बीजगणितीय विविधता का एकल बिंदु: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 38: Line 38:
==संदर्भ==
==संदर्भ==
{{reflist}}
{{reflist}}
[[Category: बीजगणितीय किस्में]] [[Category: विलक्षणता सिद्धांत]]


[[Category: Machine Translated Page]]
[[Category:Created On 24/05/2023]]
[[Category:Created On 24/05/2023]]
[[Category:Vigyan Ready]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:बीजगणितीय किस्में]]
[[Category:विलक्षणता सिद्धांत]]

Latest revision as of 09:30, 15 June 2023

बीजगणितीय ज्यामिति के गणितीय क्षेत्र में, बीजगणितीय विविधता V का एक विलक्षण बिंदु एक बिंदु P होता है, ज्यामितीय अर्थ में इस बिंदु पर विविधता पर स्पर्शरेखा स्थान नियमित रूप से परिभाषित नहीं किया जा सकता है। वास्तविकताओं पर परिभाषित विविधता के स्थिति में, यह धारणा स्थानीय गैर-सपाटता की धारणा को सामान्यीकृत करता है। एक बीजगणितीय विविधता का एक बिंदु जो एकल नहीं है, नियमित कहा जाता है। एक बीजगणितीय विविधता जिसमें कोई विलक्षण बिंदु नहीं होता है, उसको गैर-एकल कहा जाता है।

समीकरण का समतल बीजगणितीय वक्र (एक घन वक्र)। y2x2(x + 1) = 0 खुद को मूल बिंदु पर काटता है (0, 0). मूल बिंदु इस वक्र का दोहरा बिंदु है। यह एकल है क्योंकि हो सकता है कि एक एकल स्पर्शरेखा को वहां सही ढंग से परिभाषित न किया गया हो।

परिभाषा

निहित समीकरण द्वारा परिभाषित समतल वक्र

,

जहाँ F एक सुचारू कार्य है, उस बिंदु पर एकल कहा जाता है यदि F की टेलर श्रृंखला में इस बिंदु पर कम से कम 2 का क्रम होता है।

इसका कारण यह है कि, अवकल कलन में, ऐसे वक्र के बिंदु (x0, y0) पर स्पर्श रेखा समीकरण द्वारा परिभाषित होती है

जिसका टेलर विस्तार की डिग्री एक का पद होता है। इस प्रकार, यदि यह शब्द शून्य होता है, तो स्पर्शरेखा को मानक विधियों से परिभाषित नहीं किया जा सकता है, या तो क्योंकि यह उपस्थित नहीं होते है या एक विशेष परिभाषा प्रदान की जाती है।

सामान्यतः एक ऊनविम पृष्ठ के लिए

एकल बिंदु वह होते है जिन पर सभी आंशिक डेरिवेटिव एक साथ गायब हो जाते है। एक सामान्य बीजगणितीय विविधता V को कई बहुपदों के सामान्य शून्य के रूप में परिभाषित किया जाता है, V के बिंदु P पर एक विलक्षण बिंदु होने की शर्त यह होती है कि बहुपदों के पहले क्रम के आंशिक डेरिवेटिव के जैकबियन आव्यूह का रैंक P है जो विविधता के अन्य बिंदुओं पर रैंक की तुलना मे कम होता है।

V का बिंदु जो एकल नहीं होता है उन्हें गैर-एकल या नियमित कहा जाता है। इसके लगभग सभी बिंदु गैर-एकल होते है, इस अर्थ में कि गैर-एकल बिंदु एक ऐसा सेट बनाते है जो विविधता में खुला और सघन दोनों होता है।[1]

एक वास्तविक विविधता के स्थिति में (जो वास्तविक गुणांक वाले बहुपदों द्वारा परिभाषित विविधता के वास्तविक निर्देशांक वाले बिंदुओं का सेट है), विविधता प्रत्येक नियमित बिंदु के पास कई गुना होती है। लेकिन यह ध्यान रखना महत्वपूर्ण होता है कि एक वास्तविक विविधता कई गुना हो सकती है। उदाहरण के लिए समीकरण y3 + 2x2yx4 = 0 एक वास्तविक विश्लेषणात्मक कई गुना परिभाषित करता है लेकिन मूल में एक विलक्षण बिंदु होता है।[2] इसे यह कहकर समझाया जा सकता है कि वक्र की दो जटिल संयुग्मी शाखाएँ होती है जो वास्तविक शाखा को मूल बिंदु पर काटती है।

मानचित्रण के विलक्षण बिंदु

चूंकि एकल बिंदुओं की धारणा पूरी तरह से स्थानीय होती है, उपरोक्त परिभाषा को मानचित्रण के व्यापक वर्ग को ढकने के लिए बढ़ाया जा सकता है (M से Rn तक कार्य जहां सभी डेरिवेटिव उपस्थित होते है)। मानचित्रण के जेट (गणित) पर विचार करके इन विलक्षण बिंदुओं का विश्लेषण बीजगणितीय विविधता के स्थिति में कम किया जा सकता है। k जेट डिग्री k पर काट-छाँट की गई मानचित्रण की टेलर श्रृंखला होती है और निरंतर शब्द को हटाता है।

नोड्स

मौलिक बीजगणितीय ज्यामिति में, कुछ विशेष एकल बिंदुओं को भी नोड कहा जाता था। एक नोड एक विलक्षण बिंदु होता है जहां हेसियन आव्यूह गैर-एकल होता है, इसका तात्पर्य है कि एकल बिंदु की बहुगुणता दो है और स्पर्शरेखा शंकु अपने शीर्ष के बाहर एकल नहीं होता है।

यह भी देखें

संदर्भ

  1. Hartshorne, Robin (1977). Algebraic Geometry. Berlin, New York: Springer-Verlag. p. 33. ISBN 978-0-387-90244-9. MR 0463157. Zbl 0367.14001.
  2. Milnor, John (1969). कॉम्प्लेक्स हाइपरसर्फ्स के एकवचन बिंदु. Annals of Mathematics Studies. Vol. 61. Princeton University Press. pp. 12–13. ISBN 0-691-08065-8.