चुंबकीय जाल (परमाणु): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 15: Line 15:
मुक्त स्थान में स्थानीय अधिकतम चुंबकीय-क्षेत्र परिमाण का उत्पादन करना असंभव है; हालाँकि, एक स्थानीय न्यूनतम उत्पादन किया जा सकता है। यह न्यूनतम उन परमाणुओं को फँसा सकता है जो निम्न-क्षेत्र की मांग कर रहे हैं यदि उनके पास न्यूनतम से बचने के लिए पर्याप्त गतिज ऊर्जा नहीं है। आमतौर पर, चुम्बकीय पाश में अपेक्षाकृत कम क्षेत्र होता है और केवल उन परमाणुओं को पकड़ने में सक्षम होता है जिनकी गतिज ऊर्जा [[केल्विन]] के एक अंश के तापमान के अनुरूप होती है। चुंबकीय संपाशन के लिए आवश्यक फ़ील्ड मिनिमा को विभिन्न तरीकों से तैयार किया जा सकता है। इनमें स्थायी चुंबक पाश, Ioffe संरूपण पाश, QUIC पाश और अन्य शामिल हैं।
मुक्त स्थान में स्थानीय अधिकतम चुंबकीय-क्षेत्र परिमाण का उत्पादन करना असंभव है; हालाँकि, एक स्थानीय न्यूनतम उत्पादन किया जा सकता है। यह न्यूनतम उन परमाणुओं को फँसा सकता है जो निम्न-क्षेत्र की मांग कर रहे हैं यदि उनके पास न्यूनतम से बचने के लिए पर्याप्त गतिज ऊर्जा नहीं है। आमतौर पर, चुम्बकीय पाश में अपेक्षाकृत कम क्षेत्र होता है और केवल उन परमाणुओं को पकड़ने में सक्षम होता है जिनकी गतिज ऊर्जा [[केल्विन]] के एक अंश के तापमान के अनुरूप होती है। चुंबकीय संपाशन के लिए आवश्यक फ़ील्ड मिनिमा को विभिन्न तरीकों से तैयार किया जा सकता है। इनमें स्थायी चुंबक पाश, Ioffe संरूपण पाश, QUIC पाश और अन्य शामिल हैं।


== माइक्रोचिप एटम पाश ==
== माइक्रोचिप परमाणु पाश ==


[[Image:MicroChipAtomicTrap00.jpg|100px|right|thumb|2005 में [[लेजर विज्ञान संस्थान]] में माइक्रोचिप एटॉमिक पाश विकसित किया गया]]परमाणु माइक्रोचिप के साथ चुंबकीय क्षेत्र के न्यूनतम परिमाण को महसूस किया जा सकता है।<ref name="nakagawa2006">{{cite journal
[[Image:MicroChipAtomicTrap00.jpg|100px|right|thumb|2005 में [[लेजर विज्ञान संस्थान]] में माइक्रोचिप एटॉमिक पाश विकसित किया गया]]परमाणु माइक्रोचिप के साथ चुंबकीय क्षेत्र के न्यूनतम परिमाण को महसूस किया जा सकता है।<ref name="nakagawa2006">{{cite journal
Line 29: Line 29:
|bibcode = 2006ApPhB..82..363H |s2cid=119739250
|bibcode = 2006ApPhB..82..363H |s2cid=119739250
}}</ref>
}}</ref>
दाईं ओर पहले माइक्रोचिप परमाणु पाश में से एक दिखाया गया है। Z- आकार का कंडक्टर (वास्तव में Si सतह पर चित्रित गोल्डन Z- आकार की पट्टी) को एक समान चुंबकीय क्षेत्र में रखा गया है (फ़ील्ड का स्रोत चित्र में नहीं दिखाया गया है)। सकारात्मक स्पिन-फील्ड ऊर्जा वाले परमाणु ही फंस गए थे। स्पिन राज्यों के मिश्रण को रोकने के लिए, बाहरी चुंबकीय क्षेत्र को चिप के विमान में झुकाया गया था, जिससे परमाणु के संचलन पर स्पिन का एडियाबेटिक घुमाव प्रदान किया गया था। पहले सन्निकटन में, फंसे हुए परमाणु की प्रभावी ऊर्जा के लिए चुंबकीय क्षेत्र का परिमाण (लेकिन अभिविन्यास नहीं) जिम्मेदार है। दिखाई गई चिप 2 सेमी x 2 सेमी है; इस आकार को निर्माण में आसानी के लिए चुना गया था। सिद्धांत रूप में, ऐसे माइक्रोचिप पाश के आकार को काफी कम किया जा सकता है। ऐसे पाशों की एक सरणी पारंपरिक [[लिथोग्राफी]] विधियों से निर्मित की जा सकती है; ऐसी सरणी को [[ एक कंप्यूटर जितना ]] के लिए क्यू-बिट [[कंप्यूटर डेटा भंडारण]] का प्रोटोटाइप माना जाता है। पाश के बीच परमाणुओं और/या क्यू-बिट्स को स्थानांतरित करने के तरीके विकास के अधीन हैं; एडियाबेटिक ऑप्टिकल (ऑफ-रेजोनेंट आवृत्तियों के साथ) और/या विद्युत नियंत्रण (अतिरिक्त इलेक्ट्रोड के साथ) माना जाता है।
दाईं ओर पहले माइक्रोचिप परमाणु पाश में से एक दिखाया गया है। Z- आकार का संवाहक (वास्तव में Si सतह पर चित्रित गोल्डन Z- आकार की पट्टी) को एक समान चुंबकीय क्षेत्र में रखा गया है (फ़ील्ड का स्रोत चित्र में नहीं दिखाया गया है)। सकारात्मक स्पिन-फील्ड ऊर्जा वाले परमाणु ही फंस गए थे। स्पिन अवस्था के मिश्रण को रोकने के लिए, बाहरी चुंबकीय क्षेत्र को चिप के विमान में झुकाया गया था, जिससे परमाणु के संचलन पर स्पिन का रुदधोष्म घुमाव प्रदान किया गया था। पहले सन्निकटन में, फंसे हुए परमाणु की प्रभावी ऊर्जा के लिए चुंबकीय क्षेत्र का परिमाण (लेकिन अभिविन्यास नहीं) जिम्मेदार है। दिखाई गई चिप 2 सेमी x 2 सेमी है; इस आकार को निर्माण में आसानी के लिए चुना गया था। सिद्धांत रूप में, ऐसे माइक्रोचिप पाश के आकार को काफी कम किया जा सकता है। ऐसे पाशों की एक सरणी पारंपरिक [[लिथोग्राफी]] विधियों से निर्मित की जा सकती है; ऐसी सरणी को [[ एक कंप्यूटर जितना ]] के लिए क्यू-बिट [[कंप्यूटर डेटा भंडारण]] का प्रोटोटाइप माना जाता है। पाश के बीच परमाणुओं और/या क्यू-बिट्स को स्थानांतरित करने के तरीके विकास के अधीन हैं; रुदधोष्म ऑप्टिकल (ऑफ-रेजोनेंट आवृत्तियों के साथ) और/या विद्युत नियंत्रण (अतिरिक्त इलेक्ट्रोड के साथ) माना जाता है।


== बोस-आइंस्टीन संक्षेपण में अनुप्रयोग ==
== बोस-आइंस्टीन संक्षेपण में अनुप्रयोग ==

Revision as of 11:58, 9 June 2023

प्रयोगात्मक भौतिकी में, एक चुम्बकीय पाश एक उपकरण है जो चुंबकीय क्षणों के साथ तटस्थ कणों को पकड़ने के लिए एक चुंबकीय क्षेत्र प्रवणता का उपयोग करता है। हालांकि इस तरह के पाश को भौतिकी अनुसंधान में कई उद्देश्यों के लिए नियोजित किया गया है, लेकिन बोस-आइंस्टीन संक्षेपण प्राप्त करने के लिए परमाणुओं को ठंडा करने के अंतिम चरण के रूप में उन्हें जाना जाता है। चुम्बकीय पाश (बहुत ठंडे परमाणुओं को पकड़ने के तरीके के रूप में) सबसे पहले डेविड ई. प्रिचर्ड द्वारा प्रस्तावित किया गया था।

परिचालन सिद्धांत

कई परमाणुओं का चुंबकीय क्षण होता है; सूत्र के अनुसार उनकी ऊर्जा एक चुंबकीय क्षेत्र में स्थानांतरित होती है

.

क्वांटम यांत्रिकी के सिद्धांतों के अनुसार एक परमाणु का चुंबकीय क्षण परिमाणीकरण (भौतिकी) होगा; अर्थात्, यह कुछ असतत मानों में से एक को ग्रहण करेगा। यदि परमाणु को एक मजबूत चुंबकीय क्षेत्र में रखा जाता है, तो इसका चुंबकीय क्षण क्षेत्र के अनुरूप होगा। यदि कई परमाणुओं को एक ही क्षेत्र में रखा जाता है, तो उन्हें उस परमाणु के लिए चुंबकीय क्वांटम संख्या के विभिन्न अनुमत मानों पर वितरित किया जाएगा।

यदि एक समान क्षेत्र पर एक चुंबकीय क्षेत्र प्रवणता अध्यारोपित की जाती है, तो वे परमाणु जिनके चुंबकीय क्षण क्षेत्र के साथ संरेखित होते हैं, उच्च क्षेत्र में कम ऊर्जा होगी। एक गेंद की तरह एक पहाड़ी से लुढ़कते हुए, ये परमाणु उच्च क्षेत्रों वाले स्थानों पर अधिकार कर लेंगे और उच्च क्षेत्र की मांग वाले परमाणुओं के रूप में जाने जाते हैं। इसके विपरीत, क्षेत्र के विपरीत संरेखित चुंबकीय क्षणों वाले परमाणुओं में उच्च क्षेत्र में उच्च ऊर्जा होगी, निचले क्षेत्रों के साथ स्थानों पर अधिकार करने की प्रवृत्ति होगी, और निम्न-क्षेत्र चाहने वाले परमाणु कहलाते हैं।

मुक्त स्थान में स्थानीय अधिकतम चुंबकीय-क्षेत्र परिमाण का उत्पादन करना असंभव है; हालाँकि, एक स्थानीय न्यूनतम उत्पादन किया जा सकता है। यह न्यूनतम उन परमाणुओं को फँसा सकता है जो निम्न-क्षेत्र की मांग कर रहे हैं यदि उनके पास न्यूनतम से बचने के लिए पर्याप्त गतिज ऊर्जा नहीं है। आमतौर पर, चुम्बकीय पाश में अपेक्षाकृत कम क्षेत्र होता है और केवल उन परमाणुओं को पकड़ने में सक्षम होता है जिनकी गतिज ऊर्जा केल्विन के एक अंश के तापमान के अनुरूप होती है। चुंबकीय संपाशन के लिए आवश्यक फ़ील्ड मिनिमा को विभिन्न तरीकों से तैयार किया जा सकता है। इनमें स्थायी चुंबक पाश, Ioffe संरूपण पाश, QUIC पाश और अन्य शामिल हैं।

माइक्रोचिप परमाणु पाश

2005 में लेजर विज्ञान संस्थान में माइक्रोचिप एटॉमिक पाश विकसित किया गया

परमाणु माइक्रोचिप के साथ चुंबकीय क्षेत्र के न्यूनतम परिमाण को महसूस किया जा सकता है।[1]

दाईं ओर पहले माइक्रोचिप परमाणु पाश में से एक दिखाया गया है। Z- आकार का संवाहक (वास्तव में Si सतह पर चित्रित गोल्डन Z- आकार की पट्टी) को एक समान चुंबकीय क्षेत्र में रखा गया है (फ़ील्ड का स्रोत चित्र में नहीं दिखाया गया है)। सकारात्मक स्पिन-फील्ड ऊर्जा वाले परमाणु ही फंस गए थे। स्पिन अवस्था के मिश्रण को रोकने के लिए, बाहरी चुंबकीय क्षेत्र को चिप के विमान में झुकाया गया था, जिससे परमाणु के संचलन पर स्पिन का रुदधोष्म घुमाव प्रदान किया गया था। पहले सन्निकटन में, फंसे हुए परमाणु की प्रभावी ऊर्जा के लिए चुंबकीय क्षेत्र का परिमाण (लेकिन अभिविन्यास नहीं) जिम्मेदार है। दिखाई गई चिप 2 सेमी x 2 सेमी है; इस आकार को निर्माण में आसानी के लिए चुना गया था। सिद्धांत रूप में, ऐसे माइक्रोचिप पाश के आकार को काफी कम किया जा सकता है। ऐसे पाशों की एक सरणी पारंपरिक लिथोग्राफी विधियों से निर्मित की जा सकती है; ऐसी सरणी को एक कंप्यूटर जितना के लिए क्यू-बिट कंप्यूटर डेटा भंडारण का प्रोटोटाइप माना जाता है। पाश के बीच परमाणुओं और/या क्यू-बिट्स को स्थानांतरित करने के तरीके विकास के अधीन हैं; रुदधोष्म ऑप्टिकल (ऑफ-रेजोनेंट आवृत्तियों के साथ) और/या विद्युत नियंत्रण (अतिरिक्त इलेक्ट्रोड के साथ) माना जाता है।

बोस-आइंस्टीन संक्षेपण में अनुप्रयोग

बोस-आइंस्टीन संघनन (BEC) के लिए परमाणुओं की गैस में बहुत कम घनत्व और बहुत कम तापमान की स्थिति की आवश्यकता होती है। मैग्नेटो-ऑप्टिकल पाश (MOT) में लेजर शीतलन का उपयोग आमतौर पर परमाणुओं को माइक्रोकेल्विन रेंज तक ठंडा करने के लिए किया जाता है। हालाँकि, लेज़र कूलिंग एक परमाणु द्वारा एकल फोटॉनों से प्राप्त होने वाली गति से सीमित होती है। बीईसी को प्राप्त करने के लिए लेज़र कूलिंग की सीमा से परे परमाणुओं को ठंडा करने की आवश्यकता होती है, जिसका अर्थ है कि एमओटी में उपयोग किए जाने वाले लेज़रों को बंद कर दिया जाना चाहिए और पकड़ने का एक नया तरीका तैयार किया जाना चाहिए। बहुत ठंडे परमाणुओं को पकड़ने के लिए चुम्बकीय पाश का उपयोग किया गया है, जबकि बाष्पीकरणीय शीतलन (परमाणु भौतिकी) ने बीईसी तक पहुंचने के लिए परमाणुओं के तापमान को काफी कम कर दिया है।

संदर्भ

  1. M.Horikoshi; K.Nakagawa (2006). "Atom chip based fast production of Bose–Einstein condensate". Applied Physics B. 82 (3): 363–366. Bibcode:2006ApPhB..82..363H. doi:10.1007/s00340-005-2083-z. S2CID 119739250.


स्रोत

बाहरी संबंध