सशर्त अपेक्षा: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 354: Line 354:
* {{Springer |title=Conditional mathematical expectation |id=c/c024500 |first=N.G. |last=Ushakov }}
* {{Springer |title=Conditional mathematical expectation |id=c/c024500 |first=N.G. |last=Ushakov }}


{{DEFAULTSORT:Conditional Expectation}}[[Category: सशर्त संभाव्यता]] [[Category: सांख्यिकीय सिद्धांत]]
{{DEFAULTSORT:Conditional Expectation}}


 
[[Category:Articles with hatnote templates targeting a nonexistent page|Conditional Expectation]]
 
[[Category:CS1 Deutsch-language sources (de)]]
[[Category: Machine Translated Page]]
[[Category:Created On 01/06/2023|Conditional Expectation]]
[[Category:Created On 01/06/2023]]
[[Category:Lua-based templates|Conditional Expectation]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page|Conditional Expectation]]
[[Category:Multi-column templates|Conditional Expectation]]
[[Category:Pages using div col with small parameter|Conditional Expectation]]
[[Category:Pages with script errors|Conditional Expectation]]
[[Category:Templates Vigyan Ready|Conditional Expectation]]
[[Category:Templates that add a tracking category|Conditional Expectation]]
[[Category:Templates that generate short descriptions|Conditional Expectation]]
[[Category:Templates using TemplateData|Conditional Expectation]]
[[Category:Templates using under-protected Lua modules|Conditional Expectation]]
[[Category:Wikipedia fully protected templates|Div col]]
[[Category:सशर्त संभाव्यता|Conditional Expectation]]
[[Category:सांख्यिकीय सिद्धांत|Conditional Expectation]]

Latest revision as of 13:57, 14 June 2023

प्रायिकता सिद्धांत में, नियमबद्ध अपेक्षा, नियमबद्ध अपेक्षित मूल्य, या यादृच्छिक चर का नियमबद्ध कारण इसका अपेक्षित मूल्य है बड़ी संख्या में होने वाली घटनाओं के नियम पर यह "औसतन" मान लेगा यह देखते हुए कि नियमो का निश्चित समुच्चय है होने के लिए जाना जाता है। यदि यादृच्छिक चर केवल मूल्यों की एक सीमित संख्या में ले सकता है, तो "नियमं" हैं कि चर केवल उन मानों का सबसमुच्चय ले सकता है। अधिक औपचारिक रूप से, उस स्थिति में जब यादृच्छिक चर को असतत प्रायिकता स्पेस पर परिभाषित किया जाता है, तो नियमं इस प्रायिकता स्पेस के समुच्चय का विभाजन होती हैं।

संदर्भ के आधार पर, नियमबद्ध अपेक्षा या तो यादृच्छिक चर या कार्य हो सकती है। यादृच्छिक चर नियमबद्ध प्रायिकता के अनुरूप निरूपित किया जाता है। फलन फॉर्म को या तो निरूपित किया जाता है। या अलग फलन प्रतीक जैसे को अर्थ के साथ प्रस्तुत किया गया है।

उदाहरण

उदाहरण 1: डाइस रोलिंग

एक निष्पक्ष पासे के रोल पर विचार करें और मान लें कि A = 1 यदि संख्या सम है (अर्थात, 2, 4, या 6) और A = 0 अन्यथा इसके अतिरिक्त B = 1 दें यदि संख्या प्रमुख है (अर्थात, 2, 3, या 5) और B = 0 अन्यथा है।

1 2 3 4 5 6
A 0 1 0 1 0 1
B 0 1 1 0 1 0

A की बिना नियम अपेक्षा है। किंतु B = 1 पर नियमबद्ध A की अपेक्षा (अर्थात, नियमबद्ध पर डाइ रोल 2, 3, या 5) है , और B = 0 पर नियमबद्ध A की अपेक्षा (अर्थात, डाई रोल 1, 4, या 6 होने पर नियमबद्ध) है। इसी तरह, A = 1 पर नियमबद्ध B की अपेक्षा है। , और A = 0 पर नियमबद्ध B की अपेक्षा है।

उदाहरण 2: वर्षा डेटा

मान लीजिए कि हमारे पास 1 जनवरी, 1990 से 31 दिसंबर, 1999 तक दस-वर्ष (3652-दिन) की अवधि के प्रत्येक दिन मौसम केंद्र द्वारा एकत्रित दैनिक वर्षा डेटा (प्रति दिन वर्षा का मिमी) है। अनिर्दिष्ट दिन उन 3652 दिनों के लिए वर्षा की मात्रा का औसत है। मार्च के महीने में एक अन्यथा अनिर्दिष्ट दिन के लिए वर्षा की नियमबद्ध अपेक्षा (नियमबद्ध होने पर) दस साल की अवधि के सभी 310 दिनों में दैनिक वर्षा का औसत है जो मार्च में पड़ता है। और 2 मार्च के दिनों में वर्षा की नियमबद्ध अपेक्षा उस विशिष्ट तिथि के साथ दस दिनों में हुई वर्षा की मात्रा का औसत है।

इतिहास

नियमबद्ध प्रायिकता की संबंधित अवधारणा कम से कम पियरे-साइमन लाप्लास के समय की है \ जिन्होंने नियमबद्ध वितरण की गणना की यह एंड्री निकोलाइविच कोलमोगोरोव थे | जिन्होंने 1933 में रेडॉन-निकोडायम प्रमेय का उपयोग करके इसे औपचारिक रूप दिया था।[1] पॉल हेल्मोस के कार्यों में [2] और जोसेफ एल. डूब गया था।[3] 1953 से, सिग्मा-बीजगणित उप-σ-अल्जेब्रा का उपयोग करके इसकी आधुनिक परिभाषा के लिए नियमबद्ध अपेक्षा को सामान्यीकृत किया गया था।[4]

परिभाषाएँ

एक घटना पर कंडीशनिंग

यदि A में गैर-शून्य प्रायिकता के साथ एक घटना है, और X असतत यादृच्छिक चर है, तो X दिए गए A की नियमबद्ध अपेक्षा है।

जहां X योग के सभी संभावित परिणामों पर लिया जाता है।

ध्यान दें कि यदि , शून्य से विभाजन के कारण नियमबद्ध अपेक्षा अपरिभाषित है।

असतत यादृच्छिक चर

यदि X और Y असतत यादृच्छिक चर हैं | जिसकी नियमबद्ध अपेक्षा X दिया गया Y है।

जहाँ का संयुक्त प्रायिकता द्रव्यमान फलन है। X और Y. योग के सभी संभावित X परिणामों पर लिया जाता है।

ध्यान दें कि असतत यादृच्छिक चर पर कंडीशनिंग संबंधित घटना पर कंडीशनिंग के समान है।

जहाँ A समुच्चय है।

निरंतर यादृच्छिक चर

माना और को संयुक्त घनत्व के घनत्व के साथ निरंतर यादृच्छिक चर होने दें और नियमबद्ध घनत्व का दिया गया ईवेंट दिए गए की नियमबद्ध अपेक्षा है।

जब भाजक शून्य होता है, तो व्यंजक अपरिभाषित होता है।

ध्यान दें कि निरंतर यादृच्छिक चर पर कंडीशनिंग घटना पर कंडीशनिंग के समान नहीं है। जैसा कि असतत स्थिति में था। चर्चा के लिए, नियमबद्ध प्रायिकता प्रायिकता शून्य की घटना पर कंडीशनिंग देखें। इस भेद का सम्मान नहीं करने से विरोधाभासी निष्कर्ष निकल सकते हैं | जैसा कि बोरेल-कोल्मोगोरोव विरोधाभास द्वारा दिखाया गया है।

L2 यादृच्छिक चर

इस खंड में सभी यादृच्छिक चर में माने जाते हैं, जो वर्ग समाकलनीय है। इसकी पूर्ण सामान्यता में, इस धारणा के बिना नियमबद्ध अपेक्षा विकसित की जाती है, उप-σ-बीजगणित के संबंध में नियमबद्ध अपेक्षा के अनुसार नीचे देखें। सिद्धांत चूंकि अधिक सहज ज्ञान युक्त माना जाता है [5] और महत्वपूर्ण सामान्यीकरणों को स्वीकार करता है। यादृच्छिक चर नियमबद्ध अपेक्षा के संदर्भ में प्रतिगमन विश्लेषण भी कहा जाता है।

निम्नलिखित में मान लें एक प्रायिकता स्पेस है, और माध्य और प्रसरण अपेक्षा औसत वर्ग त्रुटि को कम करता है।


.

X की नियमबद्ध अपेक्षा को एक ही संख्या के अतिरिक्त समान रूप से परिभाषित किया गया है। परिणाम फलन होगा। माना यादृच्छिक वेक्टर है। नियमबद्ध अपेक्षा एक मापने योग्य कार्य है। जैसे कि

.

ध्यान दें कि विपरीत , नियमबद्ध अपेक्षा सामान्यतः अद्वितीय नहीं है। माध्य चुकता त्रुटि के कई मिनिमाइज़र हो सकते हैं।

अद्वितीयता

उदाहरण 1: उस स्थिति पर विचार करें जहां Y निरंतर यादृच्छिक चर है जो सदैव 1 होता है। फिर फॉर्म के किसी भी फलन द्वारा माध्य चुकता त्रुटि को कम किया जाता है।

उदाहरण 2: उस स्थिति पर विचार करें जहां Y द्वि-आयामी यादृच्छिक वेक्टर है। फिर स्पष्ट रूप से

किंतु कार्यों के संदर्भ में इसे या या असीम रूप से कई अन्य विधियों से व्यक्त किया जा सकता है। रेखीय प्रतिगमन के संदर्भ में, इस विशिष्टता की कमी को बहुसंरेखता कहा जाता है।

नियमबद्ध अपेक्षा माप शून्य के एक समुच्चय तक अद्वितीय है। उपयोग किया जाने वाला माप पुशफॉर्वर्ड Y उपाय है जो प्रेरित है।

पहले उदाहरण में, पुशवर्ड माप 1 पर एक डिराक वितरण है। दूसरे में यह विकर्ण पर केंद्रित है। जिससे कोई भी समुच्चय जो इसे प्रतिच्छेद न करे, उसका माप 0 होता है।

अस्तित्व

के लिए एक मिनिमाइज़र का अस्तित्व गैर समान है। यह दिखाया जा सकता है।

हिल्बर्ट स्पेस की एक बंद उप-स्पेस है। [6] हिल्बर्ट प्रक्षेपण प्रमेय के अनुसार, मिनिमाइज़र होने के लिए आवश्यक और पर्याप्त शर्त यह है कि M में सभी के लिए हमारे पास है

.

शब्दों में, यह समीकरण कहता है कि अवशिष्ट (सांख्यिकी) अंतरिक्ष के लिए ओर्थोगोनल है। M के सभी कार्यों में से Y यह ओर्थोगोनलिटी की स्थिति, संकेतक कार्यों पर प्रयुक्त होती है। उस स्थिति के लिए नियमबद्ध अपेक्षा का विस्तार करने के लिए नीचे उपयोग किया जाता है। X और Y जरूरी नहीं हैं |

प्रतिगमन से संबंध

विश्लेषणात्मक रूप से इसकी गणना करने और प्रक्षेप के लिए कठिनाइयों के कारण नियमबद्ध अपेक्षा अक्सर प्रयुक्त गणित और सांख्यिकी हिल्बर्ट उप-स्पेस में अनुमानित होती है।[7]

ऊपर परिभाषित किसी भी मापने योग्य फलन की अनुमति देने के अतिरिक्त g के कार्यात्मक रूप को सीमित करके उपसमुच्चय के साथ प्रतिस्थापित किया गया है। इसके उदाहरण निर्णय वृक्ष प्रतिगमन हैं | जब g को एक साधारण फलन रैखिक प्रतिगमन होना आवश्यक है जब g एफ़िन परिवर्तन होना आवश्यक है।


नियमबद्ध अपेक्षा के ये सामान्यीकरण इसकी कई प्रोपर्टीयों की कीमत पर आते हैं जो अब धारण नहीं करते हैं। उदाहरण के लिए, M को Y के सभी रैखिक कार्यों का स्पेस दें और इस सामान्यीकृत नियमबद्ध अपेक्षा प्रक्षेपण को इंगित करें। यदि में निरंतर कार्य नहीं होते हैं, तो टावर प्रोपर्टी धारण नहीं करता है।


एक महत्वपूर्ण विशेष स्थिति है। जब X और Y संयुक्त रूप से सामान्य रूप से वितरित होते हैं। इस स्थिति में यह दिखाया जा सकता है कि नियमबद्ध अपेक्षा रैखिक प्रतिगमन के समान है।

गुणांक के लिए बहुभिन्नरूपी सामान्य वितरण नियमबद्ध वितरण में वर्णित है।

उप-σ-बीजगणित के संबंध में नियमबद्ध अपेक्षा

σ-बीजगणित के संबंध में नियमबद्ध अपेक्षा: इस उदाहरण में प्रायिकता स्पेस लेबेस्ग माप के साथ [0,1] अंतराल है। हम निम्नलिखित σ-बीजगणित को परिभाषित करते हैं: ; अंत-बिंदु 0, ¼, ½, ¾, 1 के अंतराल द्वारा उत्पन्न σ-बीजगणित है; और अंत-बिंदु 0, ½, 1 के साथ अंतराल द्वारा उत्पन्न σ-बीजगणित है। यहां नियमबद्ध अपेक्षा प्रभावी रूप से σ-बीजगणित के न्यूनतम समुच्चयों पर औसत है।

निम्न पर विचार करें:

  • प्रायिकता स्पेस है।
  • एक यादृच्छिक चर है। परिमित अपेक्षा के साथ उस प्रायिकता स्पेस पर परिभाषा है।
  • एक उप-सिग्मा-बीजगणित σ-बीजगणित का . है।

चूंकि , का उप -बीजगणित है, इसलिए फलन आमतौर पर मापने योग्य, इस प्रकार , जहाँ और , से का प्रतिबंध है, सामान्यतः नहीं कहा जा सकता चूंकि, स्थानीय औसत को में पुनर्प्राप्त किया जा सकता है।

दिए गए X की एक नियमबद्ध अपेक्षा , जिसे के रूप में दर्शाया गया है, कोई भी मापने योग्य है।

प्रत्येक के लिए .[8]

जैसा कि में नोट किया गया है। चर्चा, यह स्थिति यह कहने के समान है कि अवशिष्ट (सांख्यिकी) सूचक कार्यों के लिए ओर्थोगोनल है।


अस्तित्व

के अस्तित्व को इस बात पर ध्यान देकर स्थापित किया जा सकता है कि के लिए पर एक परिमित माप है। जो के संबंध में पूर्ण निरंतरता है। यदि प्राकृतिक प्रतिबंध है। से तक प्रतिबंध तब प्रतिबंध है को और का से का प्रतिबंध है इसके अतिरिक्त के संबंध में बिल्कुल निरंतर है। क्योंकि स्थिति

तात्पर्य

इस प्रकार, हमारे पास है

जहां डेरिवेटिव रेडॉन-निकोडिम प्रमेय हैं | रेडॉन-निकोडीम उपायों के डेरिवेटिव है।

एक यादृच्छिक चर के संबंध में नियमबद्ध अपेक्षा

उपरोक्त के अतिरिक्त, विचार करें

Y दिए गए X की नियमबद्ध अपेक्षा को उपरोक्त निर्माण को Y द्वारा उत्पन्न σ-बीजगणित पर प्रयुक्त करके परिभाषित किया गया है।

.

डूब-डिंकिन लेम्मा द्वारा, एक कार्य उपस्थित है। ऐसा है कि

.

चर्चा

  • यह कोई रचनात्मक परिभाषा नहीं है। हमें केवल आवश्यक प्रोपर्टी दी जाती है। जो एक नियमबद्ध अपेक्षा को पूरा करना चाहिए।
    • की परिभाषा किसी ईवेंट H के लिए के समान हो सकती है। किंतु ये हैं बहुत अलग वस्तुएँ पूर्व एक -मापने योग्य फलन है, जबकि बाद वाला का एक तत्व है। के लिए है।
    • विशिष्टता को लगभग निश्चित रूप से दिखाया जा सकता है अर्थात, समान नियमबद्ध अपेक्षा के संस्करण केवल एक शून्य समुच्चय पर भिन्न होते है।
  • σ-बीजगणित कंडीशनिंग की ग्रैन्युलैरिटी को नियंत्रित करता है। एक नियमबद्ध अपेक्षा एक महीन (बड़ा) σ-बीजगणित पर घटनाओं के एक बड़े वर्ग की प्रायिकताओं के बारे में जानकारी रखता है। अधिक घटनाओं पर मोटे (छोटे) σ-बीजगणित औसत पर एक नियमबद्ध अपेक्षा है।

नियमबद्ध प्रायिकता

एक बोरेल सबसमुच्चय के लिए B में , कोई यादृच्छिक चर के संग्रह पर विचार कर सकता है।

.

यह दिखाया जा सकता है कि वे एक मार्कोव कर्नेल बनाते हैं, जो कि लगभग सभी के लिए है। प्रायिकता माप है।[9] अचेतन सांख्यिकीविद का नियम तब है।

.

इससे पता चलता है कि नियमबद्ध अपेक्षाएं, उनके बिना शर्त समकक्षों की तरह, एकीकरण,एक नियमबद्ध उपाय के विरुद्ध है।

सामान्य परिभाषा

पूर्ण सामान्यता में, विचार करें:

  • एक प्रायिकता स्पेस .
  • एक बनच स्पेस .
  • एक बोचनर अभिन्न यादृच्छिक चर .
  • एक उप-σ-बीजगणित .

दिए गए की नियमबद्ध अपेक्षा एक -अशक्त अद्वितीय और पूर्णांक -मान -मापने योग्य यादृच्छिक चर तक संतोषजनक है।

सभी के लिए .[10][11] इस समुच्चयिंग में नियमबद्ध अपेक्षा को कभी-कभी संचालन नोटेशन में भी दर्शाया जाता है .

मूल गुण

निम्नलिखित सभी सूत्रों को लगभग निश्चित अर्थों में समझना है। σ-बीजगणित एक यादृच्छिक चर अर्थात . द्वारा प्रतिस्थापित किया जा सकता है।

  • स्वतंत्र कारकों को बाहर निकालना:
    • यदि का स्वतंत्र (प्रायिकता सिद्धांत) है। तब .
प्रमाण

माना . तब से स्वतंत्र है , तो हमें वह मिलता है

इस प्रकार सशर्त अपेक्षा की परिभाषा निरंतर यादृच्छिक चर से संतुष्ट होती है , जैसी इच्छा थी।

    • यदि से स्वतंत्र है, तो ध्यान दें कि यह आवश्यक नहीं है कि यदि केवल और से स्वतंत्र है
    • यदि स्वतंत्र हैं, स्वतंत्र हैं, से स्वतंत्र है और से स्वतंत्र है, तो .
  • स्थिरता:
    • यदि -मापने योग्य है। फिर .
प्रमाण

प्रत्येक के लिए अपने पास , या समकक्ष

चूंकि यह प्रत्येक के लिए सत्य है , और दोनों और हैं -मापने योग्य (पूर्व प्रोपर्टी परिभाषा के अनुसार है; बाद की प्रोपर्टी यहां महत्वपूर्ण है), इससे कोई दिखा सकता है

और इसका तात्पर्य है लगभग प्रत्येक स्पेस।

    • विशेष रूप से, उप-σ-बीजगणित के लिए अपने पास . है।
    • यदि Z एक यादृच्छिक चर है, तो . अपने सरलतम रूप में, यह कहते हैं |
  • ज्ञात कारकों को बाहर निकालना:
    • यदि -मापने योग्य है, तो
प्रमाण

यहां सभी यादृच्छिक चर सामान्यता के हानि के बिना गैर-नकारात्मक मान लिए गए हैं। सामान्य स्थिति का इलाज किया जा सकता है .

हल करना और जाने . फिर किसी के लिए

इस तरह लगभग प्रत्येक स्पेस।

कोई भी सरल फलन सूचक फलनों का परिमित रेखीय संयोजन होता है। रैखिकता से उपरोक्त संपत्ति सरल कार्यों के लिए होती है: यदि तब एक साधारण कार्य है .

अब चलो होना -मापने योग्य। फिर सरल कार्यों का एक क्रम उपस्थित होता है मोनोटोनिक रूप से अभिसरण करना (यहाँ अर्थ है ) और बिंदुवार . नतीजतन, के लिए , क्रम मोनोटोनिक रूप से और पॉइंटवाइज़ में परिवर्तित हो जाता है .

इसके अतिरिक्त, चूंकि , क्रम मोनोटोनिक रूप से और पॉइंटवाइज़ में परिवर्तित हो जाता है सरल कार्यों के लिए सिद्ध विशेष स्थिति का संयोजन, सशर्त अपेक्षा की परिभाषा, और मोनोटोन अभिसरण प्रमेय को तैनात करना:

यह सभी के लिए है , जहाँ से लगभग प्रत्येक स्पेस।

    • यदि Z एक यादृच्छिक चर है, तो .
  • कुल अपेक्षा का नियम: .[12]
  • टॉवर प्रोपर्टी:
    • उप-σ-बीजगणित के लिए अपने पास है।
      • एक विशेष स्थिति कुल अपेक्षा का नियम पुनर्प्राप्त करता है।
      • एक विशेष स्थिति तब होता है जब Z एक होता है। - मापने योग्य यादृच्छिक चर तब और इस तरह है।
      • संदेह मेर्टिंगेल प्रोपर्टी: ऊपर के साथ (जो है -मापने योग्य), और उपयोग भी , देता है होता है।
    • यादृच्छिक चर के लिए अपने पास है।
    • यादृच्छिक चर के लिए अपने पास है।
  • रैखिकता: हमारे पास है और के लिए है।
  • सकारात्मकता: यदि तब . है।
  • एकरसता: यदि तब है।
  • मोनोटोन अभिसरण प्रमेय: यदि तब है।
  • प्रभुत्व अभिसरण प्रमेय: यदि और साथ , तब है।
  • फतौ की लेम्मा: यदि तब है।
  • जेन्सेन की असमानता: यदि एक उत्तल कार्य है, फिर है।
  • नियमबद्ध विचरण: नियमबद्ध अपेक्षा का उपयोग करके हम विचरण की परिभाषा के साथ सादृश्य द्वारा परिभाषित कर सकते हैं, औसत से औसत वर्ग विचलन, नियमबद्ध विचरण है।
    • परिभाषा: है।
    • विचरण के लिए बीजगणितीय सूत्र: है।
    • कुल विचरण का नियम: है।
  • मार्टिंगेल अभिसरण प्रमेय: एक यादृच्छिक चर के लिए , जिसकी परिमित अपेक्षा है, हमारे पास है। , या तो उप-σ-बीजगणित की एक बढ़ती हुई श्रृंखला है और या यदि और उप-σ-बीजगणित की एक घटती श्रृंखला है।
  • नियमबद्ध अपेक्षा के रूप में -प्रोजेक्शन: यदि स्क्वायर-इंटीग्रेबल रियल रैंडम वेरिएबल्स के हिल्बर्ट अंतरिक्ष में हैं (परिमित दूसरे क्षण के साथ वास्तविक रैंडम वेरिएबल्स)।
    • के लिए -मापने योग्य ,अपने पास , अर्थात नियमबद्ध अपेक्षा एलपी स्पेस के अर्थ में है। स्केलर उत्पाद से ओर्थोगोनल प्रक्षेपण की रैखिक उपसमष्टि के लिए -मापने योग्य कार्य (यह हिल्बर्ट प्रोजेक्शन प्रमेय के आधार पर नियमबद्ध अपेक्षा के अस्तित्व को परिभाषित करने और सिद्ध करने की अनुमति देता है।)
    • मानचित्रण स्व-संयोजक है। स्व-संयोजक: है।
  • कंडीशनिंग एलपी स्पेस का एक संकुचन (संचालन सिद्धांत) प्रक्षेपण है। Lp रिक्त स्पेस . अर्थात, किसी भी p ≥ 1 के लिए है।
  • डूब की नियमबद्ध स्वतंत्रता प्रोपर्टी:[13] यदि नियमबद्ध रूप से स्वतंत्र दिए गए हैं तो दिया गया है (समतुल्य है।

यह भी देखें

प्रायिकता नियम

टिप्पणियाँ

  1. Kolmogorov, Andrey (1933). Grundbegriffe der Wahrscheinlichkeitsrechnung (in Deutsch). Berlin: Julius Springer. p. 46.
  2. Oxtoby, J. C. (1953). "Review: Measure theory, by P. R. Halmos" (PDF). Bull. Amer. Math. Soc. 59 (1): 89–91. doi:10.1090/s0002-9904-1953-09662-8.
  3. J. L. Doob (1953). Stochastic Processes. John Wiley & Sons. ISBN 0-471-52369-0.
  4. Olav Kallenberg: Foundations of Modern Probability. 2. edition. Springer, New York 2002, ISBN 0-387-95313-2, p. 573.
  5. "संभाव्यता - सशर्त अपेक्षा के पीछे अंतर्ज्ञान". Mathematics Stack Exchange.
  6. Brockwell, Peter J. (1991). Time series : theory and methods (2nd ed.). New York: Springer-Verlag. ISBN 978-1-4419-0320-4.
  7. Hastie, Trevor. The elements of statistical learning : data mining, inference, and prediction (PDF) (Second, corrected 7th printing ed.). New York. ISBN 978-0-387-84858-7.
  8. Billingsley, Patrick (1995). "Section 34. Conditional Expectation". Probability and Measure (3rd ed.). John Wiley & Sons. p. 445. ISBN 0-471-00710-2.
  9. Klenke, Achim. Probability theory : a comprehensive course (Second ed.). London. ISBN 978-1-4471-5361-0.
  10. Da Prato, Giuseppe; Zabczyk, Jerzy (2014). अनंत आयामों में स्टोकेस्टिक समीकरण. Cambridge University Press. p. 26. doi:10.1017/CBO9781107295513. (Definition in separable Banach spaces)
  11. Hytönen, Tuomas; van Neerven, Jan; Veraar, Mark; Weis, Lutz (2016). Analysis in Banach Spaces, Volume I: Martingales and Littlewood-Paley Theory. Springer Cham. doi:10.1007/978-3-319-48520-1. (Definition in general Banach spaces)
  12. "सशर्त अपेक्षा". www.statlect.com. Retrieved 2020-09-11.
  13. Kallenberg, Olav (2001). आधुनिक संभाव्यता की नींव (2nd ed.). York, PA, USA: Springer. p. 110. ISBN 0-387-95313-2.

संदर्भ

  • William Feller, An Introduction to Probability Theory and its Applications, vol 1, 1950, page 223
  • Paul A. Meyer, Probability and Potentials, Blaisdell Publishing Co., 1966, page 28
  • Grimmett, Geoffrey; Stirzaker, David (2001). Probability and Random Processes (3rd ed.). Oxford University Press. ISBN 0-19-857222-0., pages 67–69

बाहरी संबंध