शीर्ष (वक्र): Difference between revisions
No edit summary |
No edit summary |
||
(4 intermediate revisions by 4 users not shown) | |||
Line 18: | Line 18: | ||
यदि समतलीय वक्र प्रतिबिंब सममिति है तो उस बिंदु या बिंदुओं पर एक शीर्ष होगा जहां समरूपता का अक्ष वक्र को काटता है। इस प्रकार एक वक्र के लिए एक शीर्ष की धारणा एक शीर्ष (ऑप्टिक्स) से निकटता से संबंधित है वह बिंदु जहां एक ऑप्टिकल अक्ष एक [[ लेंस (प्रकाशिकी) |लेंस (प्रकाशिकी)]] सतह को पार करता है। | यदि समतलीय वक्र प्रतिबिंब सममिति है तो उस बिंदु या बिंदुओं पर एक शीर्ष होगा जहां समरूपता का अक्ष वक्र को काटता है। इस प्रकार एक वक्र के लिए एक शीर्ष की धारणा एक शीर्ष (ऑप्टिक्स) से निकटता से संबंधित है वह बिंदु जहां एक ऑप्टिकल अक्ष एक [[ लेंस (प्रकाशिकी) |लेंस (प्रकाशिकी)]] सतह को पार करता है। | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
{{reflist|colwidth=30em}} | {{reflist|colwidth=30em}} | ||
Line 34: | Line 30: | ||
*{{citation|last=Martinez-Maure|first=Yves|doi=10.2307/2975192|issue=4|journal=[[American Mathematical Monthly]]|jstor=2975192|mr=1383672|pages=338–340|title=A note on the tennis ball theorem|volume=103|year=1996}}. | *{{citation|last=Martinez-Maure|first=Yves|doi=10.2307/2975192|issue=4|journal=[[American Mathematical Monthly]]|jstor=2975192|mr=1383672|pages=338–340|title=A note on the tennis ball theorem|volume=103|year=1996}}. | ||
*{{citation|last1=Sedykh|first1=V.D.|title=Four vertices of a convex space curve|journal=Bull. London Math. Soc.|date=1994|volume=26|issue=2|page=177–180}} | *{{citation|last1=Sedykh|first1=V.D.|title=Four vertices of a convex space curve|journal=Bull. London Math. Soc.|date=1994|volume=26|issue=2|page=177–180}} | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category:Created On 24/05/2023]] | [[Category:Created On 24/05/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:घटता]] |
Latest revision as of 14:15, 15 June 2023
समतल वक्रों की ज्यामिति में शीर्ष वह बिंदु होता है जहाँ वक्रता का पहला अवकलज शून्य होता है।[1] यह सामान्यतः वक्रता का एक स्थानीय मैक्सिमा और मिनिमा होता है[2] और कुछ लेखक एक शीर्ष को विशेष रूप से वक्रता के एक स्थानीय चरम के रूप में परिभाषित करते हैं।[3] चूँकि अन्य विशेष स्थिति हो सकते हैं उदाहरण के लिए जब दूसरा व्युत्पन्न भी शून्य हो या जब वक्रता स्थिर हो। अंतरिक्ष वक्र के लिए, दूसरी ओर, एक शीर्ष एक बिंदु है जहां एक वक्र का टोशन विलुप्त हो जाता है।
उदाहरण
एक अतिपरवलय के दो शीर्ष होते हैं प्रत्येक शाखा पर एक; वे अतिपरवलय की विपरीत शाखाओं पर स्थित किन्हीं दो बिंदुओं के निकटतम हैं और वे मुख्य अक्ष पर स्थित हैं। परवलय पर एकमात्र शीर्ष समरूपता के अक्ष पर और द्विघात रूप में स्थित है:
- यह पूर्ण वर्ग या व्युत्पन्न द्वारा पाया जा सकता है।[2] दीर्घवृत्त या वर्टेक्स पर चार में से दो शीर्ष प्रमुख अक्ष पर और दो लघु अक्ष पर स्थित होते हैं।[4]
एक वृत्त के लिए, जिसमें निरंतर वक्रता होती है, प्रत्येक बिंदु एक शीर्ष होता है।
कस्प्स और ओस्क्यूलेशन
शीर्ष बिंदु वे बिंदु होते हैं जहां वक्र का संपर्क_(गणित) या संपर्क_बीच_वक्र होता है उस बिंदु पर दोलनशील वृत्त के साथ 4-बिंदु संपर्क होता है।[5][6] इसके विपरीत वक्र पर सामान्य बिंदु सामान्यतः केवल 3-बिंदु संपर्क उनके दोलन चक्र के साथ होते हैं। जब वक्र में एक शीर्ष होता है तो वक्र के विकास में सामान्य रूप से एक पुच्छल (विलक्षणता) होता है;[6] अन्य अधिक पतित और गैर-स्थिर विलक्षणताएं उच्च-क्रम के शीर्षों पर हो सकती हैं जिस पर ऑस्कुलेटिंग सर्कल में चार से अधिक उच्च क्रम का संपर्क होता है।[5] चूँकि एक एकल सामान्य वक्र में कोई उच्च-क्रम के शिखर नहीं होंगे वे सामान्य रूप से घटता के एक-पैरामीटर वर्ग के अंदर घटित होंगे, वर्ग में वक्र पर जिसके लिए दो साधारण शिखर एक उच्च शीर्ष बनाने के लिए एकजुट होते हैं और फिर नष्ट हो जाते हैं।
एक वक्र के समरूपता सेट में कोने के अनुरूप अंत बिंदु होते हैं और औसत श्रेणी का अक्ष समरूपता सेट का एक सबसेट भी इसके समापन बिंदु होते हैं।
अन्य गुण
क्लासिकल चार-शीर्ष प्रमेय के अनुसार प्रत्येक साधारण बंद प्लानर स्मूथ कर्व में कम से कम चार कोने होने चाहिए।[7] एक अधिक सामान्य तथ्य यह है कि प्रत्येक साधारण बंद स्थान वक्र जो उत्तल निकाय की सीमा पर स्थित है, या यहां तक कि स्थानीय रूप से उत्तल डिस्क को भी बांधता है में चार कोने होने चाहिए।[8] स्थिर चौड़ाई के प्रत्येक वक्र में कम से कम छह शीर्ष होने चाहिए।[9]
यदि समतलीय वक्र प्रतिबिंब सममिति है तो उस बिंदु या बिंदुओं पर एक शीर्ष होगा जहां समरूपता का अक्ष वक्र को काटता है। इस प्रकार एक वक्र के लिए एक शीर्ष की धारणा एक शीर्ष (ऑप्टिक्स) से निकटता से संबंधित है वह बिंदु जहां एक ऑप्टिकल अक्ष एक लेंस (प्रकाशिकी) सतह को पार करता है।
टिप्पणियाँ
- ↑ Agoston (2005), p. 570; Gibson (2001), p. 126.
- ↑ 2.0 2.1 Gibson (2001), p. 127.
- ↑ Fuchs & Tabachnikov (2007), p. 141.
- ↑ Agoston (2005), p. 570; Gibson (2001), p. 127.
- ↑ 5.0 5.1 Gibson (2001), p. 126.
- ↑ 6.0 6.1 Fuchs & Tabachnikov (2007), p. 142.
- ↑ Agoston (2005), Theorem 9.3.9, p. 570; Gibson (2001), Section 9.3, "The Four Vertex Theorem", pp. 133–136; Fuchs & Tabachnikov (2007), Theorem 10.3, p. 149.
- ↑ Sedykh (1994); Ghomi (2015)
- ↑ Martinez-Maure (1996); Craizer, Teixeira & Balestro (2018)
संदर्भ
- Agoston, Max K. (2005), Computer Graphics and Geometric Modelling: Mathematics, Springer, ISBN 9781852338176.
- Craizer, Marcos; Teixeira, Ralph; Balestro, Vitor (2018), "Closed cycloids in a normed plane", Monatshefte für Mathematik, 185 (1): 43–60, arXiv:1608.01651, doi:10.1007/s00605-017-1030-5, MR 3745700.
- Fuchs, D. B.; Tabachnikov, Serge (2007), Mathematical Omnibus: Thirty Lectures on Classic Mathematics, American Mathematical Society, ISBN 9780821843161
- Ghomi, Mohammad (2015), Boundary torsion and convex caps of locally convex surfaces, arXiv:1501.07626, Bibcode:2015arXiv150107626G
- Gibson, C. G. (2001), Elementary Geometry of Differentiable Curves: An Undergraduate Introduction, Cambridge University Press, ISBN 9780521011075.
- Martinez-Maure, Yves (1996), "A note on the tennis ball theorem", American Mathematical Monthly, 103 (4): 338–340, doi:10.2307/2975192, JSTOR 2975192, MR 1383672.
- Sedykh, V.D. (1994), "Four vertices of a convex space curve", Bull. London Math. Soc., 26 (2): 177–180