टाइम-टू-डिजिटल कनवर्टर: Difference between revisions
Line 135: | Line 135: | ||
टाइम-टू-डिजिटल कन्वर्टर स्टार्ट इवेंट और स्टॉप इवेंट के बीच के समय को मापता है। एक डिजिटल-टू-टाइम कनवर्टर या विलंब जनरेटर भी है। विलंब जनरेटर एक संख्या को समय विलंब में परिवर्तित करता है। जब विलंब जनरेटर को उसके इनपुट पर स्टार्ट पल्स मिलता है, तो यह निर्दिष्ट विलंब के बाद स्टॉप पल्स को आउटपुट करता है। टीडीसी और देरी जनरेटर के लिए आर्किटेक्चर समान हैं। दोनों लंबे, स्थिर, विलंब के लिए काउंटरों का उपयोग करते हैं। दोनों को क्लॉक क्वांटाइजेशन एरर की समस्या पर विचार करना चाहिए। | टाइम-टू-डिजिटल कन्वर्टर स्टार्ट इवेंट और स्टॉप इवेंट के बीच के समय को मापता है। एक डिजिटल-टू-टाइम कनवर्टर या विलंब जनरेटर भी है। विलंब जनरेटर एक संख्या को समय विलंब में परिवर्तित करता है। जब विलंब जनरेटर को उसके इनपुट पर स्टार्ट पल्स मिलता है, तो यह निर्दिष्ट विलंब के बाद स्टॉप पल्स को आउटपुट करता है। टीडीसी और देरी जनरेटर के लिए आर्किटेक्चर समान हैं। दोनों लंबे, स्थिर, विलंब के लिए काउंटरों का उपयोग करते हैं। दोनों को क्लॉक क्वांटाइजेशन एरर की समस्या पर विचार करना चाहिए। | ||
उदाहरण के लिए, [[Tektronix|टेक्ट्रोनिक्स]] 7डी11 डिजिटल विलंब एक काउंटर आर्किटेक्चर का उपयोग करता है।<ref>{{Citation |title=Tektronix 7D11 Digital Delay Service Instruction Manual |publisher=Tektronix |location=Beaverton, OR |id=070-1377-01 |year=1973}}</ref> 100 एनएस की वृद्धि में 100 एनएस से 1 एस तक एक डिजिटल विलंब सेट किया जा सकता है। एक एनालॉग सर्किट 0 से 100 एनएस का अतिरिक्त सूक्ष्म विलंब प्रदान करता है। एक 5 मेगाहर्ट्ज संदर्भ घड़ी | उदाहरण के लिए, [[Tektronix|टेक्ट्रोनिक्स]] 7डी11 डिजिटल विलंब एक काउंटर आर्किटेक्चर का उपयोग करता है।<ref>{{Citation |title=Tektronix 7D11 Digital Delay Service Instruction Manual |publisher=Tektronix |location=Beaverton, OR |id=070-1377-01 |year=1973}}</ref> 100 एनएस की वृद्धि में 100 एनएस से 1 एस तक एक डिजिटल विलंब सेट किया जा सकता है। एक एनालॉग सर्किट 0 से 100 एनएस का अतिरिक्त सूक्ष्म विलंब प्रदान करता है। एक 5 मेगाहर्ट्ज संदर्भ घड़ी स्थिर 500 मेगाहर्ट्ज घड़ी का उत्पादन करने के लिए एक फेज-लॉक लूप चलाती है। यह तेज़ घड़ी है जो (ठीक-विलंबित) प्रारंभ घटना द्वारा गेट की जाती है और मुख्य परिमाणीकरण त्रुटि को निर्धारित करती है। तेज़ घड़ी को 10 मेगाहर्ट्ज़ तक विभाजित किया जाता है और मुख्य काउंटर को सिंचित जाता है।<ref>Ten megahertz is a frequency that TTL logic in 1971 could handle. The high frequency divisions were handled with different technologies because high speed digital counters were uncommon in 1971. The first (500 MHz) divider stage is a 100 MHz synchronized [[multivibrator]] to effect a divide by 5 circuit. The second (100 MHz) stage is a divide by 5 ring counter made from discrete emitter-coupled transistors. The last stage is a flip-flop.</ref> उपकरण परिमाणीकरण त्रुटि मुख्य रूप से 500 मेगाहर्ट्ज घड़ी (2 एनएस चरणों) पर निर्भर करती है, लेकिन अन्य त्रुटियां भी दर्ज होती हैं; उपकरण को 2.2 एनएस जिटर के लिए निर्दिष्ट किया गया है। रीसायकल का समय 575 एनएस है। | ||
जिस तरह एक टीडीसी एक क्लॉक पीरियड रेजोल्यूशन से बेहतर पाने के लिए इंटरपोलेशन का उपयोग कर सकता है, उसी तरह एक डिले जेनरेटर भी इसी तरह की तकनीकों का उपयोग कर सकता है। [[Hewlett-Packard]] 5359A हाई रेजोल्यूशन टाइम सिंथेसाइज़र 0 से 160 ms की देरी प्रदान करता है, इसकी सटीकता 1 ns है, और 100 ps का सामान्य जिटर हासिल करता है।<ref>{{Citation |title=Time Synthesizer Generates Precise Pulse Widths and Time Delays for Critical Timing Applications |first1=Keith M. |last1=Ferguson |first2=Leonard R. |last2=Dickstein |journal=HP Journal |volume=29 |issue=12 |date=August 1978 |pages=12–19 |url=http://www.hpl.hp.com/hpjournal/pdfs/IssuePDFs/1978-08.pdf}}</ref> डिजाइन एक ट्रिगर फेज-लॉक ऑसिलेटर का उपयोग करता है जो 200 मेगाहर्ट्ज पर चलता है। प्रक्षेप एक रैंप, एक 8-बिट डिजिटल-टू-एनालॉग कनवर्टर और एक तुलनित्र के साथ किया जाता है। रिज़ॉल्यूशन लगभग 45 ps है। | जिस तरह एक टीडीसी एक क्लॉक पीरियड रेजोल्यूशन से बेहतर पाने के लिए इंटरपोलेशन का उपयोग कर सकता है, उसी तरह एक डिले जेनरेटर भी इसी तरह की तकनीकों का उपयोग कर सकता है। [[Hewlett-Packard]] 5359A हाई रेजोल्यूशन टाइम सिंथेसाइज़र 0 से 160 ms की देरी प्रदान करता है, इसकी सटीकता 1 ns है, और 100 ps का सामान्य जिटर हासिल करता है।<ref>{{Citation |title=Time Synthesizer Generates Precise Pulse Widths and Time Delays for Critical Timing Applications |first1=Keith M. |last1=Ferguson |first2=Leonard R. |last2=Dickstein |journal=HP Journal |volume=29 |issue=12 |date=August 1978 |pages=12–19 |url=http://www.hpl.hp.com/hpjournal/pdfs/IssuePDFs/1978-08.pdf}}</ref> डिजाइन एक ट्रिगर फेज-लॉक ऑसिलेटर का उपयोग करता है जो 200 मेगाहर्ट्ज पर चलता है। प्रक्षेप एक रैंप, एक 8-बिट डिजिटल-टू-एनालॉग कनवर्टर और एक तुलनित्र के साथ किया जाता है। रिज़ॉल्यूशन लगभग 45 ps है। |
Revision as of 18:15, 8 June 2023
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages)
(Learn how and when to remove this template message)
|
इलेक्ट्रानिक्स इंस्ट्रुमेंटेशन और सिग्नल प्रोसेसिंग में, समय-से-डिजिटल कनवर्टर (टीडीसी) घटनाओं को पहचानने और उनके होने के समय का डिजिटल प्रतिनिधित्व प्रदान करने के लिए एक उपकरण है। उदाहरण के लिए, एक टीडीसी प्रत्येक आने वाली पल्स के आगमन के समय का उत्पादन कर सकता है। कुछ एप्लिकेशन पूर्ण समय की कुछ धारणा के अतिरिक्त दो घटनाओं के बीच समय अंतराल को मापना चाहते हैं।
इलेक्ट्रॉनिक्स में समय-से-डिजिटल कनवर्टर (टीडीसी) या टाइम डिजिटाइज़र सामान्यतः समय अंतराल को मापने और इसे डिजिटल (बाइनरी) आउटपुट में बदलने के लिए उपयोग किए जाने वाले उपकरण हैं। कुछ स्थितियों में [1] इंटरपोलेटिंग टीडीसी को टाइम काउंटर (टीसी) भी कहा जाता है।
टीडीसी का उपयोग दो सिग्नल पल्स (जिन्हें स्टार्ट और स्टॉप पल्स के रूप में जाना जाता है) के बीच समय अंतराल निर्धारित करने के लिए किया जाता है। मापन शुरू और बंद हो जाता है जब सिग्नल पल्स के बढ़ते या गिरने वाले किनारे एक निर्धारित सीमा को पार कर जाते हैं। यह पैटर्न कई भौतिक प्रयोगों में देखा जाता है, जैसे परमाणु भौतिकी और कण भौतिकी में समय-समय पर उड़ान और आजीवन मापन, एकीकृत सर्किट और उच्च गति डेटा स्थानांतरण के परीक्षण से जुड़े लेजर टेलीमीटर और इलेक्ट्रॉनिक अनुसंधान सम्मलित है।[1]
आवेदन
टीडीसी का उपयोग उन अनुप्रयोगों में किया जाता है जहां माप घटनाएं अधिकांशतः होती हैं, जैसे कि उच्च ऊर्जा भौतिकी प्रयोग, जहां अधिकांश डिटेक्टरों में डेटा चैनलों (संचार) की विशाल संख्या सुनिश्चित करती है कि प्रत्येक चैनल इलेक्ट्रॉनों, फोटॉन और आयनों जैसे कणों द्वारा ही कभी-कभी उत्साहित होगा।
मोटे माप
यदि आवश्यक समय संकल्प उच्च नहीं है, तो रूपांतरण करने के लिए काउंटरों का उपयोग किया जा सकता है।
बेसिक काउंटर
इसके सरलतम कार्यान्वयन में, एक टीडीसी केवल एक उच्च-आवृत्ति काउंटर (डिजिटल) है जो प्रत्येक घड़ी चक्र को बढ़ाता है। काउंटर की वर्तमान सामग्री वर्तमान समय का प्रतिनिधित्व करती है। जब कोई घटना होती है, काउंटर का मान आउटपुट रजिस्टर में दर्ज किया जाता है।
उस दृष्टिकोण में, माप घड़ी चक्रों की एक पूर्णांक संख्या है, इसलिए माप को घड़ी की अवधि के लिए परिमाणित किया जाता है। बेहतर समाधान प्राप्त करने के लिए तेज़ घड़ी की आवश्यकता होती है। माप की सटीकता घड़ी की आवृत्ति की स्थिरता पर निर्भर करती है।
आम तौर पर एक टीडीसी अच्छी दीर्घकालिक स्थिरता के लिए एक क्रिस्टल ऑसीलेटर संदर्भ आवृत्ति का उपयोग करता है। उच्च स्थिरता वाले क्रिस्टल थरथरानवाला सामान्यतः पर 10 मेगाहर्ट्ज (या 100 एनएस रिज़ॉल्यूशन) जैसी सापेक्ष कम आवृत्ति वाले होते हैं।[2] बेहतर रिज़ॉल्यूशन प्राप्त करने के लिए, एक तेज़ घड़ी उत्पन्न करने के लिए एक चरण-लॉक लूप फ़्रीक्वेंसी गुणक का उपयोग किया जा सकता है। उदाहरण के लिए, 1 GHz (1 ns रिज़ॉल्यूशन) की घड़ी की दर प्राप्त करने के लिए क्रिस्टल रेफरेंस ऑसिलेटर को 100 से गुणा कर सकते हैं।
काउंटर तकनीक
उच्च क्लॉक दरें काउंटर पर अतिरिक्त डिज़ाइन प्रतिबंध लगाती हैं: यदि घड़ी की अवधि कम है, तो गिनती को अद्यतन करना कठिन है। उदाहरण के लिए, बाइनरी काउंटरों को एक तेज़ कैरी आर्किटेक्चर की आवश्यकता होती है क्योंकि वे अनिवार्य रूप से पिछले काउंटर वैल्यू में एक जोड़ते हैं। एक समाधान हाइब्रिड काउंटर आर्किटेक्चर का उपयोग कर रहा है। एक रिंग काउंटर, उदाहरण के लिए, एक तेज़ गैर-बाइनरी काउंटर है। इसका उपयोग कम ऑर्डर काउंट को बहुत जल्दी गिनने के लिए किया जा सकता है; उच्च क्रम संख्या को संचित करने के लिए एक अधिक पारंपरिक बाइनरी काउंटर का उपयोग किया जा सकता है। फास्ट काउंटर को कभी-कभी प्रीस्कूलर कहा जाता है।
सीएमओएस-प्रौद्योगिकी में निर्मित काउंटरों की गति गेट और चैनल के बीच कैपेसिटेंस और चैनल के प्रतिरोध और सिग्नल ट्रेस द्वारा सीमित है। दोनों का उत्पाद आपूर्ती बंद करने की आवृत्ति है। आधुनिक चिप तकनीक कई धातु परतों की अनुमति देती है और इसलिए बड़ी संख्या में वाइंडिंग के साथ कॉइल को चिप में डाला जाता है।
यह डिजाइनरों को डिवाइस को एक विशिष्ट आवृत्ति के लिए चोटी करने की अनुमति देता है, जो मूल ट्रांजिस्टर की कट ऑफ आवृत्ति से ऊपर हो सकता है।[citation needed]
जॉनसन काउंटर का एक वाला संस्करण यात्रा-लहर काउंटर है जो उप-चक्र संकल्प भी प्राप्त करता है। उप-चक्र संकल्प प्राप्त करने के अन्य तरीकों में एनॉलॉग से डिजिटल परिवर्तित करने वाला उपकरण और वर्नियर स्केल काउंटर (डिजिटल) सम्मलित हैं।[citation needed]
एक समय अंतराल मापना
ज्यादातर स्थितियों में, उपयोगकर्ता केवल एक मनमानी समय पर कब्जा नहीं करना चाहता है जो कि एक घटना होती है, लेकिन एक समय अंतराल, एक प्रारंभ घटना और एक विराम घटना के बीच का समय मापना चाहता है।
यह प्रारंभ और रोक घटनाओं और घटाव दोनों के मनमाने समय को मापने के द्वारा किया जा सकता है। माप दो गणनाओं से बंद हो सकता है।
घटाव से बचा जा सकता है यदि काउंटर शून्य पर तब तक रखा जाता है जब तक कि घटना शुरू नहीं हो जाती, अंतराल के दौरान गिना जाता है, और फिर स्टॉप इवेंट के बाद गिनती बंद हो जाती है।
एक स्थिर आवृत्ति पर उत्पन्न संकेतों के साथ मोटे काउंटर एक घड़ी संकेत पर आधारित होते हैं .[1]जब स्टार्ट सिग्नल का पता चलता है तो काउंटर (डिजिटल) क्लॉक सिग्नल की गिनती शुरू कर देता है और स्टॉप सिग्नल का पता चलने के पश्चात गिनती समाप्त कर देता है। समय अंतराल स्टार्ट और स्टॉप के बीच तब c
साथ , गिनती की संख्या और , घड़ी संकेत की अवधि है।
सांख्यिकीय काउंटर
चूंकि स्टार्ट, स्टॉप और क्लॉक सिग्नल एसिंक्रोनस होते हैं, इसलिए दो बाद की क्लॉक पल्स के बीच स्टार्ट और स्टॉप सिग्नल-टाइम्स का एक समान संभावना वितरण होता है। क्लॉक पल्स से स्टार्ट और स्टॉप सिग्नल के इस डीट्यूनिंग को परिमाणीकरण त्रुटि कहा जाता है।
एक ही स्थिर और अतुल्यकालिक समय अंतराल पर माप की एक श्रृंखला के लिए गिने हुए घड़ी दालों की दो अलग-अलग संख्याओं को मापता है और (चित्र देखें)। ये संभावनाओं के साथ होते हैं
साथ का आंशिक भाग . समय अंतराल के लिए मान तब द्वारा प्राप्त किया जाता है
ऊपर वर्णित औसत विधि के साथ मोटे काउंटर का उपयोग करके समय अंतराल को मापना अपेक्षाकृत समय लगता है क्योंकि संभावनाओं और को निर्धारित करने के लिए कई पुनरावृत्तियों की आवश्यकता होती है। पश्चात में वर्णित अन्य विधियों की तुलना में, मोटे काउंटर का रिज़ॉल्यूशन बहुत सीमित होता है (1 गीगा क्लॉक सिग्नल के मामले में 1एनएस), लेकिन इसकी सैद्धांतिक रूप से असीमित माप सीमा से संतुष्ट होता है।
ठीक माप
पिछले खंड में मोटे काउंटर के विपरीत, बहुत बेहतर सटीकता के साथ ठीक माप पद्धतियां यहां प्रस्तुत की गई हैं, लेकिन बहुत छोटी माप सीमा यहां प्रस्तुत की गई है।[1]एनालॉग संकेत विधियाँ जैसे समय अंतराल स्ट्रेचिंग या दोहरा रूपांतरण के साथ-साथ डिजिटल डाटा विधियाँ जैसे टैप की गई विलंब रेखाएँ और वर्नियर विधि का परीक्षण किया जा रहा है। हालांकि एनालॉग विधियां अभी भी बेहतर सटीकता प्राप्त करती हैं, एकीकृत सर्किट प्रौद्योगिकी में लचीलेपन और तापमान परिवर्तन जैसे बाहरी गड़बड़ी के खिलाफ इसकी मजबूती के कारण डिजिटल समय अंतराल माप को अक्सर पसंद किया जाता है।
काउंटर कार्यान्वयन की सटीकता घड़ी आवृत्ति द्वारा सीमित है। यदि समय को संपूर्ण गणनाओं द्वारा मापा जाता है, तो संकल्प घड़ी की अवधि तक सीमित होता है। उदाहरण के लिए, 10 मेगाहट्र्ज घड़ी में 100 एनएस का संकल्प होता है। घड़ी की अवधि से बेहतर रिज़ॉल्यूशन प्राप्त करने के लिए, टाइम इंटरपोलेशन सर्किट होते हैं।[3] ये सर्किट घड़ी की अवधि के अंश को मापते हैं: यानी, घड़ी की घटना और मापी जा रही घटना के बीच का समय। इंटरपोलेशन सर्किट को अपना कार्य करने के लिए अक्सर काफी समय की आवश्यकता होती है; नतीजतन, टीडीसी को अगले माप से पहले एक शांत अंतराल की आवश्यकता होती है।
रैंप प्रक्षेपक
जब गिनती संभव नहीं है क्योंकि घड़ी की दर बहुत अधिक होगी, तो एनालॉग विधियों का उपयोग किया जा सकता है। 10 और 200 एनएस के बीच के अंतराल को मापने के लिए अधिकांशतः एनालॉग विधियों का उपयोग किया जाता है।[4] ये विधियाँ अधिकांशतः एक संधारित्र का उपयोग करती हैं जिसे मापे जाने वाले अंतराल के समय चार्ज किया जाता है।[5][6][7][8] प्रारंभ में, संधारित्र को शून्य वोल्ट पर छुट्टी दे दी जाती है। जब स्टार्ट इवेंट होता है, तो कैपेसिटर को एक स्थिर धारा I से चार्ज किया जाता है1; निरंतर धारा संधारित्र पर वोल्टेज v को समय के साथ रैखिक रूप से बढ़ाने का कारण बनती है। बढ़ते वोल्टेज को फास्ट रैंप कहा जाता है। जब स्टॉप इवेंट होता है, चार्जिंग करंट बंद हो जाता है। कैपेसिटर वी पर वोल्टेज समय अंतराल टी के सीधे आनुपातिक है और इसे एनालॉग-टू-डिजिटल कनवर्टर (एडीसी) के साथ मापा जा सकता है। ऐसी प्रणाली का रिज़ॉल्यूशन 1 से 10 पीएस की सीमा में है।[9] चूंकि एक अलग एडीसी का उपयोग किया जा सकता है, एडीसी चरण को अधिकांशतः इंटरपोलेटर में एकीकृत किया जाता है। एक दूसरा निरंतर वर्तमान I2 कैपेसिटर को एक स्थिर लेकिन बहुत धीमी दर (धीमी रैंप) पर डिस्चार्ज करने के लिए उपयोग किया जाता है। धीमा रैंप तेज रैंप का 1/1000 हो सकता है। यह निर्वहन समय अंतराल को प्रभावी ढंग से फैलाता है;[10] संधारित्र को शून्य वोल्ट तक डिस्चार्ज होने में 1000 गुना अधिक समय लगेगा। विस्तारित अंतराल को एक काउंटर से मापा जा सकता है। माप एक एडीसी को एकीकृत करना | डुअल-स्लोप एनालॉग कन्वर्टर के समान है।
दोहरी-ढलान रूपांतरण में लंबा समय लग सकता है: ऊपर वर्णित योजना में एक हजार या तो घड़ी टिक जाती है। यह सीमित करता है कि माप कितनी बार किया जा सकता है (मृत समय)। 100 MHz (10 ns) घड़ी के साथ 1 ps के रिज़ॉल्यूशन के लिए 10,000 के खिंचाव अनुपात की आवश्यकता होती है और इसका तात्पर्य 150 μs का रूपांतरण समय होता है।[10]रूपांतरण समय को कम करने के लिए, अवशिष्ट इंटरपोलेटर तकनीक में इंटरपोलेटर सर्किट का दो बार उपयोग किया जा सकता है।[10]समय निर्धारित करने के लिए फास्ट रैंप का उपयोग प्रारंभ में उपरोक्त के रूप में किया जाता है। धीमा रैंप केवल 1/100 पर है। घड़ी की अवधि के समय किसी समय धीमा रैंप शून्य को पार कर जाएगा। जब रैंप शून्य पार कर जाता है, तो क्रॉसिंग समय (टीresidual). परिणामस्वरूप, समय 10,000 में 1 भाग के लिए निर्धारित किया जा सकता है।
इंटरपोलेटर्स का उपयोग अधिकांशतः स्थिर सिस्टम क्लॉक के साथ किया जाता है। स्टार्ट इवेंट एसिंक्रोनस है, लेकिन स्टॉप इवेंट निम्नलिखित घड़ी है।[6][8] सुविधा के लिए, कल्पना करें कि 100 एनएस घड़ी की अवधि के समय तेज़ रैंप ठीक 1 वोल्ट ऊपर उठता है। मान लें कि क्लॉक पल्स के पश्चात 67.3 एनएस पर स्टार्ट इवेंट होता है; तेज रैंप इंटीग्रेटर चालू हो जाता है और उठना शुरू हो जाता है। एसिंक्रोनस स्टार्ट इवेंट को एक सिंक्रोनाइज़र के माध्यम से भी रूट किया जाता है जो कम से कम दो क्लॉक पल्स लेता है। अगली घड़ी पल्स द्वारा, रैंप .327 V तक बढ़ गया है। दूसरी घड़ी पल्स द्वारा, रैंप 1.327 V तक बढ़ गया है और सिंक्रोनाइज़र रिपोर्ट करता है कि स्टार्ट इवेंट देखा गया है। तेज़ रैंप रुक जाता है और धीमा रैंप शुरू हो जाता है। सिंक्रोनाइज़र आउटपुट का उपयोग काउंटर से सिस्टम समय को कैप्चर करने के लिए किया जा सकता है। 1327 क्लॉक के पश्चात, धीमा रैम्प अपने प्रारंभी बिंदु पर वापस आ जाता है, और इंटरपोलेटर जानता है कि सिंक्रोनाइज़र द्वारा रिपोर्ट किए जाने से पहले घटना 132.7 एनएस हुई थी।
इंटरपोलेटर वास्तव में अधिक सम्मलित है क्योंकि सिंक्रोनाइज़र समस्याएँ हैं और वर्तमान स्विचिंग तात्कालिक नहीं है।[11] साथ ही, इंटरपोलेटर को रैंप की ऊंचाई को क्लॉक पीरियड के हिसाब से कैलिब्रेट करना चाहिए।[12]
वर्नियर
वर्नियर इंटरपोलेटर
वर्नियर विधि अधिक सम्मलित है।[13] विधि में एक ट्रिगर करने योग्य थरथरानवाला सम्मलित है[14] और एक संयोग सर्किट शामिल है। घटना में, पूर्णांक घड़ी की गिनती संग्रहीत की जाती है और ऑसिलेटर चालू हो जाता है। ट्रिगर थरथरानवाला घड़ी थरथरानवाला की तुलना में थोड़ा अलग आवृत्ति है। तर्क के लिए, ट्रिगर ऑसीलेटर की अवधि घड़ी की तुलना में 1 एनएस तेज है। यदि घटना पिछली घड़ी के बाद 67 एनएस पर हुई है, तो ट्रिगर ऑसिलेटर संक्रमण प्रत्येक बाद की घड़ी पल्स के बाद -1 एनएस तक स्लाइड करेगा। ट्रिगर किया गया दोलक अगली घड़ी के पश्चात 66 एनएस पर, दूसरी घड़ी के पश्चात 65 एनएस पर, और इसी तरह आगे होगा। एक संयोग डिटेक्टर तब खोजता है जब एक ही समय में ट्रिगर ऑसिलेटर और घड़ी का संक्रमण होता है, और यह उस अंश समय को इंगित करता है जिसे जोड़ने की आवश्यकता होती है।
इंटरपोलेटर डिजाइन अधिक सम्मलित है। ट्रिगर करने योग्य घड़ी को घड़ी में कैलिब्रेट किया जाना चाहिए। यह भी जल्दी और सफाई से शुरू होना चाहिए।
वर्नियर विधि
वर्नियर विधि टाइम स्ट्रेचिंग विधि का एक डिजिटल डेटा संस्करण है। दो केवल थोड़े अलग किए गए दोलन (आवृत्तियों के साथ और ) स्टार्ट और स्टॉप सिग्नल के आगमन के साथ अपने सिग्नल शुरू करते हैं। जैसे ही दोलन संकेतों के प्रमुख किनारे मेल खाते हैं, माप समाप्त हो जाता है और दोलन की अवधि की संख्या ( और क्रमशः) मूल समय अंतराल तक ले जाते हैं :
चूंकि स्थिर और सटीक आवृत्ति के वाले अत्यधिक विश्वसनीय दोलन अभी भी काफी चुनौतीपूर्ण है, इसलिए वर्नियर विधि को दो अलग-अलग सेल विलंब समयों का उपयोग करके दो टैप की गई देरी लाइनों के माध्यम से भी महसूस किया जाता है। इस सेटिंग को डिफरेंशियल डिले लाइन या वर्नियर डिले लाइन कहा जाता है।
यहां प्रस्तुत उदाहरण में स्टार्ट सिग्नल से संबद्ध पहली विलंब रेखा में देरी के साथ डी-फ्लिप-फ्लॉप (इलेक्ट्रॉनिक्स) के सेल सम्मलित हैं जो प्रारंभ में पारदर्शी पर सेट हैं। उन सेलो में से एक के माध्यम से प्रारंभ संकेत के संक्रमण के समय, संकेत में देरी हो रही है और और फ्लिप-फ्लॉप की स्थिति को पारदर्शी के रूप में नमूना किया गया है। स्टॉप सिग्नल से संबंधित दूसरी देरी लाइन देरी से गैर-इनवर्टिंग बफ़र्स की एक श्रृंखला से बनी है . अपने चैनल के माध्यम से प्रचार करना स्टॉप सिग्नल स्टार्ट सिग्नल की देरी लाइन के फ्लिप-फ्लॉप को लैच करता है। जैसे ही स्टॉप सिग्नल स्टार्ट सिग्नल से गुजरता है, बाद वाला बंद हो जाता है और सभी बचे हुए फ्लिप-फ्लॉप नमूना अपारदर्शी हो जाते हैं। ऑसिलेटर्स के वांछित समय अंतराल के उपरोक्त मामले के अनुरूप तब है
n के साथ पारदर्शी के रूप में चिह्नित सेलो की संख्या।
टैप की गई विलंब रेखा
सामान्य तौर पर एक टैप की गई विलंब रेखा में अच्छी तरह से परिभाषित विलंब समय के साथ कई सेल होते है। इस लाइन के माध्यम से प्रचार करने से स्टार्ट सिग्नल में देरी हो रही है। स्टॉप सिग्नल के आने के समय लाइन की स्थिति का प्रतिरूप लिया जाता है। यह उदाहरण के लिए देरी समय के साथ डी-फ्लिप-फ्लॉप कोशिकाओं की एक पंक्ति के साथ अनुभूत किया जा सकता है। स्टार्ट सिग्नल पारदर्शी फ्लिप फ्लॉप की इस लाइन के माध्यम से फैलता है और उनमें से एक निश्चित संख्या में देरी होती है। प्रत्येक फ्लिप-फ्लॉप का आउटपुट फ्लाई पर प्रतिरूप किया जाता है। स्टॉप सिग्नल अपने चैनल के माध्यम से प्रसार करते समय सभी फ्लिप-फ्लॉप को विलंबित कर देता है और स्टार्ट सिग्नल आगे नहीं फैल सकता है। अब स्टार्ट और स्टॉप सिग्नल के बीच का समय अंतराल उन फ्लिप-फ्लॉप की संख्या के समानुपाती होता है जिन्हें पारदर्शी के रूप में प्रतिरूप लिया गया था।
हाइब्रिड माप
काउंटर लंबे अंतराल को माप सकते हैं लेकिन उनका रिज़ॉल्यूशन सीमित है। इंटरपोलेटर्स के पास उच्च रिज़ॉल्यूशन है लेकिन वे लंबे अंतराल को माप नहीं सकते हैं। एक संकर दृष्टिकोण लंबे अंतराल और उच्च संकल्प दोनों को प्राप्त कर सकता है।[1] लंबे अंतराल को एक काउंटर से मापा जा सकता है। काउंटर सूचना दो बार प्रक्षेपक के साथ पूरक है: एक प्रक्षेपक प्रारंभ घटना और निम्नलिखित घड़ी घटना के बीच (लघु) अंतराल को मापता है, और दूसरा प्रक्षेपक स्टॉप घटना और निम्नलिखित घड़ी घटना के बीच के अंतराल को मापता है। मूल विचार में कुछ जटिलताएँ हैं: प्रारंभ और विराम घटनाएँ अतुल्यकालिक हैं, और एक या दोनों एक घड़ी की नाड़ी के करीब हो सकती हैं। काउंटर और इंटरपोलेटर्स को स्टार्ट और एंड क्लॉक इवेंट्स के मिलान पर सहमत होना चाहिए। उस लक्ष्य को पूरा करने के लिए, सिंक्रोनाइजर्स का उपयोग किया जाता है।
सामान्य संकर दृष्टिकोण नट विधि है।[15] इस उदाहरण में फाइन मेजरमेंट सर्किट, स्टार्ट और स्टॉप पल्स और मोटे काउंटर (Tstart, Tstop) के संबंधित दूसरे निकटतम क्लॉक पल्स के बीच के समय को मापता है, जिसे सिंक्रोनाइज़र (चित्र देखें) द्वारा पता लगाया जाता है। इस प्रकार वांछित समय अंतराल है।
एन के साथ काउंटर घड़ी दालों की संख्या और T0 मोटे काउंटर की अवधि।
इतिहास
प्राचीन काल से ही समय मापन ने प्रकृति को समझने में महत्वपूर्ण भूमिका निभाई है। सूरज, रेत या पानी से चलने वाली घड़ियों से शुरू करके आज हम सबसे सटीक सीज़ियम अनुनादकों के आधार पर घड़ियों का उपयोग करने में सक्षम हैं।
टीडीसी के पहले प्रत्यक्ष पूर्ववर्ती का आविष्कार वर्ष 1942 में ब्रूनो रॉसी द्वारा म्यूऑन जीवन काल के मापन के लिए किया गया था।[16] इसे समय-से-आयाम-कनवर्टर के रूप में डिज़ाइन किया गया था, जो मापा समय अंतराल के दौरान लगातार संधारित्र को चार्ज करता है। संबंधित वोल्टेज परीक्षा के तहत समय अंतराल के सीधे आनुपातिक है।
जबकि औसत दर्जे के अंतराल में समय को विभाजित करने की बुनियादी अवधारणाएं (जैसे वर्नियर तरीके (पियरे-वर्नियर 1584-1638) और टाइम स्ट्रेचिंग) अभी भी अप-टू-डेट हैं, कार्यान्वयन पिछले 50 वर्षों के दौरान बहुत बदल गया है। निर्वात पम्प ट्यूब और फेराइट पॉट-कोर ट्रांसफॉर्मर से शुरू होकर उन विचारों को आज पूरक धातु-ऑक्साइड-सेमीकंडक्टर (सीएमओएस) डिजाइन में लागू किया गया है।[17]
त्रुटियां
- से कुछ जानकारी [1]
यहां तक कि प्रस्तुत की गई सूक्ष्म माप विधियों के संबंध में, अभी भी त्रुटियां हैं जिन्हें दूर करना या कम से कम विचार करना चाहते हैं। उदाहरण के लिए समय-से-डिजिटल रूपांतरण की गैर-रैखिकताओं को एक पॉइसोनियन वितरित स्रोत (सांख्यिकीय कोड घनत्व परीक्षण) की बड़ी संख्या में माप करके पहचाना जा सकता है।[18] समान वितरण से छोटे विचलन गैर-रैखिकताओं को प्रकट करते हैं।
असुविधाजनक रूप से सांख्यिकीय कोड घनत्व विधि बाहरी तापमान परिवर्तनों के प्रति काफी संवेदनशील है। इस प्रकार देरी से बंद पाश या चरण-लॉक लूप (डीएलएल या पीएलएल) सर्किट की सिफारिश की जाती है।
इसी तरह, ऑफसेट त्रुटियां (टी = 0 पर गैर-शून्य रीडआउट) को हटाया जा सकता है।
लंबे समय के अंतराल के लिए, क्लॉक सिग्नल (जिटर) में अस्थिरता के कारण त्रुटि एक प्रमुख भूमिका निभाती है। इस प्रकार ऐसे टीडीसी के लिए बेहतर गुणवत्ता वाली घड़ियों की आवश्यकता होती है।
इसके अलावा, बाहरी शोर स्रोतों को मजबूत आकलन विधियों द्वारा प्रोसेसिंग के बाद में समाप्त किया जा सकता है। [19]
कॉन्फ़िगरेशन
टीडीसी वर्तमान में भौतिक प्रयोगों में या पीसीआई कार्ड जैसे सिस्टम घटकों के रूप में स्टैंड-अलोन मापने वाले उपकरणों के रूप में बनाए गए हैं। वे असतत या एकीकृत सर्किट से बने हो सकते हैं।
टीडीसी के उद्देश्य से सर्किट डिजाइन में परिवर्तन होता है, जो या तो लंबे डेड टाइम वाले सिंगल-शॉट टीडीसी के लिए एक बहुत अच्छा समाधान हो सकता है या मल्टी-शॉट टीडीसी के लिए डेड-टाइम और रेजोल्यूशन के बीच कुछ ट्रेड-ऑफ हो सकता है।
विलंब जनरेटर
टाइम-टू-डिजिटल कन्वर्टर स्टार्ट इवेंट और स्टॉप इवेंट के बीच के समय को मापता है। एक डिजिटल-टू-टाइम कनवर्टर या विलंब जनरेटर भी है। विलंब जनरेटर एक संख्या को समय विलंब में परिवर्तित करता है। जब विलंब जनरेटर को उसके इनपुट पर स्टार्ट पल्स मिलता है, तो यह निर्दिष्ट विलंब के बाद स्टॉप पल्स को आउटपुट करता है। टीडीसी और देरी जनरेटर के लिए आर्किटेक्चर समान हैं। दोनों लंबे, स्थिर, विलंब के लिए काउंटरों का उपयोग करते हैं। दोनों को क्लॉक क्वांटाइजेशन एरर की समस्या पर विचार करना चाहिए।
उदाहरण के लिए, टेक्ट्रोनिक्स 7डी11 डिजिटल विलंब एक काउंटर आर्किटेक्चर का उपयोग करता है।[20] 100 एनएस की वृद्धि में 100 एनएस से 1 एस तक एक डिजिटल विलंब सेट किया जा सकता है। एक एनालॉग सर्किट 0 से 100 एनएस का अतिरिक्त सूक्ष्म विलंब प्रदान करता है। एक 5 मेगाहर्ट्ज संदर्भ घड़ी स्थिर 500 मेगाहर्ट्ज घड़ी का उत्पादन करने के लिए एक फेज-लॉक लूप चलाती है। यह तेज़ घड़ी है जो (ठीक-विलंबित) प्रारंभ घटना द्वारा गेट की जाती है और मुख्य परिमाणीकरण त्रुटि को निर्धारित करती है। तेज़ घड़ी को 10 मेगाहर्ट्ज़ तक विभाजित किया जाता है और मुख्य काउंटर को सिंचित जाता है।[21] उपकरण परिमाणीकरण त्रुटि मुख्य रूप से 500 मेगाहर्ट्ज घड़ी (2 एनएस चरणों) पर निर्भर करती है, लेकिन अन्य त्रुटियां भी दर्ज होती हैं; उपकरण को 2.2 एनएस जिटर के लिए निर्दिष्ट किया गया है। रीसायकल का समय 575 एनएस है।
जिस तरह एक टीडीसी एक क्लॉक पीरियड रेजोल्यूशन से बेहतर पाने के लिए इंटरपोलेशन का उपयोग कर सकता है, उसी तरह एक डिले जेनरेटर भी इसी तरह की तकनीकों का उपयोग कर सकता है। Hewlett-Packard 5359A हाई रेजोल्यूशन टाइम सिंथेसाइज़र 0 से 160 ms की देरी प्रदान करता है, इसकी सटीकता 1 ns है, और 100 ps का सामान्य जिटर हासिल करता है।[22] डिजाइन एक ट्रिगर फेज-लॉक ऑसिलेटर का उपयोग करता है जो 200 मेगाहर्ट्ज पर चलता है। प्रक्षेप एक रैंप, एक 8-बिट डिजिटल-टू-एनालॉग कनवर्टर और एक तुलनित्र के साथ किया जाता है। रिज़ॉल्यूशन लगभग 45 ps है।
जब स्टार्ट पल्स प्राप्त होता है, तो काउंटर (डिजिटल) डाउन हो जाता है और स्टॉप पल्स को आउटपुट करता है। कम जिटर के लिए काउंटर (डिजिटल) को सबसे महत्वपूर्ण बिट से कम से कम महत्वपूर्ण बिट तक स्थिति रजिस्टर फीड करना होगा और फिर इसे जॉनसन काउंटर से आउटपुट के साथ जोड़ना होगा।
एक डिजिटल-टू-एनालॉग कन्वर्टर (डीएसी) का उपयोग उप-चक्र रिज़ॉल्यूशन प्राप्त करने के लिए किया जा सकता है, लेकिन या तो वर्नियर जॉनसन काउंटर या ट्रैवलिंग-वेव जॉनसन काउंटर का उपयोग करना आसान है।
विलंब जनरेटर का उपयोग पल्स-चौड़ाई मॉडुलन के लिए किया जा सकता है, उदा। एक विशिष्ट चार्ज के साथ 8 एनएस के भीतर पॉकेल्स सेल लोड करने के लिए एक एमओएसएफईटी ड्राइव करने के लिए।
देरी जनरेटर का आउटपुट डिज़िटल से एनालॉग कन्वर्टर को गेट कर सकता है और इसलिए एक चर ऊंचाई के दालों को उत्पन्न किया जा सकता है। यह एनालॉग इलेक्ट्रॉनिक्स द्वारा आवश्यक निम्न स्तर, एमिटर-युग्मित तर्क के लिए उच्च स्तर और ट्रांजिस्टर-ट्रांजिस्टर तर्क के लिए उच्च स्तर के मिलान की अनुमति देता है। यदि DACs की एक श्रृंखला क्रम में गेट की जाती है, तो किसी भी स्थानांतरण फ़ंक्शन के लिए खाते में चर पल्स आकार उत्पन्न किए जा सकते हैं।
यह भी देखें
- नमूनाचयन आवृत्ति
- बहुकंपित्र
- लिडार
- उड़ान का समय
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 Kalisz, Józef (February 2004), "Review of methods for time interval measurements with picosecond resolution", Metrologia, Institute of Physics Publishing, 41 (1): 17–32, Bibcode:2004Metro..41...17K, doi:10.1088/0026-1394/41/1/004, S2CID 250775541
- ↑ For example, a Hewlett-Packard (now Agilent) 10811 crystal oven oscillator; http://www.hparchive.com/Manuals/HP-10811AB-Manual.pdf
- ↑ Time and Frequency from A to Z, National Institute of Standards and Technology,
For example, multiplying the time base frequency to 100 MHz makes 10 ns resolution possible, and 1 ns counters have even been built using a 1 GHz time base. However, a more common way to increase resolution is to detect parts of a time base cycle through interpolation and not be limited by the number of whole cycles. Interpolation has made 1 ns TICs commonplace, and even 20 picosecond TICs are available.
, entry for time interval counter. - ↑ Kalisz 2004, p. 19
- ↑ Reeser, Gilbert A. (May 1969), "An Electronic Counter for the 1970's" (PDF), Hewlett-Packard Journal, Hewlett-Packard, 20 (9): 9–12
- ↑ 6.0 6.1 Sasaki, Gary D.; Jensen, Ronald C. (September 1980), "Automatic Measurements with a High Performance Universal Counter" (PDF), Hewlett-Packard Journal, Hewlett-Packard, 31 (9): 21–31
- ↑ Rush, Kenneth; Oldfield, Danny J. (April 1986), "A Data Acquisition System for a 1-GHz Digitizing Oscilloscope", Hewlett-Packard Journal, Hewlett-Packard, 37 (4): 4–11
- ↑ 8.0 8.1 Eskeldson, David D.; Kellum, Reginald; Whiteman, Donald A. (October 1993), "A Digitizing Oscilloscope Time Base and Trigger System Optimized for Throughput and Low Jitter", Hewlett-Packard Journal, Hewlett-Packard, 44 (5): 21–30
- ↑ Kalisz 2004, p. 20. Kalisz states that the Stanford Research Systems SR620 uses this method.
- ↑ 10.0 10.1 10.2 Eskeldson, Kellum & Whiteman 1993, p. 27 stating, "Effectively, the interpolator magnifies the interpolation or uncertainty interval by the ratio of the charge and discharge currents."
- ↑ Eskeldson, Kellum & Whiteman 1993, p. 27
- ↑ Sasaki & Jensen 1980, p. 23 stating, "In practice, the current sources and other circuitry used to build the interpolators are subject to operational variations over temperature and time. The 5360A's interpolators were in a special insulated cavity and had several adjustments. The 5335A uses a self-calibration technique that is not affected by temperature and needs no adjustments."
- ↑ Chu, David C.; Allen, Mark S.; Foster, Allen S. (August 1978), "Universal Counter Resolves Picoseconds in Time Interval Measurements" (PDF), HP Journal, Hewlett-Packard, 29 (12): 2–11
- ↑ Chu, David C. (August 1978), "The Triggered Phase-Locked Oscillator" (PDF), HP Journal, Hewlett-Packard, 29 (12): 8–9
- ↑ Kalisz, J.; Pawlowski, M.; Pelka, R. (1987), "Error analysis and design of the Nutt time-interval digitiser with picosecond resolution", J. Phys. E: Sci. Instrum., 20 (11): 1330–1341, Bibcode:1987JPhE...20.1330K, doi:10.1088/0022-3735/20/11/005
- ↑ "Bruno Benedetto Rossi", George W. Clark, National Academic Press, Washington D.C. 1998, S.13
- ↑ "Noise Shaping Techniques for Analog and Time to Digital Converters Using Voltage Controlled Oscillators", Matthew A.Z. Straayer, Phd-Thesis, Massachusetts Institute of Technology (2008)
- ↑ Pelka, R.; Kalisz, J.; Szplet, R. (1997), "Nonlinearity correction of the integrated time-to-digital converter with direct coding", IEEE Trans. Instrumentation and Measurement, 46 (2): 449–452, Bibcode:1997ITIM...46..449P, doi:10.1109/19.571882
- ↑ Kalisz, J.; Pawlowski, M.; Pelka, R. (March 1994), "Precision time counter for laser ranging to satellites", Rev. Sci. Instrum., 65 (3): 736–741, Bibcode:1994RScI...65..736K, doi:10.1063/1.1145094
- ↑ Tektronix 7D11 Digital Delay Service Instruction Manual, Beaverton, OR: Tektronix, 1973, 070-1377-01
- ↑ Ten megahertz is a frequency that TTL logic in 1971 could handle. The high frequency divisions were handled with different technologies because high speed digital counters were uncommon in 1971. The first (500 MHz) divider stage is a 100 MHz synchronized multivibrator to effect a divide by 5 circuit. The second (100 MHz) stage is a divide by 5 ring counter made from discrete emitter-coupled transistors. The last stage is a flip-flop.
- ↑ Ferguson, Keith M.; Dickstein, Leonard R. (August 1978), "Time Synthesizer Generates Precise Pulse Widths and Time Delays for Critical Timing Applications" (PDF), HP Journal, 29 (12): 12–19
बाहरी संबंध
- US 3983481, Nutt, Ronald; Milam, Kelly & Williams, Charles W., "Digital intervalometer", published 4 August 1975, issued 18 September 1976
- US 3133189, Bagley, Alan S. & Brooksby, Merrill W., "Electronic Interpolating Counter for the Time Interval and Frequency Measurement", published 5 August 1960, issued 12 May 1964
- US 2665411, Frady, William E., Jr., "Double Interpolation Method and Apparatus for Measuring Time Intervals", published 15 March 1951, issued 5 January 1954
- US 2665410, Burbeck, Donald W., "Method and Apparatus for Automatically Measuring Time Intervals", published 15 March 1951, issued 5 January 1954
- US 2560124, Mofenson, Jack, "Interval Measuring System", published 31 March 1950, issued 10 July 1951
- http://www.freepatentsonline.com/8324952.html
- traveling wave CMOS
- traveling wave nFET cascode
- http://www.febo.com/pages/hp5370b/
- http://www.g8wrb.org/useful-stuff/time/HP-5370B/
- http://ilrs.gsfc.nasa.gov/docs/timing/artyukh_time_interval_counter.pdf
- http://ilrs.gsfc.nasa.gov/docs/time_interval_measurements.pdf
- http://tycho.usno.navy.mil/ptti/1994/Vol%2026_22.pdf
- http://www.acam.de/fileadmin/Download/pdf/English/AN002_e.pdf
- Salvatore, Loffredo (2010), Design, construction and tests of a high resolution, high dynamic range Time to Digital Converter Università degli studi Roma Tre, Scuola Dottorale in Scienze Matematiche e Fisiche
- Kalisz, Jozef; Szplet, Ryszard; Pelka, Ryszard (August 1997), "Single-Chip Interpolating Time Counter with 200-ps Resolution and 43-s Range", IEEE Transactions on Instrumentation and Measurement, IEEE, 46 (4): 851–856, Bibcode:1997ITIM...46..851K, doi:10.1109/19.650787, ISSN 0018-9456
- http://www.ti.com/lit/ds/symlink/tdc7200.pdf