बहुलता सिद्धांत: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 35: | Line 35: | ||
==संदर्भ== | ==संदर्भ== | ||
{{reflist}} | {{reflist}} | ||
[[Category:CS1 English-language sources (en)]] | |||
[[Category: | |||
[[Category:Created On 25/05/2023]] | [[Category:Created On 25/05/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Machine Translated Page]] | ||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:रिंग थ्योरी में प्रमेय]] |
Latest revision as of 16:34, 14 June 2023
अमूर्त बीजगणित में, बहुलता सिद्धांत एक आदर्श (वलय सिद्धांत) I (प्रायः अधिकतम आदर्श)
- पर एक मॉड्यूल M की बहुलता से संबंधित है।
एक मॉड्यूल की बहुलता की धारणा अनुमानित विविधता की घात का सामान्यीकरण है। सेरे के प्रतिच्छेदन सूत्र द्वारा, यह प्रतिच्छेदन सिद्धांत में प्रतिच्छेदन बहुलता से जुड़ा हुआ है।
सिद्धांत का मुख्य ध्यान एक बीजगणितीय विविधता के विलक्षण बिंदु का पता लगाना और मापना है (cf. विलक्षणताओं का विभेदन)। इस स्वरूप के कारण, मूल्यांकन सिद्धांत, रीस बीजगणित और समाकल संवरक बहुलता सिद्धांत से घनिष्ठ रूप से जुड़े हुए हैं।
एक मॉड्यूल की बहुलता
R को धनात्मक रूप से वर्गीकृत वलय होने दें, जैसे कि R को R0 बीजगणित के रूप में अंतिम रूप से उत्पन्न किया जाता है और R0 आर्टिनियन वलय है। ध्यान दें कि R का परिमित क्रुल विमा d है। M को अंतिम रूप से उत्पन्न R-मॉड्यूल और FM(T) इसकी हिल्बर्ट-पॉइनकेयर श्रृंखला बनें। यह श्रृंखला
के रूप का एक परिमेय फलन है जहाँ एक बहुपद है। परिभाषा के अनुसार, M की बहुलता
- है।
श्रृंखला
- को फिर से लिखा जा सकता है।
जहाँ r(t) एक बहुपद है। ध्यान दें कि द्विपद गुणांकों में विस्तारित M के हिल्बर्ट बहुपद के गुणांक हैं। हमारे निकट
- है।
जैसा कि हिल्बर्ट-पोंकारे श्रृंखला सटीक अनुक्रमों पर योज्य है, बहुलता समान विमा के मॉड्यूल के यथार्थ अनुक्रमों पर योज्य है।
निम्नलिखित प्रमेय, क्रिस्टर लेच के कारण, बहुलता के लिए प्राथमिक सीमा देते है।[1][2]
Lech — Suppose R is local with maximal ideal . If an I is -primary ideal, then
यह भी देखें
- विमा सिद्धांत (बीजगणित)
- जे-बहुलता
- हिल्बर्ट-सैमुअल बहुलता
- हिल्बर्ट-कुंज फलन
- सामान्यतः समतल वलय
संदर्भ
- ↑ Vasconcelos, Wolmer (2006-03-30). Integral Closure: Rees Algebras, Multiplicities, Algorithms (in English). Springer Science & Business Media. p. 129. ISBN 9783540265030.
- ↑ Lech, C. (1960). "आदर्शों की बहुलता पर ध्यान दें". Arkiv för Matematik. 4: 63–86. doi:10.1007/BF02591323.