स्क्लेरोनॉमस: Difference between revisions

From Vigyanwiki
No edit summary
Line 53: Line 53:
[[Category: Machine Translated Page]]
[[Category: Machine Translated Page]]
[[Category:Created On 01/06/2023]]
[[Category:Created On 01/06/2023]]
[[Category:Vigyan Ready]]

Revision as of 17:04, 12 June 2023

एक भौतिक प्रणाली स्क्लेरोनॉमस है यदि बाधा (मौलिक यांत्रिकी) के समीकरणों में स्पष्ट चर (गणित) के रूप में समय नहीं होता है और बाधाओं के समीकरण को सामान्यीकृत निर्देशांक द्वारा वर्णित किया जा सकता है। ऐसी बाधाओं को स्क्लेरोनोमिक बाधाएँ कहा जाता है। स्क्लेरोनॉमस का विपरीत रिओनॉमस होता है।

आवेदन

3-D अंतरिक्ष में, द्रव्यमान वाला एक कण , वेग गतिज ऊर्जा होती है

वेग समय के संबंध में स्थिति का व्युत्पन्न है। कई चरों के लिए श्रृंखला नियम का उपयोग करें:

जहाँ सामान्यीकृत निर्देशांक हैं।

इसलिए,

नियमों को ध्यान से पुनर्व्यवस्थित करना,[1]

जहाँ , , सामान्यीकृत वेगों में क्रमशः डिग्री 0, 1 और 2 के सजातीय कार्य हैं। यदि यह प्रणाली स्क्लेरोनॉमस है तो स्थिति समय के साथ स्पष्ट रूप से निर्भर नहीं करती है:

इसलिए केवल अवधि विलुप्त नहीं होता:

काइनेटिक ऊर्जा सामान्यीकृत वेगों में डिग्री 2 का एक सजातीय कार्य है।

उदाहरण: पेंडुलम

एक साधारण पेंडुलम

जैसा कि दाईं ओर दिखाया गया है एक साधारण पेंडुलम एक भार और एक तार से बना एक प्रणाली है। स्ट्रिंग शीर्ष छोर पर एक धुरी से जुड़ी होती है और निचले सिरे पर एक भार से जुड़ी होती है। अवितान्य होने के कारण डोरी की लम्बाई नियत रहती है। इसलिए यह प्रणाली स्क्लेरोनॉमस है; यह स्क्लेरोनोमिक बाधा का पालन करता है

जहाँ वजन की स्थिति है और स्ट्रिंग की लंबाई है।

दोलनशील धुरी बिंदु के साथ एक साधारण पेंडुलम

एक और जटिल उदाहरण लें। दाईं ओर अगले चित्र को देखें, मान लें कि स्ट्रिंग का ऊपरी सिरा एक धुरी बिंदु से जुड़ा हुआ है जो एक साधारण हार्मोनिक गति से गुजर रहा है

जहां आयाम ! कोणीय आवृत्ति है और यह समय है।

यद्यपि डोरी का ऊपरी सिरा निश्चित नहीं है फिर भी इस अवितान्य डोरी की लंबाई स्थिर रहती है। शीर्ष सिरे और वजन के बीच की दूरी समान रहनी चाहिए। इसलिए यह प्रणाली लयबद्ध है क्योंकि यह समय पर स्पष्ट रूप से निर्भर बाधाओं का पालन करती है

यह भी देखें

संदर्भ

  1. Goldstein, Herbert (1980). शास्त्रीय यांत्रिकी (3rd ed.). United States of America: Addison Wesley. p. 25. ISBN 0-201-65702-3.