिक) करंट अचानक वृद्धि का विरोध करने वाले वोल्टेज को प्रेरित करेगा (लेनज़ का नियम) पहले और दूसरे कॉइल में भी, क्योंकि पहले कॉइल में करंट द्वारा उत्पन्न चुंबकीय क्षेत्र दो कॉइल को एक ही तरीके से पार करता है।
प्राइमरी और सेकेंडरी वाइंडिंग के लीड्स को एक ही पोलरिटी का कहा जाता है, जब प्राइमरी वाइंडिंग लीड में प्रवेश करने वाले तात्कालिक धारा सेकेंडरी वाइंडिंग लीड को छोड़कर तात्कालिक धारा में प्रवेश करते हैं, चूँकि दो लीड एक निरंतर परिपथ थे।<ref name="Knowlton_1949"/><ref name="Alexander_2009"/> समानांतर में एक ही कोर के चारों ओर दो घुमावों के घाव के स्थिति में उदाहरण के लिए, ध्रुवता समान सिरों पर समान होगी: पहले कॉइल में एक अचानक (तात्कालिक) धारा अचानक वृद्धि का विरोध करने वाले वोल्टेज को प्रेरित करेगा (लेनज़ का नियम) पहले और दूसरे कॉइल में भी क्योंकि पहले कॉइल में धारा द्वारा उत्पन्न चुंबकीय क्षेत्र दो कॉइल को एक ही विधि से पार करता है।
इसलिए, दूसरा कॉइल पहले कॉइल में इंडक्शन करंट की दिशा के विपरीत एक प्रेरित करंट दिखाएगा। दोनों लीड एक सतत सर्किट की तरह व्यवहार करते हैं, एक करंट पहले लीड में प्रवेश करता है और दूसरा करंट दूसरी लीड को छोड़ता है।
 
इसलिए दूसरा कॉइल पहले कॉइल में इंडक्शन धारा की दिशा के विपरीत एक प्रेरित धारा दिखाएगा। दोनों लीड एक सतत परिपथ की तरह व्यवहार करते हैं, एक धारा पहले लीड में प्रवेश करता है और दूसरा धारा दूसरी लीड को छोड़ता है।


== ट्रांसफार्मर वाइंडिंग ==
== ट्रांसफार्मर वाइंडिंग ==
आमतौर पर दो विधियों का उपयोग यह दर्शाने के लिए किया जाता है कि कौन से टर्मिनल समान सापेक्ष ध्रुवता प्रस्तुत करते हैं। एक बिंदु का उपयोग किया जा सकता है, या एक अल्फ़ान्यूमेरिक पदनाम। अल्फ़ान्यूमेरिक पदनाम आमतौर पर एच के रूप में होते हैं<sub>1</sub> प्राइमरी के लिए, और सेकेंडरी के लिए, X<sub>1</sub>, (और वाई<sub>1</sub>, साथ<sub>1</sub>, यदि अधिक वाइंडिंग्स मौजूद हैं)।
सामान्यतः दो विधियों का उपयोग यह दर्शाने के लिए किया जाता है कि कौन से टर्मिनल समान सापेक्ष ध्रुवता प्रस्तुत करते हैं। एक बिंदु का उपयोग किया जा सकता है, या एक अल्फ़ान्यूमेरिक पदनाम अल्फ़ान्यूमेरिक पदनाम सामान्यतः H<sub>1</sub> के रूप में होते हैं प्राइमरी के लिए, और सेकेंडरी के लिए, X<sub>1</sub>, (और Y<sub>1</sub>, Z<sub>1</sub> यदि अधिक वाइंडिंग्स उपस्थित हैं)।


सिंगल-फेज ट्रांसफॉर्मर के विपरीत, तीन-फेज ट्रांसफॉर्मर में अलग-अलग वाइंडिंग कॉन्फ़िगरेशन (उदाहरण के लिए, वाई कनेक्टेड प्राइमरी और डेल्टा कनेक्टेड सेकेंडरी) के कारण फेज शिफ्ट हो सकता है, जिसके परिणामस्वरूप H1 और X1 बुशिंग डेजिग्नेशन के बीच 30 डिग्री फेज शिफ्ट का गुणक होता है। . ट्रांसफार्मर की नेमप्लेट में [[वेक्टर समूह]] ऐसे फेज शिफ्ट की जानकारी देता है।
सिंगल-फेज ट्रांसफॉर्मर के विपरीत तीन-फेज ट्रांसफॉर्मर में अलग-अलग वाइंडिंग कॉन्फ़िगरेशन (उदाहरण के लिए, वाई कनेक्टेड प्राइमरी और डेल्टा कनेक्टेड सेकेंडरी) के कारण फेज शिफ्ट हो सकता है, जिसके परिणामस्वरूप H1 और X1 बुशिंग डेजिग्नेशन के बीच 30 डिग्री फेज शिफ्ट का गुणक होता है। ट्रांसफार्मर की नेमप्लेट में [[वेक्टर समूह]] ऐसे फेज शिफ्ट की जानकारी देता है।


== टर्मिनल लेआउट कन्वेंशन ==
== टर्मिनल लेआउट कन्वेंशन ==
कहा जाता है कि ट्रांसफॉर्मर में टर्मिनलों की भौतिक व्यवस्था और टर्मिनलों से जुड़ी वाइंडिंग्स की ध्रुवीयता के आधार पर योगात्मक या घटिया ध्रुवीयता होती है। उत्तर अमेरिकी ट्रांसफॉर्मर के लिए इस्तेमाल किया जाने वाला सम्मेलन यह है कि ट्रांसफॉर्मर के उच्च वोल्टेज पक्ष का सामना करना पड़ रहा है, एच 1 टर्मिनल पर्यवेक्षक के दाहिनी ओर है। एक ट्रांसफॉर्मर को एडिटिव कहा जाता है, अगर, वैचारिक रूप से, हाई-वोल्टेज टर्मिनल को आसन्न लो-वोल्टेज टर्मिनल से जोड़ने से अन्य दो टर्मिनलों के बीच कुल वोल्टेज मिलता है जो हाई वोल्टेज और लो वोल्टेज रेटिंग का योग होता है, जब हाई-वोल्टेज वाइंडिंग रेटेड वोल्टेज पर उत्साहित है। H1 और X2 टर्मिनल भौतिक रूप से निकट हैं। घटिया व्यवस्था में, H1 और X1 टर्मिनल आसन्न हैं, और H2 और X2 के बीच मापा गया वोल्टेज उच्च वोल्टेज और कम वोल्टेज वाइंडिंग का अंतर होगा।<ref name="Croft_1987"/>पोल माउंटेड डिस्ट्रीब्यूशन ट्रांसफॉर्मर को एडिटिव पोलरिटी के साथ निर्मित किया जाता है, जबकि इंस्ट्रूमेंट ट्रांसफॉर्मर को सबट्रैक्टिव पोलरिटी के साथ बनाया जाता है। जहां चिह्नों को अस्पष्ट किया गया है या संदिग्ध हैं, वाइंडिंग को आपस में जोड़कर और ट्रांसफार्मर को उत्तेजित करके और वोल्टेज को मापकर एक परीक्षण किया जा सकता है।<ref name="IDC_2002"/>
कहा जाता है कि ट्रांसफॉर्मर में टर्मिनलों की भौतिक व्यवस्था और टर्मिनलों से जुड़ी वाइंडिंग्स की ध्रुवीयता के आधार पर योगात्मक या घटिया ध्रुवीयता होती है। उत्तर अमेरिकी ट्रांसफॉर्मर के लिए उपस्थित किया जाने वाला सम्मेलन यह है कि ट्रांसफॉर्मर के उच्च वोल्टेज पक्ष का सामना करना पड़ रहा है, एच 1 टर्मिनल पर्यवेक्षक के दाहिनी ओर है। एक ट्रांसफॉर्मर को एडिटिव कहा जाता है, यदि वैचारिक रूप से, उच्च -वोल्टेज टर्मिनल को आसन्न निम्न -वोल्टेज टर्मिनल से जोड़ने से अन्य दो टर्मिनलों के बीच कुल वोल्टेज मिलता है जो उच्च वोल्टेज और निम्न वोल्टेज रेटिंग का योग होता है, जब उच्च -वोल्टेज वाइंडिंग रेटेड वोल्टेज पर उत्साहित है। H1 और X2 टर्मिनल भौतिक रूप से निकट हैं। घटिया व्यवस्था में, H1 और X1 टर्मिनल आसन्न हैं, और H2 और X2 के बीच मापा गया वोल्टेज उच्च वोल्टेज और कम वोल्टेज वाइंडिंग का अंतर होगा।<ref name="Croft_1987"/> पोल माउंटेड डिस्ट्रीब्यूशन ट्रांसफॉर्मर को एडिटिव पोलरिटी के साथ निर्मित किया जाता है, जबकि इंस्ट्रूमेंट ट्रांसफॉर्मर को सबट्रैक्टिव पोलरिटी के साथ बनाया जाता है। जहां चिह्नों को अस्पष्ट किया गया है या संदिग्ध हैं वाइंडिंग को आपस में जोड़कर और ट्रांसफार्मर को उत्तेजित करके और वोल्टेज को मापकर एक परीक्षण किया जा सकता है।<ref name="IDC_2002"/>
 
 
== तीन [[चरण]] ट्रांसफार्मर ==
== तीन [[चरण]] ट्रांसफार्मर ==
इलेक्ट्रिक पावर सिस्टम्स में उपयोग किए जाने वाले तीन-चरण ट्रांसफार्मर में एक नेमप्लेट होगी जो उनके टर्मिनलों के बीच चरण संबंध दर्शाती है। यह एक फेजर आरेख के रूप में हो सकता है, या प्रत्येक वाइंडिंग के लिए आंतरिक कनेक्शन (वाई या डेल्टा) के प्रकार को दिखाने के लिए एक अल्फा-न्यूमेरिक कोड का उपयोग कर सकता है।
इलेक्ट्रिक पावर प्रणाली में उपयोग किए जाने वाले तीन-चरण ट्रांसफार्मर में एक नेमप्लेट होगी जो उनके टर्मिनलों के बीच चरण संबंध दर्शाती है। यह एक फेजर आरेख के रूप में हो सकता है या प्रत्येक वाइंडिंग के लिए आंतरिक कनेक्शन (वाई या डेल्टा) के प्रकार को दिखाने के लिए एक अल्फा-न्यूमेरिक कोड का उपयोग कर सकता है।


== यह भी देखें ==
== यह भी देखें                                   ==
* विद्युत ध्रुवता
* विद्युत ध्रुवता


Line 50: Line 47:


{{Electric transformers}}
{{Electric transformers}}
[[Category: बिजली]] [[Category: बिजली के ट्रांसफार्मर]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Collapse templates]]
[[Category:Created On 02/05/2023]]
[[Category:Created On 02/05/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Missing redirects]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:बिजली]]
[[Category:बिजली के ट्रांसफार्मर]]

Latest revision as of 09:32, 13 June 2023

एक उपकरण ट्रांसफॉर्मर, डॉट कन्वेंशन और एच 1 मार्किंग के साथ उच्च वोल्टेज साइड को देख रहा है।
इंस्ट्रूमेंट ट्रांसफॉर्मर का निम्न वोल्टेज साइड, डॉट और X1 मार्किंग के साथ। X1 और H1 टर्मिनल आसन्न हैं।

विद्युत अभियन्त्रण में डॉट मार्किंग कन्वेंशन, या अल्फ़ान्यूमेरिक मार्किंग कन्वेंशन या दोनों का उपयोग दो म्युचुअल इंडक्शन या कपल्ड इंडक्टर्स और ट्रांसफॉर्मर वाइंडिंग्स के बीच म्यूचुअल इंडक्शन घटकों के समान सापेक्ष तात्कालिक विद्युत ध्रुवता को दर्शाने के लिए किया जा सकता है। ये चिह्न टर्मिनलों, वाइंडिंग लीड्स, नेमप्लेट्स, योजनाबद्ध और वायरिंग आरेखों के बगल में ट्रांसफॉर्मर स्थितियों पर पाए जा सकते हैं।

सम्मेलन यह है कि एक डॉट के साथ चिह्नित वाइंडिंग के अंत में एक ट्रांसफार्मर में प्रवेश करने से उनके बिंदीदार सिरों पर अन्य वाइंडिंग्स से बाहर निकलने का उत्पादन होगा।

विद्युत् व्यवस्था की सुरक्षा माप और नियंत्रण प्रणालियों में उचित ध्रुवीयता बनाए रखना महत्वपूर्ण है। एक विपरीत साधन ट्रांसफॉर्मर वाइंडिंग सुरक्षात्मक रिले को विफल कर सकता है गलत शक्ति और ऊर्जा माप दे सकता है या ऋणात्मक शक्ति कारक प्रदर्शित कर सकता है। समानान्तर ट्रांसफॉर्मर वाइंडिंग के उलट कनेक्शन परिसंचारी धाराओं या एक प्रभावी लघु परिपथ का कारण बनेंगे संकेत परिपथ में ट्रांसफॉर्मर वाइंडिंग्स के विपरीत कनेक्शन के परिणामस्वरूप एम्पलीफायरों और स्पीकर प्रणाली का गलत संचालन हो सकता है, या उन संकेतो को समाप्त किया जा सकता है जो जोड़ने के लिए हैं।

ध्रुवीयता

प्राइमरी और सेकेंडरी वाइंडिंग के लीड्स को एक ही पोलरिटी का कहा जाता है, जब प्राइमरी वाइंडिंग लीड में प्रवेश करने वाले तात्कालिक धारा सेकेंडरी वाइंडिंग लीड को छोड़कर तात्कालिक धारा में प्रवेश करते हैं, चूँकि दो लीड एक निरंतर परिपथ थे।[1][2] समानांतर में एक ही कोर के चारों ओर दो घुमावों के घाव के स्थिति में उदाहरण के लिए, ध्रुवता समान सिरों पर समान होगी: पहले कॉइल में एक अचानक (तात्कालिक) धारा अचानक वृद्धि का विरोध करने वाले वोल्टेज को प्रेरित करेगा (लेनज़ का नियम) पहले और दूसरे कॉइल में भी क्योंकि पहले कॉइल में धारा द्वारा उत्पन्न चुंबकीय क्षेत्र दो कॉइल को एक ही विधि से पार करता है।

इसलिए दूसरा कॉइल पहले कॉइल में इंडक्शन धारा की दिशा के विपरीत एक प्रेरित धारा दिखाएगा। दोनों लीड एक सतत परिपथ की तरह व्यवहार करते हैं, एक धारा पहले लीड में प्रवेश करता है और दूसरा धारा दूसरी लीड को छोड़ता है।

ट्रांसफार्मर वाइंडिंग

सामान्यतः दो विधियों का उपयोग यह दर्शाने के लिए किया जाता है कि कौन से टर्मिनल समान सापेक्ष ध्रुवता प्रस्तुत करते हैं। एक बिंदु का उपयोग किया जा सकता है, या एक अल्फ़ान्यूमेरिक पदनाम अल्फ़ान्यूमेरिक पदनाम सामान्यतः H1 के रूप में होते हैं प्राइमरी के लिए, और सेकेंडरी के लिए, X1, (और Y1, Z1 यदि अधिक वाइंडिंग्स उपस्थित हैं)।

सिंगल-फेज ट्रांसफॉर्मर के विपरीत तीन-फेज ट्रांसफॉर्मर में अलग-अलग वाइंडिंग कॉन्फ़िगरेशन (उदाहरण के लिए, वाई कनेक्टेड प्राइमरी और डेल्टा कनेक्टेड सेकेंडरी) के कारण फेज शिफ्ट हो सकता है, जिसके परिणामस्वरूप H1 और X1 बुशिंग डेजिग्नेशन के बीच 30 डिग्री फेज शिफ्ट का गुणक होता है। ट्रांसफार्मर की नेमप्लेट में वेक्टर समूह ऐसे फेज शिफ्ट की जानकारी देता है।

टर्मिनल लेआउट कन्वेंशन

कहा जाता है कि ट्रांसफॉर्मर में टर्मिनलों की भौतिक व्यवस्था और टर्मिनलों से जुड़ी वाइंडिंग्स की ध्रुवीयता के आधार पर योगात्मक या घटिया ध्रुवीयता होती है। उत्तर अमेरिकी ट्रांसफॉर्मर के लिए उपस्थित किया जाने वाला सम्मेलन यह है कि ट्रांसफॉर्मर के उच्च वोल्टेज पक्ष का सामना करना पड़ रहा है, एच 1 टर्मिनल पर्यवेक्षक के दाहिनी ओर है। एक ट्रांसफॉर्मर को एडिटिव कहा जाता है, यदि वैचारिक रूप से, उच्च -वोल्टेज टर्मिनल को आसन्न निम्न -वोल्टेज टर्मिनल से जोड़ने से अन्य दो टर्मिनलों के बीच कुल वोल्टेज मिलता है जो उच्च वोल्टेज और निम्न वोल्टेज रेटिंग का योग होता है, जब उच्च -वोल्टेज वाइंडिंग रेटेड वोल्टेज पर उत्साहित है। H1 और X2 टर्मिनल भौतिक रूप से निकट हैं। घटिया व्यवस्था में, H1 और X1 टर्मिनल आसन्न हैं, और H2 और X2 के बीच मापा गया वोल्टेज उच्च वोल्टेज और कम वोल्टेज वाइंडिंग का अंतर होगा।[3] पोल माउंटेड डिस्ट्रीब्यूशन ट्रांसफॉर्मर को एडिटिव पोलरिटी के साथ निर्मित किया जाता है, जबकि इंस्ट्रूमेंट ट्रांसफॉर्मर को सबट्रैक्टिव पोलरिटी के साथ बनाया जाता है। जहां चिह्नों को अस्पष्ट किया गया है या संदिग्ध हैं वाइंडिंग को आपस में जोड़कर और ट्रांसफार्मर को उत्तेजित करके और वोल्टेज को मापकर एक परीक्षण किया जा सकता है।[4]

तीन चरण ट्रांसफार्मर

इलेक्ट्रिक पावर प्रणाली में उपयोग किए जाने वाले तीन-चरण ट्रांसफार्मर में एक नेमप्लेट होगी जो उनके टर्मिनलों के बीच चरण संबंध दर्शाती है। यह एक फेजर आरेख के रूप में हो सकता है या प्रत्येक वाइंडिंग के लिए आंतरिक कनेक्शन (वाई या डेल्टा) के प्रकार को दिखाने के लिए एक अल्फा-न्यूमेरिक कोड का उपयोग कर सकता है।

यह भी देखें

  • विद्युत ध्रुवता

संदर्भ

  1. Knowlton, Archer E., ed. (1949). Standard Handbook for Electrical Engineers (8 ed.). McGraw-Hill. pp. 552 §6-15, p. 606 §6-162.
  2. Alexander, Charles (2009). Fundamentals of electric circuits. McGraw-Hill. pp. 559–560. ISBN 978-0-07352955-4.
  3. Croft, Terrell; Summers, Wilford (1987). American Electricians' Handbook (11 ed.). McGraw-Hill. pp. 5-44–5-45. ISBN 0-07-013932-6.
  4. "Transformer Polarity" (PDF). Kilowatt Classroom, LLC. 2002. Archived (PDF) from the original on 2022-07-03. Retrieved 2018-01-16. (4 pages)


अग्रिम पठन