मध्यबिंदु बहुभुज: Difference between revisions

From Vigyanwiki
(text)
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 37: Line 37:
==बाहरी संबंध==
==बाहरी संबंध==
*{{MathWorld |urlname=MidpointPolygon |title=Midpoint Polygon}}
*{{MathWorld |urlname=MidpointPolygon |title=Midpoint Polygon}}
[[Category: बहुभुज]]


[[Category: Machine Translated Page]]
[[Category:Created On 19/05/2023]]
[[Category:Created On 19/05/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:बहुभुज]]

Latest revision as of 08:53, 15 June 2023

ज्यामिति में, बहुभुज P का मध्यबिंदु बहुभुज वह बहुभुज है जिसका शीर्ष (ज्यामिति) किनारे P (ज्यामिति) के मध्यबिंदु हैं। [1][2] इसे कभी-कभी एडवर्ड कास्नर के नाम पर कासनेर बहुभुज कहा जाता है, जिन्होंने इसे संक्षिप्तता के लिए उत्कीर्ण बहुभुज कहा था। [3][4]

उदाहरण

त्रिभुज

किसी त्रिभुज के मध्य बिन्दु बहुभुज को माध्यिका त्रिभुज कहते हैं। यह मूल त्रिकोण के साथ समान केन्द्रक और माध्यिका (ज्यामिति) साझा करता है। मध्यवर्ती त्रिभुज का परिमाप मूल त्रिभुज के अर्द्धपरिधि के बराबर होता है, और क्षेत्रफल मूल त्रिभुज के क्षेत्रफल का एक चौथाई होता है। इसे त्रिभुजों के मध्यबिंदु प्रमेय और हीरोन के सूत्र से सिद्ध किया जा सकता है। औसत दर्जे का त्रिभुज का लंबकेन्द्र मूल त्रिभुज के परिकेन्द्र के साथ मेल खाता है।

चतुर्भुज

एक चतुर्भुज का मध्यबिंदु बहुभुज एक समांतर चतुर्भुज होता है जिसे वैरिग्नन समांतर चतुर्भुज कहा जाता है। यदि चतुर्भुज सरल बहुभुज है, तो समांतर चतुर्भुज का क्षेत्रफल मूल चतुर्भुज के क्षेत्रफल का आधा होता है। समांतर चतुर्भुज का परिमाप मूल चतुर्भुज के विकर्णों के योग के बराबर होता है।

यह भी देखें

संदर्भ

  1. Gardner 2006, p. 36.
  2. Gardner & Gritzmann 1999, p. 92.
  3. Kasner 1903, p. 59.
  4. Schoenberg 1982, pp. 91, 101.
  • Gardner, Richard J. (2006), Geometric tomography, Encyclopedia of Mathematics and its Applications, vol. 58 (2nd ed.), Cambridge University Press
  • Gardner, Richard J.; Gritzmann, Peter (1999), "Uniqueness and Complexity in Discrete Tomography", in Herman, Gabor T.; Kuba, Attila (eds.), Discrete tomography: Foundations, Algorithms, and Applications, Springer, pp. 85–114
  • Kasner, Edward (March 1903), "पॉलीगन्स के लिए आवेदन के साथ केंद्रीय समरूपता द्वारा उत्पन्न समूह", American Mathematical Monthly, 10 (3): 57–63, doi:10.2307/2968300, JSTOR 2968300
  • Schoenberg, I. J. (1982), गणितीय समय जोखिम, अमेरिका का गणितीय संघ, ISBN 0-88385-438-4


अग्रिम पठन


बाहरी संबंध