मापने योग्य स्थान: Difference between revisions
No edit summary |
|||
Line 3: | Line 3: | ||
== परिभाषा == | == परिभाषा == | ||
समुच्चय पर | समुच्चय पर ध्यान करें <math>X</math> और सिग्मा-बीजगणित σ-बीजगणित <math>\mathcal A</math> पर <math>X.</math> फिर टपल <math>(X, \mathcal A)</math> मापने योग्य स्थान कहा जाता है।<ref name="Klenke18" /> | ||
ध्यान दें कि एक माप स्थान के विपरीत, मापने योग्य स्थान के लिए कोई माप (गणित) की आवश्यकता नहीं है। | ध्यान दें कि एक माप स्थान के विपरीत, मापने योग्य स्थान के लिए कोई माप (गणित) की आवश्यकता नहीं है। | ||
Line 28: | Line 28: | ||
== यह भी देखें == | == यह भी देखें == | ||
* {{annotated link|बोरेल | * {{annotated link|बोरेल समुच्चय}} | ||
* {{annotated link|मापनीय | * {{annotated link|मापनीय समुच्चय}} | ||
* {{annotated link|मानक बोरेल स्थान/मानक बोरेल स्थान}} | * {{annotated link|मानक बोरेल स्थान/मानक बोरेल स्थान}} | ||
Revision as of 18:43, 12 June 2023
गणित में, मापने योग्य स्थान या बोरेल स्थान[1]माप सिद्धांत में एक मूल वस्तु है। इसमें समुच्चय (गणित) और सिग्मा-बीजगणित σ-बीजगणित होता है, जो मापे जाने वाले उपसमुच्चय को परिभाषित करता है।
परिभाषा
समुच्चय पर ध्यान करें और सिग्मा-बीजगणित σ-बीजगणित पर फिर टपल मापने योग्य स्थान कहा जाता है।[2]
ध्यान दें कि एक माप स्थान के विपरीत, मापने योग्य स्थान के लिए कोई माप (गणित) की आवश्यकता नहीं है।
उदाहरण
समुच्चय पर नजर:
सामान्य मापने योग्य स्थान
अगर परिमित या गणनीय रूप से अनंत है, -बीजगणित सबसे अधिक बार होता है घात समुच्चय है इसलिए यह मापने योग्य स्थान की ओर जाता है
अगर टोपोलॉजिकल स्पेस है, द -बीजगणित सामान्यतः बोरेल सिग्मा बीजगणित है| बोरेल -बीजगणित इसलिए यह मापने योग्य स्थान की ओर जाता है यह सभी टोपोलॉजिकल स्पेस जैसे कि वास्तविक संख्या के लिए सामान्य है
बोरेल रिक्त स्थान के साथ अस्पष्टता
बोरेल स्पेस शब्द का प्रयोग विभिन्न प्रकार के मापने योग्य स्थानों के लिए किया जाता है। यह संदर्भित कर सकता है
- कोई भी मापने योग्य स्थान, इसलिए यह ऊपर परिभाषित अनुसार मापने योग्य स्थान का पर्याय है [1]* एक औसत दर्जे का स्थान जो बोरेल समरूपता है वास्तविक संख्याओं के एक औसत दर्जे का उपसमुच्चय (फिर से बोरेल के साथ) -बीजगणित)[3]
यह भी देखें
- बोरेल समुच्चय – Mathematical process
- मापनीय समुच्चय
- मानक बोरेल स्थान/मानक बोरेल स्थान
संदर्भ
- ↑ 1.0 1.1 Sazonov, V.V. (2001) [1994], "Measurable space", Encyclopedia of Mathematics, EMS Press
- ↑ Klenke, Achim (2008). Probability Theory. Berlin: Springer. p. 18. doi:10.1007/978-1-84800-048-3. ISBN 978-1-84800-047-6.
- ↑ Kallenberg, Olav (2017). Random Measures, Theory and Applications. Probability Theory and Stochastic Modelling. Vol. 77. Switzerland: Springer. p. 15. doi:10.1007/978-3-319-41598-7. ISBN 978-3-319-41596-3.