स्व-संरेखित द्वार: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Semiconductor Fabrication Technique}} सेमीकंडक्टर डिवाइस निर्माण तकनीक में, एक स्...")
 
No edit summary
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Semiconductor Fabrication Technique}}
{{Short description|Semiconductor Fabrication Technique}}


सेमीकंडक्टर डिवाइस निर्माण तकनीक में, एक स्व-संरेखित गेट एक [[ट्रांजिस्टर]] निर्माण दृष्टिकोण है जिसके द्वारा [[MOSFET]] (मेटल-ऑक्साइड-सेमीकंडक्टर फील्ड-इफेक्ट ट्रांजिस्टर) के [[गेट (ट्रांजिस्टर)]] इलेक्ट्रोड का उपयोग [[स्रोत (ट्रांजिस्टर)]] के डोपिंग के लिए मास्क के रूप में किया जाता है। ) और [[नाली (ट्रांजिस्टर)]] क्षेत्र। यह तकनीक सुनिश्चित करती है कि गेट स्वाभाविक रूप से और सटीक रूप से स्रोत और नाली के किनारों से जुड़ा हुआ है।
अर्धचालक यूक्ति की निर्माण तकनीक में स्व-संरेखित गेट [[ट्रांजिस्टर]] निर्माण के दृष्टिकोण से उपयोग किया जाता है जिसके लिए [[MOSFET|मौस्फेट]] गेट जो धातु ऑक्साइड अर्धचालक क्षेत्रीय प्रभाव ट्रांजिस्टर के इलेक्ट्रोड गेट का उपयोग [[स्रोत (ट्रांजिस्टर)]] के डोपिंग के लिए और [[नाली (ट्रांजिस्टर)|ड्रेन (ट्रांजिस्टर)]] क्षेत्र को मास्क करने लिए उपयोग किया जाता है। यह तकनीक सुनिश्चित करती है कि गेट स्वाभाविक रूप से और सही प्रकार से स्रोत और ड्रेन के किनारों से संयोजित करता है।


MOS ट्रांजिस्टर में स्व-संरेखित गेट का उपयोग प्रमुख नवाचारों में से एक है जिसके कारण 1970 के दशक में कंप्यूटिंग शक्ति में बड़ी वृद्धि हुई। स्व-संरेखित द्वार अभी भी अधिकांश आधुनिक एकीकृत सर्किट सेमीकंडक्टर डिवाइस निर्माण में उपयोग किए जाते हैं।
एमओएस ट्रांजिस्टर में स्व संरेखित गेट का उपयोग प्रमुख नवाचारों में से है जिसके कारण 1970 के दशक में कंप्यूटिंग शक्ति में बड़ी वृद्धि हुई हैं। स्व संरेखित गेट गेट अभी भी अधिकांश रूप से आधुनिक एकीकृत परिपथ अर्धचालक यूक्ति निर्माण में उपयोग किए जाते हैं।


== परिचय ==
== परिचय ==


=== आईसी निर्माण ===
=== आईसी निर्माण ===
{{Main|Semiconductor device fabrication}}
{{Main|अर्धचालक यूक्तियों का निर्माण}}
[[File:Lateral mosfet.svg|thumb|195px|एक मानक MOSFET का आरेख]]इंटीग्रेटेड सर्किट (आईसी, या चिप्स) एक बहु-चरणीय प्रक्रिया में उत्पादित होते हैं जो सिलिकॉन की डिस्क की सतह पर कई परतें बनाता है जिसे [[वेफर (इलेक्ट्रॉनिक्स)]] कहा जाता है। प्रत्येक परत को [[ photoresist ]] में वेफर को कोटिंग करके और फिर इसे स्टैंसिल-जैसे [[फोटोमास्क]] के माध्यम से चमकने वाली [[पराबैंगनी]] प्रकाश के लिए उजागर किया जाता है। प्रक्रिया के आधार पर, प्रकाश के संपर्क में आने वाला फोटोरेसिस्ट या तो सख्त हो जाता है या नरम हो जाता है, और दोनों ही मामलों में, नरम भागों को धो दिया जाता है। नतीजा वेफर की सतह पर एक सूक्ष्म पैटर्न है जहां शीर्ष परत का एक हिस्सा उजागर होता है जबकि शेष शेष फोटोरेसिस्ट के तहत संरक्षित होता है।
[[File:Lateral mosfet.svg|thumb|195px|एक मानक मौस्फेट का आरेख]]एकीकृत परिपथ (आईसी, या चिप्स) बहुचरणीय प्रक्रिया में उत्पादित होते हैं जो सिलिकॉन की डिस्क की सतह पर कई परतें बनाता है जिसे [[वेफर (इलेक्ट्रॉनिक्स)]] कहा जाता है। प्रत्येक परत को [[ photoresist |फोटो प्रतिरोध]] में वेफर का लेपन करके और फिर इसे स्टैंसिल जैसे [[फोटोमास्क]] के माध्यम से प्रकाशित की जाने वाली [[पराबैंगनी]] प्रकाश से प्रकाशित किया जाता है। इस प्रक्रिया के आधार पर प्रकाश के संपर्क में आने वाला फोटोरेसिस्ट या तो कठिन हो जाता है या नरम हो जाता है, और दोनों ही स्थितियों में, नरम भागों को धो दिया जाता है। इसका परिणाम यह होता हैं कि वेफर की सतह पर सूक्ष्म क्रम बन जाते है जहां शीर्ष परत का भाग प्रकाशित होता है जबकि शेष शेष फोटोरेसिस्ट के अनुसार संरक्षित होता है।


इसके बाद वेफर को कई तरह की प्रक्रियाओं से अवगत कराया जाता है जो वेफर के उन हिस्सों से सामग्री जोड़ते या हटाते हैं जो फोटोरेसिस्ट द्वारा असुरक्षित हैं। एक सामान्य प्रक्रिया में, वेफर को लगभग 1000 C तक गर्म किया जाता है और फिर एक [[डोपिंग (सेमीकंडक्टर)]] (आमतौर पर बोरॉन या फास्फोरस) युक्त गैस के संपर्क में लाया जाता है जो सिलिकॉन के विद्युत गुणों को बदल देता है। यह सिलिकॉन को डोपेंट के प्रकार और/या मात्रा के आधार पर एक इलेक्ट्रॉन दाता, इलेक्ट्रॉन रिसेप्टर, या निकट-इन्सुलेटर बनने की अनुमति देता है। एक ठेठ आईसी में इस प्रक्रिया का उपयोग अलग-अलग ट्रांजिस्टर बनाने के लिए किया जाता है जो आईसी के प्रमुख तत्व बनाते हैं।
इसके पश्चात वेफर को कई प्रकारी की प्रक्रियाओं से अवगत कराया जाता है जो वेफर के उक्त भागों से सामग्री को जोड़ते या हटाते हैं, जिससे फोटोरेसिस्ट गेट असुरक्षित हैं। इस सामान्य प्रक्रिया में, वेफर को लगभग 1000 C तक गर्म किया जाता है और फिर [[डोपिंग (सेमीकंडक्टर)|डोपिंग (अर्धचालक)]] (सामान्यतः बोरॉन या फास्फोरस) युक्त गैस के संपर्क में लाया जाता है जो सिलिकॉन के विद्युत गुणों को परिवर्तित कर देता है। यह सिलिकॉन को डोपेंट के प्रकार और/या मात्रा के आधार पर इलेक्ट्रॉन दाता, इलेक्ट्रॉन रिसेप्टर, या निकट विसंवाहक बनने की अनुमति देता है। ठेठ आईसी में इस प्रक्रिया का उपयोग अलग-अलग ट्रांजिस्टर बनाने के लिए किया जाता है जो आईसी के प्रमुख तत्व बनाते हैं।


MOSFET में, एक ट्रांजिस्टर के तीन भाग स्रोत, नाली और गेट हैं (आरेख देखें)। नाम में क्षेत्र प्रभाव उस चालकता में परिवर्तन को संदर्भित करता है जो तब होता है जब गेट पर वोल्टेज रखा जाता है। मुख्य बिंदु यह है कि यह विद्युत क्षेत्र स्रोत और नाली को अलग करने वाले चैनल क्षेत्र को स्रोत-नाली के समान प्रकार का बना सकता है, इस प्रकार ट्रांजिस्टर को चालू कर सकता है। चूंकि गेट से नाली तक कोई धारा प्रवाहित नहीं होती है, इसलिए FET की स्विचिंग ऊर्जा पहले के [[ द्विध्रुवी जंक्शन ट्रांजिस्टर ]] प्रकारों की तुलना में बहुत कम होती है, जहां गेट (या आधार जैसा कि यह ज्ञात था) वर्तमान के अनुरूप था।
मौस्फेट में, ट्रांजिस्टर के तीन भाग स्रोत, ड्रेन और गेट हैं। इस क्षेत्रीय प्रभाव में इसकी चालकता में परिवर्तन करने की प्रक्रिया को संदर्भित किया जाता है जो तब होता है जब गेट पर वोल्टेज रखा जाता है। इसका मुख्य बिंदु यह है कि यह विद्युत क्षेत्र स्रोत और ड्रेन को अलग करने वाले चैनल क्षेत्र को स्रोत-ड्रेन के समान प्रकार का बना सकता है, इस प्रकार ट्रांजिस्टर को चालू कर सकता है। चूंकि गेट से ड्रेन तक कोई धारा प्रवाहित नहीं होती है, इसलिए FET की स्विचिंग ऊर्जा पहले के [[ द्विध्रुवी जंक्शन ट्रांजिस्टर |द्विध्रुवी जंक्शन ट्रांजिस्टर]] प्रकारों की तुलना में बहुत कम होती है, जहां गेट या आधार जैसा कि यह ज्ञात था कि यह धारा के अनुरूप था।


=== पुरानी पद्धति ===
=== प्राचीन पद्धति ===
प्रारंभिक MOSFET निर्माण पद्धतियों में, गेट एल्यूमीनियम से बना था जो 660 C पर पिघलता है, इसलिए इसे लगभग 1000 C पर सभी डोपिंग चरणों के पूरा होने के बाद प्रक्रिया के अंतिम चरणों में से एक के रूप में जमा करना पड़ता था।
प्रारंभिक मौस्फेट निर्माण पद्धतियों में, गेट एल्यूमीनियम से बना था जो 660 C पर पिघलता है, इसलिए इसे लगभग 1000 C पर सभी डोपिंग चरणों के पूरा होने के पश्चात इस प्रक्रिया के अंतिम चरणों में से के रूप में एकत्रित करना पड़ता था।


पूरी तरह से वेफर को पहले एक विशेष विद्युत गुणवत्ता के रूप में या तो सकारात्मक, या पी, या नकारात्मक, एन पक्षपाती के रूप में चुना जाता है। उदाहरण में आधार सामग्री p है (जिसे n-चैनल या nMOS कहा जाता है)। एक मुखौटा तब उन क्षेत्रों का उत्पादन करने के लिए उपयोग किया जाता है जहां ट्रांजिस्टर के नकारात्मक n खंड रखे जाएंगे। वेफर को तब लगभग 1000 C तक गर्म किया जाता है, और एक डोपिंग गैस के संपर्क में लाया जाता है जो n वर्गों का उत्पादन करने के लिए वेफर की सतह में फैल जाती है। फिर वेफर के ऊपर इन्सुलेटर सामग्री (सिलिकॉन डाइऑक्साइड) की एक पतली परत उगाई जाती है। अंत में, गेट को एक नए फोटो-लिथोग्राफिक ऑपरेशन में इंसुलेटिंग लेयर के ऊपर पैटर्न दिया गया है। यह सुनिश्चित करने के लिए कि गेट वास्तव में अंतर्निहित स्रोत और नाली को ओवरलैप करता है, गेट सामग्री को n वर्गों के बीच के अंतर से अधिक चौड़ा होना चाहिए, आमतौर पर तीन गुना अधिक। यह जगह बर्बाद करता है और गेट और स्रोत-नाली के बीच अतिरिक्त समाई बनाता है। इस [[परजीवी समाई]] की आवश्यकता है कि साफ स्विचिंग सुनिश्चित करने के लिए पूरी चिप को उच्च शक्ति स्तरों पर संचालित किया जाए जो अक्षम है। इसके अतिरिक्त, गेट के अंतर्निहित स्रोत-नाली के मिसलिग्न्मेंट में भिन्नता का मतलब है कि उच्च चिप-टू-चिप परिवर्तनशीलता है, भले ही वे ठीक से काम कर रहे हों।
इस प्रकार पूर्ण रूप से वेफर को पहले विशेष विद्युत गुणवत्ता के रूप में या तो धनात्मक, या पी, या ऋणात्मक, एन पक्षपाती के रूप में चुना जाता है। उदाहरण में आधार सामग्री p है जिसे n-चैनल या nएमओएस कहा जाता है। यह मास्क तब उन क्षेत्रों का उत्पादन करने के लिए उपयोग किया जाता है जहां ट्रांजिस्टर के ऋणात्मक n खंड रखे जाएंगे। वेफर को तब लगभग 1000 C तक गर्म किया जाता है, और डोपिंग गैस के संपर्क में लाया जाता है जो n वर्गों का उत्पादन करने के लिए वेफर की सतह में फैल जाती है। फिर वेफर के ऊपर विसंवाहक सामग्री जो सिलिकॉन डाइऑक्साइड की बनी होती हैं उसकी पतली परत लेपित की जाती है। अंत में, गेट को नए फोटो-लिथोग्राफिक ऑपरेशन में इंसुलेटिंग परत के ऊपर क्रम दिया गया है। यह सुनिश्चित करने के लिए कि गेट वास्तव में अंतर्निहित स्रोत और ड्रेन को ओवरलैप करता है, गेट सामग्री को n वर्गों के बीच के अंतर से अधिक चौड़ा होना चाहिए, जो सामान्यतः तीन गुना से अधिक होता हैं। यह इस क्षेत्र को खराब कर देता है और गेट और स्रोत-ड्रेन के बीच में अतिरिक्त धारिता बनाता है। इस [[परजीवी समाई|परजीवी धारिता]] की आवश्यकता है कि साफ स्विचिंग सुनिश्चित करने के लिए पूरी चिप को उच्च शक्ति स्तरों पर संचालित किया जाए जो अक्षम है। इसके अतिरिक्त, गेट के अंतर्निहित स्रोत-ड्रेन के मिसलिग्न्मेंट में भिन्नता का अर्थ है कि उच्च चिप-टू-चिप परिवर्तनशीलता है, भले ही वे ठीक से काम कर रहे हों।


=== स्व-संरेखण ===
=== स्व-संरेखण ===
{{See also|Polysilicon depletion effect}}
{{See also|पॉलीसिलिकॉन कमी प्रभाव}}
स्व-संरेखित गेट अपने वर्तमान स्वरूप में कई चरणों में विकसित हुआ। अग्रिम की कुंजी यह खोज थी कि भारी मात्रा में डोप किया गया पॉली-सिलिकॉन एल्यूमीनियम को बदलने के लिए पर्याप्त प्रवाहकीय था। इसका मतलब था कि मल्टी-स्टेप सेमीकंडक्टर डिवाइस फैब्रिकेशन में किसी भी स्तर पर गेट लेयर बनाई जा सकती है।<ref name="selfAlignedCmos">{{cite book |last1=Mead |first1=Carver |last2=Conway |first2=Lynn |year=1991 |title=वीएलएसआई सिस्टम का परिचय|publisher=Addison Wesley Publishing Company |isbn=978-0-201-04358-7 |oclc=634332043 |url=https://archive.org/details/introductiontovl00mead |author-link1 = Carver Mead | author-link2 = Lynn Conway}}</ref>{{rp|p.1 (see Fig. 1.1)}}


स्व-संरेखित प्रक्रिया में, कुंजी गेट-इन्सुलेटिंग परत प्रक्रिया की शुरुआत के पास बनती है। फिर गेट जमा किया जाता है और शीर्ष पर पैटर्न किया जाता है। फिर स्रोत-नालियों को डोप किया जाता है (पॉली-सिलिकॉन के लिए द्वार एक साथ डोप किए जाते हैं)। स्रोत-नाली पैटर्न इस प्रकार केवल स्रोत और नाली के बाहरी किनारों का प्रतिनिधित्व करता है, उन वर्गों के अंदरूनी किनारे को गेट द्वारा ही नकाबपोश किया जाता है। नतीजतन, स्रोत और नाली गेट से स्वयं संरेखित होते हैं। चूंकि वे हमेशा पूरी तरह से स्थित होते हैं, गेट को वांछित से अधिक व्यापक बनाने की कोई आवश्यकता नहीं होती है, और परजीवी समाई बहुत कम हो जाती है। संरेखण समय और चिप-टू-चिप परिवर्तनशीलता इसी तरह कम हो जाती है।<ref name="Reliability">{{cite book
स्व-संरेखित गेट अपने धारा स्वरूप में कई चरणों में विकसित हुआ हैं। इसकी अग्रिम कुंजी यह खोज थी कि भारी मात्रा में डोप किया गया पॉली-सिलिकॉन एल्यूमीनियम को परिवर्तित करने के लिए पर्याप्त प्रवाहकीय था। इसका अर्थ था कि मल्टी-स्टेप अर्धचालक यूक्ति फैब्रिकेशन में किसी भी स्तर पर गेट लेयर बनाई जा सकती है।<ref name="selfAlignedCmos">{{cite book |last1=Mead |first1=Carver |last2=Conway |first2=Lynn |year=1991 |title=वीएलएसआई सिस्टम का परिचय|publisher=Addison Wesley Publishing Company |isbn=978-0-201-04358-7 |oclc=634332043 |url=https://archive.org/details/introductiontovl00mead |author-link1 = Carver Mead | author-link2 = Lynn Conway}}</ref>{{rp|p.1 (see Fig. 1.1)}}
 
स्व-संरेखित प्रक्रिया में, कुंजी गेट-इन्सुलेटिंग परत प्रक्रिया की शुरुआत के पास बनती है। फिर गेट जमा किया जाता है और शीर्ष पर क्रम किया जाता है। फिर स्रोत ड्रेनेज को डोप किया जाता है (पॉली-सिलिकॉन के लिए गेट साथ डोप किए जाते हैं)। स्रोत-ड्रेन क्रम इस प्रकार केवल स्रोत और ड्रेन के बाहरी किनारों का प्रतिनिधित्व करता है, उन वर्गों के अंदरूनी किनारे को गेट गेट ही मास्क किया जाता है। परिणामस्वरूप, स्रोत और ड्रेन गेट से स्वयं संरेखित होते हैं। चूंकि वे सदैव पूर्ण रूप से स्थित होते हैं, गेट को वांछित से अधिक व्यापक बनाने की कोई आवश्यकता नहीं होती है, और परजीवी धारिता बहुत कम हो जाती है। संरेखण समय और चिप-टू-चिप परिवर्तनशीलता इसी तरह कम हो जाती है।<ref name="Reliability">{{cite book
   |author=Yanda, Heynes, and Miller
   |author=Yanda, Heynes, and Miller
   | title = Demystifying Chipmaking
   | title = Demystifying Chipmaking
Line 31: Line 32:
   | year = 2005 | pages = [https://archive.org/details/demystifyingchip00yand/page/n166 148]–149 | isbn = 978-0-7506-7760-8}}
   | year = 2005 | pages = [https://archive.org/details/demystifyingchip00yand/page/n166 148]–149 | isbn = 978-0-7506-7760-8}}
</ref>
</ref>
एल्यूमीनियम, [[मोलिब्डेनम]] और [[अनाकार सिलिकॉन]] का उपयोग करने वाले विभिन्न गेट सामग्रियों के शुरुआती प्रयोग के बाद, [[सेमीकंडक्टर उद्योग]] ने पॉलीक्रिस्टलाइन सिलिकॉन (पॉली-सिलिकॉन), तथाकथित सिलिकॉन-गेट टेक्नोलॉजी (एसजीटी) या स्व-गठबंधन से बने स्व-संरेखित द्वारों को लगभग सार्वभौमिक रूप से अपनाया। सिलिकॉन-गेट प्रौद्योगिकी, जिसके परजीवी धारिता में कमी पर कई अतिरिक्त लाभ थे। एसजीटी की एक महत्वपूर्ण विशेषता यह थी कि ट्रांजिस्टर पूरी तरह से उच्च गुणवत्ता वाले थर्मल ऑक्साइड (ज्ञात सर्वश्रेष्ठ इंसुलेटरों में से एक) के नीचे दब गया था, जिससे नए प्रकार के उपकरण बनाना संभव हो गया, जो पारंपरिक तकनीक के साथ संभव नहीं था या अन्य सामग्रियों से बने स्व-संरेखित गेट्स के साथ . विशेष रूप से महत्वपूर्ण हैं चार्ज-युग्मित डिवाइस | चार्ज-युग्मित डिवाइस (सीसीडी), छवि संवेदकों के लिए उपयोग किया जाता है, और गैर-वाष्पशील मेमोरी डिवाइस फ्लोटिंग सिलिकॉन-गेट संरचनाओं का उपयोग करते हैं। इन उपकरणों ने नाटकीय रूप से कार्यक्षमता की सीमा को बढ़ा दिया है जिसे ठोस अवस्था वाले इलेक्ट्रॉनिक्स के साथ प्राप्त किया जा सकता है।


स्व-संरेखित द्वार बनाने के लिए कुछ नवाचारों की आवश्यकता थी:<ref name="innovations">{{cite book
एल्यूमीनियम, [[मोलिब्डेनम]] और [[अनाकार सिलिकॉन]] का उपयोग करने वाले विभिन्न गेट सामग्रियों के प्रारंभिक प्रयोग के पश्चात, [[सेमीकंडक्टर उद्योग|अर्धचालक उद्योग]] ने पॉलीक्रिस्टलाइन सिलिकॉन (पॉली-सिलिकॉन), तथाकथित सिलिकॉन-गेट टेक्नोलॉजी (एसजीटी) या स्व-गठबंधन से बने स्व-संरेखित गेटों को लगभग सार्वभौमिक रूप से अपनाया गया हैं। सिलिकॉन-गेट प्रौद्योगिकी, जिसके परजीवी धारिता में कमी पर कई अतिरिक्त लाभ थे। इस प्रकार एसजीटी की महत्वपूर्ण विशेषता यह थी कि ट्रांजिस्टर पूर्ण रूप से उच्च गुणवत्ता वाले ऊष्मीय ऑक्साइड के सर्वश्रेष्ठ रोधकों में से एक के नीचे दब गया था, जिससे नए प्रकार के उपकरण बनाना संभव हो गया, जो पारंपरिक तकनीक के साथ संभव नहीं था या अन्य सामग्रियों से बने स्व-संरेखित गेट्स के साथ विशेष रूप से महत्वपूर्ण हैं चार्ज-युग्मित यूक्ति या आवेश युग्मित यूक्ति (सीसीडी), इस प्रतिबिंब संवेदकों के लिए उपयोग किया जाता है, और गैर-वाष्पशील मेमोरी यूक्ति फ्लोटिंग सिलिकॉन-गेट संरचनाओं का उपयोग करते हैं। इन उपकरणों ने इसकी कार्यक्षमता की सीमा को बढ़ा दिया है जिसे ठोस अवस्था वाले इलेक्ट्रॉनिक्स के साथ प्राप्त किया जा सकता है।
 
स्व-संरेखित गेट बनाने के लिए कुछ नवाचारों की आवश्यकता थी:<ref name="innovations">{{cite book
   | last = Orton | first = John Wilfred
   | last = Orton | first = John Wilfred
   | title = The Story of Semiconductors
   | title = The Story of Semiconductors
   | url = https://archive.org/details/storysemiconduct00orto | url-access = limited | year = 2004 | isbn = 978-0-19-853083-1 | page = [https://archive.org/details/storysemiconduct00orto/page/n127 114]}}</ref>
   | url = https://archive.org/details/storysemiconduct00orto | url-access = limited | year = 2004 | isbn = 978-0-19-853083-1 | page = [https://archive.org/details/storysemiconduct00orto/page/n127 114]}}</ref>
* एक नई प्रक्रिया जो द्वार बनाएगी;
* इस प्रकार यह नई प्रक्रिया गेट का निर्माण करेगी,
* अनाकार सिलिकॉन से [[पॉलीक्रिस्टलाइन सिलिकॉन]] में एक स्विच (क्योंकि अनाकार सिलिकॉन टूट जाएगा जहां यह ऑक्साइड इन्सुलेट सतह में कदमों से गुजरेगा);
* अनाकार सिलिकॉन से [[पॉलीक्रिस्टलाइन सिलिकॉन]] में स्विच (क्योंकि अनाकार सिलिकॉन टूट जाएगा जहां यह ऑक्साइड इन्सुलेट सतह में विभिन्न चरणों से गुजरेगा),
* पॉलीक्रिस्टलाइन सिलिकॉन की नक़्क़ाशी के लिए एक [[फोटोलिथोग्राफी]] विधि;
* पॉलीक्रिस्टलाइन सिलिकॉन की संरचना के लिए [[फोटोलिथोग्राफी]] विधि,
* सिलिकॉन में मौजूद अशुद्धियों को कम करने की एक विधि।
* सिलिकॉन में सम्मिलित अशुद्धियों को कम करने की विधि है।


इन नवाचारों से पहले, [[ धातु का द्वार ]]|मेटल-गेट उपकरणों पर स्व-संरेखित गेटों का प्रदर्शन किया गया था, लेकिन उनका वास्तविक प्रभाव सिलिकॉन-गेट उपकरणों पर था।
इन नवाचारों से पहले, [[ धातु का द्वार |धातु गेट]] वाले उपकरणों पर स्व-संरेखित गेटों का प्रदर्शन किया गया था, किन्तु उनका वास्तविक प्रभाव सिलिकॉन-गेट उपकरणों पर था।


== इतिहास ==
== इतिहास ==
एल्युमिनियम-गेट एमओएस प्रोसेस टेक्नोलॉजी एमओएस ट्रांजिस्टर के स्रोत और नाली क्षेत्रों की परिभाषा और डोपिंग के साथ शुरू हुई, इसके बाद गेट मास्क ने ट्रांजिस्टर के पतले-ऑक्साइड क्षेत्र को परिभाषित किया। अतिरिक्त प्रसंस्करण चरणों के साथ, उपकरण निर्माण को पूरा करने वाले पतले-ऑक्साइड क्षेत्र पर एक [[एल्यूमीनियम गेट]] बनाया जाएगा। स्रोत और नाली मुखौटा के संबंध में गेट मास्क के अपरिहार्य मिसलिग्न्मेंट के कारण, गेट क्षेत्र और स्रोत और नाली क्षेत्रों के बीच काफी बड़ा ओवरलैप क्षेत्र होना आवश्यक था, यह सुनिश्चित करने के लिए कि पतला-ऑक्साइड क्षेत्र पुल करेगा स्रोत और नाली, यहां तक ​​कि सबसे बुरी स्थिति के गलत संरेखण के तहत। इस आवश्यकता के परिणामस्वरूप गेट-टू-सोर्स और गेट-टू-ड्रेन परजीवी कैपेसिटेंस होते हैं जो स्रोत और ड्रेन मास्क के संबंध में गेट ऑक्साइड मास्क के मिसलिग्न्मेंट के आधार पर वेफर से वेफर तक बड़े और परिवर्तनशील होते हैं। परिणाम उत्पादित एकीकृत परिपथों की गति में एक अवांछनीय प्रसार था, और सैद्धांतिक रूप से संभव की तुलना में बहुत कम गति थी यदि परजीवी समाई को न्यूनतम तक कम किया जा सकता था।
एल्युमिनियम-गेट एमओएस प्रोसेस टेक्नोलॉजी एमओएस ट्रांजिस्टर के स्रोत और ड्रेन क्षेत्रों की परिभाषा और डोपिंग के साथ शुरू हुई, इसके पश्चात गेट मास्क ने ट्रांजिस्टर के पतले-ऑक्साइड क्षेत्र को परिभाषित किया था। अतिरिक्त प्रसंस्करण चरणों के साथ, उपकरण निर्माण को पूरा करने वाले पतले-ऑक्साइड क्षेत्र पर [[एल्यूमीनियम गेट]] बनाया जाएगा। स्रोत और ड्रेन यह मास्क के संबंध में गेट मास्क के अपरिहार्य मिसलिग्न्मेंट के कारण, गेट क्षेत्र और स्रोत और ड्रेन क्षेत्रों के बीच अत्यधिक बड़ा ओवरलैप क्षेत्र होना आवश्यक था, यह सुनिश्चित करने के लिए कि पतला-ऑक्साइड क्षेत्र पुल करेगा स्रोत और ड्रेन, यहां तक ​​कि सबसे बुरी स्थिति के गलत संरेखण के अनुसार। इस आवश्यकता के परिणामस्वरूप गेट-टू-सोर्स और गेट-टू-ड्रेन परजीवी कैपेसिटेंस होते हैं जो स्रोत और ड्रेन मास्क के संबंध में गेट ऑक्साइड मास्क के मिसलिग्न्मेंट के आधार पर वेफर से वेफर तक बड़े और परिवर्तनशील होते हैं। परिणाम उत्पादित एकीकृत परिपथों की गति में अवांछनीय प्रसार था, और सैद्धांतिक रूप से संभव की तुलना में बहुत कम गति थी यदि परजीवी धारिता को न्यूनतम तक कम किया जा सकता था।
प्रदर्शन पर सबसे प्रतिकूल परिणामों के साथ ओवरलैप कैपेसिटेंस गेट-टू-ड्रेन पैरासिटिक कैपेसिटेंस, Cgd था, जो प्रसिद्ध मिलर प्रभाव द्वारा ट्रांजिस्टर के गेट-टू-सोर्स कैपेसिटेंस को Cgd के लाभ से गुणा करके बढ़ाता था। वह सर्किट जिसका वह ट्रांजिस्टर एक हिस्सा था। प्रभाव ट्रांजिस्टर की स्विचिंग गति में काफी कमी थी।
प्रदर्शन पर सबसे प्रतिकूल परिणामों के साथ ओवरलैप कैपेसिटेंस गेट-टू-ड्रेन पैरासिटिक कैपेसिटेंस, Cgd था, जो प्रसिद्ध मिलर प्रभाव गेट ट्रांजिस्टर के गेट-टू-सोर्स कैपेसिटेंस को Cgd के लाभ से गुणा करके बढ़ाता था। वह परिपथ जिसका वह ट्रांजिस्टर भाग था। प्रभाव ट्रांजिस्टर की स्विचिंग गति में अत्यधिक कमी थी।


1966 में, रॉबर्ट डब्ल्यू. बोवर ने महसूस किया कि यदि गेट इलेक्ट्रोड को पहले परिभाषित किया गया था, तो न केवल गेट और स्रोत और नाली के बीच परजीवी समाई को कम करना संभव होगा, बल्कि यह उन्हें मिसलिग्न्मेंट के प्रति असंवेदनशील भी बना देगा। उन्होंने एक विधि प्रस्तावित की जिसमें ट्रांजिस्टर के स्रोत और नाली क्षेत्रों को परिभाषित करने के लिए एल्यूमीनियम गेट इलेक्ट्रोड को मास्क के रूप में इस्तेमाल किया गया था। हालांकि, चूंकि एल्यूमीनियम स्रोत और नाली जंक्शनों के पारंपरिक डोपिंग के लिए आवश्यक उच्च तापमान का सामना नहीं कर सका, बोवर ने आयन इम्प्लांटेशन का उपयोग करने का प्रस्ताव दिया, ह्यूजेस एयरक्राफ्ट, उनके नियोक्ता में एक नई डोपिंग तकनीक अभी भी विकास में है, और अभी तक अन्य प्रयोगशालाओं में उपलब्ध नहीं है। . जबकि बोवर का विचार अवधारणात्मक रूप से सही था, व्यवहार में यह काम नहीं करता था, क्योंकि ट्रांजिस्टर को पर्याप्त रूप से निष्क्रिय करना और आयन आरोपण द्वारा सिलिकॉन क्रिस्टल संरचना को किए गए विकिरण क्षति की मरम्मत करना असंभव था, क्योंकि इन दो परिचालनों में अधिक तापमान की आवश्यकता होगी। एल्युमिनियम गेट से बचे रहने वालों में से। इस प्रकार उनके आविष्कार ने सिद्धांत का प्रमाण प्रदान किया, लेकिन बोवर की विधि से कभी भी कोई व्यावसायिक एकीकृत सर्किट नहीं बनाया गया था। अधिक दुर्दम्य गेट सामग्री की आवश्यकता थी।
1966 में, रॉबर्ट डब्ल्यू. बोवर ने महसूस किया कि यदि गेट इलेक्ट्रोड को पहले परिभाषित किया गया था, तो न केवल गेट और स्रोत और ड्रेन के बीच परजीवी धारिता को कम करना संभव होगा, बल्कि यह उन्हें मिसलिग्न्मेंट के प्रति असंवेदनशील भी बना देगा। उन्होंने विधि प्रस्तावित की जिसमें ट्रांजिस्टर के स्रोत और ड्रेन क्षेत्रों को परिभाषित करने के लिए एल्यूमीनियम गेट इलेक्ट्रोड को मास्क के रूप में उपयोग किया गया था। चूंकि, चूंकि एल्यूमीनियम स्रोत और ड्रेन जंक्शनों के पारंपरिक डोपिंग के लिए आवश्यक उच्च तापमान का सामना नहीं कर सका, बोवर ने आयन इम्प्लांटेशन का उपयोग करने का प्रस्ताव दिया, ह्यूजेस एयरक्राफ्ट, उनके नियोक्ता में नई डोपिंग तकनीक अभी भी विकास में है, और अभी तक अन्य प्रयोगशालाओं में उपलब्ध नहीं है। जबकि बोवर का विचार अवधारणात्मक रूप से सही था, व्यवहार में यह काम नहीं करता था, क्योंकि ट्रांजिस्टर को पर्याप्त रूप से निष्क्रिय करना और आयन आरोपण गेट सिलिकॉन क्रिस्टल संरचना को किए गए विकिरण क्षति को ठीक करना असंभव था, क्योंकि इन दो परिचालनों में अधिक तापमान की आवश्यकता होगी। एल्युमिनियम गेट से बचे रहने वालों में से। इस प्रकार उनके आविष्कार ने सिद्धांत का प्रमाण प्रदान किया, किन्तु बोवर की विधि से कभी भी कोई व्यावसायिक एकीकृत परिपथ नहीं बनाया गया था। अधिक दुर्दम्य गेट सामग्री की आवश्यकता थी।


1967 में, बेल लैब्स के जॉन सी. सारस और सहयोगियों ने एल्यूमीनियम गेट को वैक्यूम-वाष्पीकृत अनाकार सिलिकॉन से बने इलेक्ट्रोड से बदल दिया और स्व-संरेखित गेट एमओएस ट्रांजिस्टर के निर्माण में सफल रहे। हालाँकि, प्रक्रिया, जैसा कि वर्णित है, केवल सिद्धांत का प्रमाण था, केवल असतत ट्रांजिस्टर के निर्माण के लिए उपयुक्त था और एकीकृत परिपथों के लिए नहीं; और इसके जांचकर्ताओं द्वारा आगे नहीं बढ़ाया गया।
1967 में, बेल लैब्स के जॉन सी. सारस और सहयोगियों ने एल्यूमीनियम गेट को वैक्यूम-वाष्पीकृत अनाकार सिलिकॉन से बने इलेक्ट्रोड से बदल दिया और स्व-संरेखित गेट एमओएस ट्रांजिस्टर के निर्माण में सफल रहे। चूंकि, प्रक्रिया, जैसा कि वर्णित है, केवल सिद्धांत का प्रमाण था, केवल असतत ट्रांजिस्टर के निर्माण के लिए उपयुक्त था और एकीकृत परिपथों के लिए नहीं, और इसके जांचकर्ताओं गेट आगे नहीं बढ़ाया गया हैं।
   
   
1968 में, एमओएस उद्योग उच्च थ्रेशोल्ड वोल्टेज (एचवीटी) के साथ एल्यूमीनियम गेट ट्रांजिस्टर का उपयोग कर रहा था और [[एमओएस एकीकृत सर्किट]] की गति बढ़ाने और बिजली अपव्यय को कम करने के लिए [[कम दहलीज वोल्टेज]] (एलवीटी) एमओएस प्रक्रिया की इच्छा थी। एल्यूमीनियम गेट के साथ [[उच्च दहलीज वोल्टेज]] ट्रांजिस्टर ने [100] सिलिकॉन ओरिएंटेशन के उपयोग की मांग की, जो हालांकि परजीवी एमओएस ट्रांजिस्टर के लिए बहुत कम थ्रेशोल्ड वोल्टेज का उत्पादन करता था (एमओएस ट्रांजिस्टर तब बनाया गया था जब फील्ड ऑक्साइड पर एल्यूमीनियम दो जंक्शनों को पाट देगा)। आपूर्ति वोल्टेज से परे परजीवी थ्रेशोल्ड वोल्टेज को बढ़ाने के लिए, फील्ड ऑक्साइड के तहत चयनित क्षेत्रों में एन-टाइप डोपिंग स्तर को बढ़ाना आवश्यक था, और इसे शुरू में एक तथाकथित चैनल-स्टॉप के उपयोग से पूरा किया गया था।प्रति मुखौटा, और बाद में आयन आरोपण के साथ।
1968 में, एमओएस उद्योग उच्च थ्रेशोल्ड वोल्टेज (एचवीटी) के साथ एल्यूमीनियम गेट ट्रांजिस्टर का उपयोग कर रहा था और [[एमओएस एकीकृत सर्किट|एमओएस एकीकृत परिपथ]] की गति बढ़ाने और बिजली अपव्यय को कम करने के लिए [[कम दहलीज वोल्टेज|कम थ्रेसहोल्ड वोल्टेज]] (एलवीटी) एमओएस प्रक्रिया की इच्छा थी। एल्यूमीनियम गेट के साथ [[उच्च दहलीज वोल्टेज|उच्च थ्रेसहोल्ड वोल्टेज]] ट्रांजिस्टर ने 100 सिलिकॉन ओरिएंटेशन के उपयोग की मांग की, जो चूंकि परजीवी एमओएस ट्रांजिस्टर के लिए बहुत कम थ्रेशोल्ड वोल्टेज का उत्पादन करता था, इसके फलस्वरूप एमओएस ट्रांजिस्टर तब बनाया गया था जब क्षेत्रीय ऑक्साइड पर एल्यूमीनियम के दो जंक्शनों को लेपन कर दिया गया था। इस प्रकार होने वाली आपूर्ति वोल्टेज से हटकर परजीवी थ्रेशोल्ड वोल्टेज को बढ़ाने के लिए, फील्ड ऑक्साइड के अनुसार चयनित क्षेत्रों में एन-टाइप डोपिंग स्तर को बढ़ाना आवश्यक था, और इसे शुरू में तथाकथित चैनल-स्टॉप के उपयोग से पूरा किया गया था। यह प्रति  मास्क, और पश्चात में आयन आरोपण के साथ उपयोग किया जाता हैं।


=== फेयरचाइल्ड === में सिलिकॉन-गेट प्रौद्योगिकी का विकास
===== फेयरचाइल्ड में सिलिकॉन-गेट प्रौद्योगिकी का विकास =====
एसजीटी वाणिज्यिक एमओएस एकीकृत सर्किट बनाने के लिए उपयोग की जाने वाली पहली प्रक्रिया प्रौद्योगिकी थी जिसे बाद में 1960 के दशक में पूरे उद्योग द्वारा व्यापक रूप से अपनाया गया था। 1967 के अंत में, टॉम क्लेन, [[फेयरचाइल्ड सेमीकंडक्टर]] आर एंड डी लैब्स में काम कर रहे थे, और लेस [[वाडाज़]] को रिपोर्ट कर रहे थे, उन्होंने महसूस किया कि भारी पी-टाइप डॉप्ड सिलिकॉन और एन-टाइप सिलिकॉन के बीच [[समारोह का कार्य]] अंतर एल्यूमीनियम के बीच कार्य फ़ंक्शन अंतर से 1.1 वोल्ट कम था। और वही एन-टाइप सिलिकॉन। इसका मतलब यह था कि [[सिलिकॉन गेट]] के साथ एमओएस ट्रांजिस्टर का थ्रेसहोल्ड वोल्टेज एमओएस ट्रांजिस्टर के थ्रेसहोल्ड वोल्टेज से 1.1 वोल्ट कम हो सकता है, जो उसी प्रारंभिक सामग्री पर बने एल्यूमीनियम गेट के साथ होता है। इसलिए, कोई [111] सिलिकॉन अभिविन्यास के साथ प्रारंभिक सामग्री का उपयोग कर सकता है और साथ ही फ़ील्ड ऑक्साइड के तहत चैनल-स्टॉपर मास्क या आयन इम्प्लांटेशन के उपयोग के बिना पर्याप्त परजीवी थ्रेसहोल्ड वोल्टेज और कम थ्रेसहोल्ड वोल्टेज ट्रांजिस्टर दोनों प्राप्त कर सकता है। पी-टाइप डोप्ड सिलिकॉन गेट के साथ न केवल स्व-संरेखित गेट ट्रांजिस्टर बनाना संभव होगा बल्कि उच्च थ्रेसहोल्ड वोल्टेज प्रक्रिया के समान सिलिकॉन अभिविन्यास का उपयोग करके कम थ्रेसहोल्ड वोल्टेज प्रक्रिया भी संभव होगी।
एसजीटी वाणिज्यिक एमओएस एकीकृत परिपथ बनाने के लिए उपयोग की जाने वाली पहली प्रक्रिया प्रौद्योगिकी थी जिसे पश्चात में 1960 के दशक में पूरे उद्योग गेट व्यापक रूप से अपनाया गया था। 1967 के अंत में, टॉम क्लेन, [[फेयरचाइल्ड सेमीकंडक्टर|फेयरचाइल्ड अर्धचालक]] आर एंड डी लैब्स में काम कर रहे थे, और लेस [[वाडाज़]] को रिपोर्ट कर रहे थे, उन्होंने महसूस किया कि भारी पी-टाइप डॉप्ड सिलिकॉन और एन-टाइप सिलिकॉन के बीच [[समारोह का कार्य|फलन का कार्य]] अंतर एल्यूमीनियम के बीच कार्य फ़ंक्शन अंतर से 1.1 वोल्ट कम था। और वही एन-टाइप सिलिकॉन का उपयोग किया जाता हैं। इसका अर्थ यह था कि [[सिलिकॉन गेट]] के साथ एमओएस ट्रांजिस्टर का थ्रेसहोल्ड वोल्टेज एमओएस ट्रांजिस्टर के थ्रेसहोल्ड वोल्टेज से 1.1 वोल्ट कम हो सकता है, जो उसी प्रारंभिक सामग्री पर बने एल्यूमीनियम गेट के साथ होता है। इसलिए, कोई [111] सिलिकॉन अभिविन्यास के साथ प्रारंभिक सामग्री का उपयोग कर सकता है और साथ ही फ़ील्ड ऑक्साइड के अनुसार चैनल-स्टॉपर मास्क या आयन इम्प्लांटेशन के उपयोग के बिना पर्याप्त परजीवी थ्रेसहोल्ड वोल्टेज और कम थ्रेसहोल्ड वोल्टेज ट्रांजिस्टर दोनों प्राप्त कर सकता है। पी-टाइप डोप्ड सिलिकॉन गेट के साथ न केवल स्व-संरेखित गेट ट्रांजिस्टर बनाना संभव होगा बल्कि उच्च थ्रेसहोल्ड वोल्टेज प्रक्रिया के समान सिलिकॉन अभिविन्यास का उपयोग करके कम थ्रेसहोल्ड वोल्टेज प्रक्रिया भी संभव होगी।


फरवरी 1968 में, [[फेडेरिको फागिन]] लेस वाडाज़ के समूह में शामिल हो गए और उन्हें लो-थ्रेशोल्ड-वोल्टेज, स्व-संरेखित गेट MOS प्रक्रिया प्रौद्योगिकी के विकास का प्रभारी बनाया गया। Faggin का पहला काम अनाकार सिलिकॉन गेट के लिए सटीक नक़्क़ाशी समाधान विकसित करना था, और फिर उन्होंने सिलिकॉन गेट के साथ MOS IC बनाने के लिए प्रक्रिया वास्तुकला और विस्तृत प्रसंस्करण चरणों का निर्माण किया। उन्होंने धातु के उपयोग के बिना अनाकार सिलिकॉन और सिलिकॉन जंक्शनों के बीच सीधा संपर्क बनाने के लिए 'दफन संपर्कों' का भी आविष्कार किया, एक ऐसी तकनीक जिसने बहुत अधिक सर्किट घनत्व की अनुमति दी, विशेष रूप से यादृच्छिक तर्क सर्किट के लिए।
फरवरी 1968 में, [[फेडेरिको फागिन]] लेस वाडाज़ के समूह में सम्मिलित हो गए और उन्हें लो-थ्रेशोल्ड-वोल्टेज, स्व-संरेखित गेट एमओएस प्रक्रिया प्रौद्योगिकी के विकास का प्रभारी बनाया गया हैं। फैजिन का पहला काम अनाकार सिलिकॉन गेट के लिए सटीक संरचना समाधान विकसित करना था, और फिर उन्होंने सिलिकॉन गेट के साथ एमओएस IC बनाने के लिए प्रक्रिया संरचना और विस्तृत प्रसंस्करण चरणों का निर्माण किया गया हैं। उन्होंने धातु के उपयोग के बिना अनाकार सिलिकॉन और सिलिकॉन जंक्शनों के बीच सीधा संपर्क बनाने के लिए 'बंद संपर्कों' का भी आविष्कार किया, ऐसी तकनीक जिसने बहुत अधिक परिपथ घनत्व की अनुमति दी, विशेष रूप से यादृच्छिक तर्क परिपथ के लिए उपयोगी हैं।


अपने द्वारा डिज़ाइन किए गए एक परीक्षण पैटर्न का उपयोग करके प्रक्रिया को मान्य और विशेषता देने के बाद, फागिन ने अप्रैल 1968 तक पहला काम करने वाला MOS सिलिकॉन-गेट ट्रांजिस्टर और परीक्षण संरचनाएँ बनाईं। फिर उन्होंने सिलिकॉन गेट, फेयरचाइल्ड 3708, एक 8-बिट एनालॉग का उपयोग करके पहला एकीकृत सर्किट डिज़ाइन किया। डिकोडिंग लॉजिक के साथ मल्टीप्लेक्सर, जिसमें फेयरचाइल्ड 3705 की समान कार्यक्षमता थी, मेटल-गेट प्रोडक्शन आईसी जिसे फेयरचाइल्ड सेमीकंडक्टर को इसके कड़े विनिर्देशों के कारण बनाने में कठिनाई हुई थी।
अपने गेट डिज़ाइन किए गए परीक्षण क्रम का उपयोग करके प्रक्रिया को मान्य और विशेषता देने के पश्चात, फागिन ने अप्रैल 1968 तक पहला काम करने वाला एमओएस सिलिकॉन-गेट ट्रांजिस्टर और परीक्षण संरचनाएँ बनाईं। फिर उन्होंने सिलिकॉन गेट, फेयरचाइल्ड 3708, 8-बिट एनालॉग का उपयोग करके पहला एकीकृत परिपथ डिज़ाइन किया हैं। डिकोडिंग लॉजिक के साथ मल्टीप्लेक्सर, जिसमें फेयरचाइल्ड 3705 की समान कार्यक्षमता थी, धातु-गेट प्रोडक्शन आईसी जिसे फेयरचाइल्ड अर्धचालक को इसके कड़े विनिर्देशों के कारण बनाने में कठिनाई हुई थी।


जुलाई 1968 में 3708 की उपलब्धता ने अगले महीनों के दौरान प्रक्रिया को और बेहतर बनाने के लिए एक मंच भी प्रदान किया, जिससे अक्टूबर 1968 में ग्राहकों को पहले 3708 नमूनों की शिपमेंट हुई और इसे अंत से पहले सामान्य बाजार में व्यावसायिक रूप से उपलब्ध कराया गया। 1968. जुलाई से अक्टूबर 1968 की अवधि के दौरान, फागिन ने प्रक्रिया में दो अतिरिक्त महत्वपूर्ण चरण जोड़े:
जुलाई 1968 में 3708 की उपलब्धता ने अगले महीनों के समय प्रक्रिया को और उत्तम बनाने के लिए मंच भी प्रदान किया था, जिससे अक्टूबर 1968 में ग्राहकों को पहले 3708 नमूनों की शिपमेंट हुई और इसे अंत से पहले सामान्य बाजार में व्यावसायिक रूप से उपलब्ध कराया गया। 1968. जुलाई से अक्टूबर 1968 की अवधि के समय, फागिन ने प्रक्रिया में दो अतिरिक्त महत्वपूर्ण चरण जोड़े गए हैं:


* वाष्प-चरण जमाव द्वारा प्राप्त पॉली-क्रिस्टलीय सिलिकॉन के साथ वैक्यूम-वाष्पीकृत अनाकार सिलिकॉन की जगह। वाष्पित होने के बाद से यह कदम जरूरी हो गया, अनाकार सिलिकॉन ने ऑक्साइड की सतह में कदमों से गुजरने पर तोड़ दिया।
* वाष्प-चरण का एकीकरण गेट प्राप्त पॉली-क्रिस्टलीय सिलिकॉन के साथ वैक्यूम-वाष्पीकृत अनाकार सिलिकॉन के स्थान पर किया जाता हैं। वाष्पित होने के पश्चात से यह चरण आवश्यक हो गया हैं, इसमें सिलिकॉन ऑक्साइड की सतह में विभिन्न चरणों से गुजरने पर तोड़ दिया गया हैं।
* फ़ॉस्फ़ोरस गेट्टरिंग का उपयोग अशुद्धियों को सोखने के लिए, हमेशा ट्रांजिस्टर में मौजूद होता है, जिससे विश्वसनीयता की समस्या होती है। फॉस्फोरस गेटरिंग ने लीकेज करंट को काफी कम करने की अनुमति दी और थ्रेसहोल्ड वोल्टेज बहाव से बचने के लिए जो अभी भी एल्युमिनियम गेट के साथ एमओएस तकनीक से ग्रस्त है (एल्युमीनियम गेट के साथ एमओएस ट्रांजिस्टर आवश्यक उच्च तापमान के कारण फॉस्फोरस गेटरिंग के लिए उपयुक्त नहीं थे)।
* फ़ॉस्फ़ोरस गेट्टरिंग का उपयोग अशुद्धियों को सोखने के लिए, सदैव ट्रांजिस्टर में सम्मिलित होता है, जिससे विश्वसनीयता की समस्या होती है। फॉस्फोरस गेटरिंग ने लीकेज धारा को अत्यधिक कम करने की अनुमति दी और थ्रेसहोल्ड वोल्टेज बहाव से बचने के लिए जो अभी भी एल्युमिनियम गेट के साथ एमओएस तकनीक से ग्रस्त है (एल्युमीनियम गेट के साथ एमओएस ट्रांजिस्टर आवश्यक उच्च तापमान के कारण फॉस्फोरस गेटरिंग के लिए उपयुक्त नहीं थे)।


सिलिकॉन गेट के साथ, एमओएस ट्रांजिस्टर की दीर्घकालिक विश्वसनीयता जल्द ही बाइपोलर आईसी के स्तर तक पहुंच गई, जिससे एमओएस प्रौद्योगिकी को व्यापक रूप से अपनाने के लिए एक बड़ी बाधा दूर हो गई।
सिलिकॉन गेट के साथ, एमओएस ट्रांजिस्टर की दीर्घकालिक विश्वसनीयता जल्द ही बाइपोलर आईसी के स्तर तक पहुंच गई, जिससे एमओएस प्रौद्योगिकी को व्यापक रूप से अपनाने के लिए बड़ी बाधा दूर हो गई।


1968 के अंत तक सिलिकॉन-गेट तकनीक ने प्रभावशाली परिणाम प्राप्त किए थे। हालांकि 3708 को 3705 के समान उत्पादन टूलिंग का उपयोग करने की सुविधा के लिए 3705 के लगभग समान क्षेत्र के लिए डिज़ाइन किया गया था, इसे काफी छोटा बनाया जा सकता था। बहरहाल, की तुलना में इसका बेहतर प्रदर्शन था3705: यह 5 गुना तेज था, इसमें लगभग 100 गुना कम लीकेज करंट था, और एनालॉग स्विच बनाने वाले बड़े ट्रांजिस्टर का ऑन रेजिस्टेंस 3 गुना कम था।<ref name= fagginKlein >Federico Faggin and Thomas Klein ''Electronics'' magazine [https://sites.google.com/site/microprocessorintel4004/home/fairchild-3708 (September 29, 1969) A Faster Generation Of MOS Devices With Low Thresholds Is Riding The Crest Of The New Wave, Silicon-Gate IC's] see [https://sites.google.com/site/microprocessorintel4004/home/fairchild-3708/electronics-6-7 pp6-7]</ref>{{rp|pp6-7}}
1968 के अंत तक सिलिकॉन-गेट तकनीक ने प्रभावशाली परिणाम प्राप्त किए थे। चूंकि 3708 को 3705 के समान उत्पादन टूलिंग का उपयोग करने की सुविधा के लिए 3705 के लगभग समान क्षेत्र के लिए डिज़ाइन किया गया था, इसे अत्यधिक छोटा बनाया जा सकता था। बहरहाल, की तुलना में इसका उत्तम प्रदर्शन था 3705: यह 5 गुना तेज था, इसमें लगभग 100 गुना कम लीकेज धारा था, और एनालॉग स्विच बनाने वाले बड़े ट्रांजिस्टर का ऑन रेजिस्टेंस 3 गुना कम था।<ref name= fagginKlein >Federico Faggin and Thomas Klein ''Electronics'' magazine [https://sites.google.com/site/microprocessorintel4004/home/fairchild-3708 (September 29, 1969) A Faster Generation Of MOS Devices With Low Thresholds Is Riding The Crest Of The New Wave, Silicon-Gate IC's] see [https://sites.google.com/site/microprocessorintel4004/home/fairchild-3708/electronics-6-7 pp6-7]</ref>{{rp|pp6-7}}


=== [[इंटेल]] पर व्यावसायीकरण ===
=== [[इंटेल]] पर व्यावसायीकरण ===
सिलिकॉन-गेट तकनीक (एसजीटी) को इंटेल द्वारा इसकी स्थापना (जुलाई 1968) में अपनाया गया था, और कुछ वर्षों के भीतर दुनिया भर में एमओएस एकीकृत सर्किट के निर्माण के लिए मुख्य तकनीक बन गई, जो आज तक चली आ रही है। फ्लोटिंग सिलिकॉन-गेट ट्रांजिस्टर का उपयोग करके गैर-वाष्पशील मेमोरी विकसित करने वाली इंटेल भी पहली कंपनी थी।
सिलिकॉन-गेट तकनीक (एसजीटी) को इंटेल गेट इसकी स्थापना जुलाई 1968 में अपनाया गया था, और कुछ वर्षों के भीतर दुनिया भर में एमओएस एकीकृत परिपथ के निर्माण के लिए मुख्य तकनीक बन गई, जो आज तक चली आ रही है। फ्लोटिंग सिलिकॉन-गेट ट्रांजिस्टर का उपयोग करके गैर-वाष्पशील मेमोरी विकसित करने वाली इंटेल भी पहली कंपनी थी।


सिलिकॉन-गेट तकनीक का उपयोग करने वाली पहली [[मेमोरी चिप]] इंटेल 1101 स्टेटिक [[ रैंडम एक्सेस मेमोरी ]] (स्टैटिक रैंडम-एक्सेस मेमोरी) चिप थी, 1968 में सेमीकंडक्टर डिवाइस फैब्रिकेशन और 1969 में प्रदर्शित हुई।<ref name="Sah1303">{{cite journal |last=Sah |first=Chih-Tang |author-link=Chih-Tang Sah |title=एमओएस ट्रांजिस्टर का विकास-गर्भाधान से वीएलएसआई तक|journal=[[Proceedings of the IEEE]] |date=October 1988 |volume=76 |issue=10 |pages=1280–1326 (1303) |doi=10.1109/5.16328 |url=http://www.dejazzer.com/ece723/resources/Evolution_of_the_MOS_transistor.pdf |issn=0018-9219}}</ref> पहला वाणिज्यिक सिंगल-चिप [[माइक्रोप्रोसेसर]], [[इंटेल 4004]], फागिन द्वारा अपनी सिलिकॉन-गेट MOS IC तकनीक का उपयोग करके विकसित किया गया था। [[मार्सियन हॉफ]], [[ अपार्टमेंट मेज़र ]] और [[मासाटोशी द्वीप]] ने वास्तुकला में योगदान दिया।<ref>{{cite web |title=1971: Microprocessor Integrates CPU Function onto a Single Chip |website=The Silicon Engine |url=https://www.computerhistory.org/siliconengine/microprocessor-integrates-cpu-function-onto-a-single-chip/ |publisher=[[Computer History Museum]] |accessdate=22 July 2019}}</ref>
सिलिकॉन-गेट तकनीक का उपयोग करने वाली पहली [[मेमोरी चिप]] इंटेल 1101 स्टेटिक [[ रैंडम एक्सेस मेमोरी |रैंडम एक्सेस मेमोरी]] (स्टैटिक रैंडम-एक्सेस मेमोरी) चिप थी, 1968 में अर्धचालक यूक्ति फैब्रिकेशन और 1969 में प्रदर्शित हुई।<ref name="Sah1303">{{cite journal |last=Sah |first=Chih-Tang |author-link=Chih-Tang Sah |title=एमओएस ट्रांजिस्टर का विकास-गर्भाधान से वीएलएसआई तक|journal=[[Proceedings of the IEEE]] |date=October 1988 |volume=76 |issue=10 |pages=1280–1326 (1303) |doi=10.1109/5.16328 |url=http://www.dejazzer.com/ece723/resources/Evolution_of_the_MOS_transistor.pdf |issn=0018-9219}}</ref> पहला वाणिज्यिक सिंगल-चिप [[माइक्रोप्रोसेसर]], [[इंटेल 4004]], फागिन गेट अपनी सिलिकॉन-गेट एमओएस IC तकनीक का उपयोग करके विकसित किया गया था। [[मार्सियन हॉफ]], [[ अपार्टमेंट मेज़र |अपार्टमेंट मेज़र]] और [[मासाटोशी द्वीप]] ने संरचना में योगदान दिया हैं।<ref>{{cite web |title=1971: Microprocessor Integrates CPU Function onto a Single Chip |website=The Silicon Engine |url=https://www.computerhistory.org/siliconengine/microprocessor-integrates-cpu-function-onto-a-single-chip/ |publisher=[[Computer History Museum]] |accessdate=22 July 2019}}</ref>


 
==== एसजीटी पर मूल दस्तावेज ====
== एसजीटी == पर मूल दस्तावेज
* बोवर, आरडब्ल्यू और डिल, आरजी (1966) हैं। स्रोत-ड्रेन मास्क के रूप में गेट का उपयोग करके गढ़े गए इंसुलेटेड गेट फील्ड इफेक्ट ट्रांजिस्टर। IEEE अंतर्राष्ट्रीय इलेक्ट्रॉन उपकरण बैठक, 1966
* बोवर, आरडब्ल्यू और डिल, आरजी (1966)स्रोत-ड्रेन मास्क के रूप में गेट का उपयोग करके गढ़े गए इंसुलेटेड गेट फील्ड इफेक्ट ट्रांजिस्टर। IEEE अंतर्राष्ट्रीय इलेक्ट्रॉन उपकरण बैठक, 1966
* फागिन, एफ., क्लेन, टी., और वाडाज़, एल.: इंसुलेटेड गेट फील्ड इफेक्ट ट्रांजिस्टर एकीकृत परिपथ विद सिलिकॉन गेट्स। IEEE अंतर्राष्ट्रीय इलेक्ट्रॉन उपकरण बैठक, वाशिंगटन डीसी, 1968 [http://www.intel4004.com/images/iedm_covart.jpg
* फागिन, एफ., क्लेन, टी., और वाडाज़, एल.: इंसुलेटेड गेट फील्ड इफेक्ट ट्रांजिस्टर इंटीग्रेटेड सर्किट विद सिलिकॉन गेट्स। IEEE अंतर्राष्ट्रीय इलेक्ट्रॉन उपकरण बैठक, वाशिंगटन डीसी, 1968 [http://www.intel4004.com/images/iedm_covart.jpg
* {{Cite patent|country=यूएस|number=3475234|title=एमआईएस संरचना बनाने की विधि|pubdate=28-10-1969|assign1=[[बेल लैब्स|बेल टेलीफोन लेबोरेटरीज इंक.]]|inventor1-last=केर्विन|inventor1-first=राॅबर्ट ई|inventor2-last=[[डोनाल्ड एल. क्लेन|क्लेन]]|inventor2-first=डोनाल्ड एल|inventor3-last=सैरेस|inventor3-first=जाॅन सी}}
* {{Cite patent|country=US|number=3475234|title=एमआईएस संरचना बनाने की विधि|pubdate=28-10-1969|assign1=[[Bell Labs|Bell Telephone Laboratories Inc.]]|inventor1-last=Kerwin|inventor1-first=Robert E.|inventor2-last=[[Donald L. Klein|Klein]]|inventor2-first=Donald L.|inventor3-last=Sarace|inventor3-first=John C.}}
* फेडेरिको फागिन और थॉमस क्लेन।: कम थ्रेसहोल्ड वाले एमओएस उपकरणों की तेज पीढ़ी नई लहर, सिलिकॉन-गेट आईसी के क्रेस्ट की सवारी कर रही है। फेयरचाइल्ड 3708 पर कवर स्टोरी, इलेक्ट्रॉनिक्स पत्रिका, 29 सितंबर, 1969।
* फेडेरिको फागिन और थॉमस क्लेन।: कम थ्रेसहोल्ड वाले एमओएस उपकरणों की एक तेज पीढ़ी नई लहर, सिलिकॉन-गेट आईसी के क्रेस्ट की सवारी कर रही है। फेयरचाइल्ड 3708 पर कवर स्टोरी, इलेक्ट्रॉनिक्स पत्रिका, 29 सितंबर, 1969।
* {{Cite magazine
* {{Cite magazine
   |last1=Vadasz |first1=L. L.
   |last1=वैडास्ज |first1=एल एल
   |last2=Grove |first2=A.S.
   |last2=ग्रोव |first2=ए एस
   |last3=Rowe |first3=T.A.
   |last3=रोव |first3=टी ए
   |last4=Moore |first4=G.E.
   |last4=मोरे |first4=जी ई
   |title=सिलिकॉन गेट प्रौद्योगिकी|magazine=[[IEEE Spectrum]]
   |title=सिलिकॉन गेट प्रौद्योगिकी|magazine=[[IEEE स्पैक्ट्रम]]
   |date=October 1969
   |date=October 1969
   |pages=27–35
   |pages=27–35
}}
}}
* एफ. फागिन, टी. क्लेन सिलिकॉन गेट टेक्नोलॉजी, सॉलिड स्टेट इलेक्ट्रॉनिक्स, 1970, वॉल्यूम। 13, पीपी। 1125–1144।
* एफ. फागिन, टी. क्लेन सिलिकॉन गेट टेक्नोलॉजी, सॉलिड स्टेट इलेक्ट्रॉनिक्स, 1970, वॉल्यूम। 13, पीपी। 1125–1144।
* {{Cite patent|country=US|number=3673471|pubdate=1972-06-27|assign1=[[Fairchild Camera and Instrument Corporation]]|title=MOS प्रकार के उपकरणों के लिए डोप्ड सेमीकंडक्टर इलेक्ट्रोड|inventor1-last=Klein|inventor1-first=Thomas|inventor2-last=Faggin|inventor2-first=Federico}}
* {{Cite patent|country=यूएस|number=3673471|pubdate=1972-06-27|assign1=[[फेयरचाइल्ड कैमरा एंड इंस्ट्रूमेंट कॉर्पोरेशन]]|title=MOS प्रकार के उपकरणों के लिए डोप्ड सेमीकंडक्टर इलेक्ट्रोड|inventor1-last=क्लेन|inventor1-first=थाॅमस|inventor2-last=फैजिन|inventor2-first=फेडरीको}}


=== पेटेंट ===
=== पेटेंट ===


स्व-संरेखित गेट डिज़ाइन को 1969 में केर्विन, डोनाल्ड एल. क्लेन और सारस की टीम द्वारा पेटेंट कराया गया था।<ref name="Patent">{{Cite patent|country=US|number=3475234|title=एमआईएस संरचना बनाने की विधि|pubdate=28-10-1969|assign1=[[Bell Labs|Bell Telephone Laboratories Inc.]]|inventor1-last=Kerwin|inventor1-first=Robert E.|inventor2-last=Klein|inventor2-first=Donald L.|inventor3-last=Sarace|inventor3-first=John C.}}</ref>
स्व-संरेखित गेट डिज़ाइन को 1969 में केर्विन, डोनाल्ड एल. क्लेन और सारस की टीम गेट पेटेंट कराया गया था।<ref name="Patent">{{Cite patent|country=US|number=3475234|title=एमआईएस संरचना बनाने की विधि|pubdate=28-10-1969|assign1=[[Bell Labs|Bell Telephone Laboratories Inc.]]|inventor1-last=Kerwin|inventor1-first=Robert E.|inventor2-last=Klein|inventor2-first=Donald L.|inventor3-last=Sarace|inventor3-first=John C.}}</ref> यह स्वतंत्र रूप से रॉबर्ट डब्ल्यू बोवर (यू.एस. 3,472,712, 14 अक्टूबर, 1969 को जारी, 27 अक्टूबर, 1966 को दायर) गेट आविष्कार किया गया था। बेल लैब्स केर्विन एट अल द्वारा पेटेंट 27 मार्च, 1967 तक पंजीकृत नहीं किया गया था, आर.डब्ल्यू. बोवर और एच.डी. डिल गेट प्रकाशित किए जाने के कई महीनों पश्चात और 1966 में इंटरनेशनल इलेक्ट्रॉन यूक्ति मीटिंग, वाशिंगटन, डीसी में इस काम का पहला प्रकाशन प्रस्तुत किया गया था।<ref>
यह स्वतंत्र रूप से रॉबर्ट डब्ल्यू बोवर (यू.एस. 3,472,712, 14 अक्टूबर, 1969 को जारी, 27 अक्टूबर, 1966 को दायर) द्वारा आविष्कार किया गया था। बेल लैब्स केर्विन एट अल। पेटेंट 27 मार्च, 1967 तक दायर नहीं किया गया था, आर.डब्ल्यू. बोवर और एच.डी. डिल द्वारा प्रकाशित किए जाने के कई महीनों बाद और 1966 में इंटरनेशनल इलेक्ट्रॉन डिवाइस मीटिंग, वाशिंगटन, डीसी में इस काम का पहला प्रकाशन प्रस्तुत किया गया था।<ref>
{{cite journal
{{cite journal
  | doi = 10.1109/IEDM.1966.187724
  | doi = 10.1109/IEDM.1966.187724
Line 107: Line 107:
  | year = 1966
  | year = 1966
  }}</ref>
  }}</ref>
बोवर से जुड़ी एक कानूनी कार्रवाई में, थर्ड सर्किट कोर्ट ऑफ अपील्स ने निर्धारित किया कि केर्विन, डोनाल्ड एल. क्लेन और सारस स्व-संरेखित सिलिकॉन गेट ट्रांजिस्टर के आविष्कारक थे। उस आधार पर, उन्हें मूल पेटेंट यूएस 3,475,234 से सम्मानित किया गया। वास्तव में स्व-संरेखित गेट MOSFET का आविष्कार रॉबर्ट डब्ल्यू. बोवर यूएस 3,472,712 द्वारा किया गया था, जो 14 अक्टूबर, 1969 को जारी किया गया था, 27 अक्टूबर, 1966 को दायर किया गया था। बोवर और एच. डी. डिल ने अंतर्राष्ट्रीय इलेक्ट्रॉन डिवाइस मीटिंग, वाशिंगटन, डी.सी., 1966 में गेट के रूप में स्रोत-ड्रेन मास्क का उपयोग करते हुए इंसुलेटेड गेट फील्ड इफेक्ट ट्रांजिस्टर के नाम से प्रकाशित इस काम का पहला प्रकाशन प्रस्तुत किया। बोवर के काम ने स्व-संरेखित-गेट का वर्णन किया MOSFET, एल्यूमीनियम और पॉलीसिलिकॉन दोनों गेटों के साथ बनाया गया है। इसने स्रोत और नाली क्षेत्रों को परिभाषित करने के लिए मास्क के रूप में गेट इलेक्ट्रोड का उपयोग करके स्रोत और नाली बनाने के लिए [[आयन आरोपण]] और प्रसार दोनों का उपयोग किया। बेल लैब्स टीम ने 1966 में IEDM की इस बैठक में भाग लिया, और उन्होंने 1966 में अपनी प्रस्तुति के बाद बोवर के साथ इस काम पर चर्चा की। बोवर ने पहले गेट के रूप में एल्यूमीनियम का उपयोग करके स्व-संरेखित गेट बनाया था और 1966 में प्रस्तुति से पहले डिवाइस बनाया था। गेट के रूप में पॉलीसिलिकॉन का उपयोग करना।


स्व-संरेखित गेट में आमतौर पर आयन आरोपण शामिल होता है, जो 1960 के दशक का एक अन्य अर्धचालक प्रक्रिया नवाचार है। आयन आरोपण और स्व-संरेखित फाटकों के इतिहास अत्यधिक परस्पर जुड़े हुए हैं, जैसा कि आरबी फेयर द्वारा गहन इतिहास में बताया गया है।<ref>
बोवर से जुड़े इस नियम के अनुसार इस पर कार्य करने के लिए तीसरे परिपथ कोर्ट ऑफ अपील्स ने निर्धारित किया कि केर्विन, डोनाल्ड एल. क्लेन और सारस स्व-संरेखित सिलिकॉन गेट ट्रांजिस्टर के आविष्कारक थे। उस आधार पर, उन्हें मूल पेटेंट यूएस 3,475,234 से सम्मानित किया गया था। वास्तव में स्व-संरेखित गेट मौस्फेट का आविष्कार रॉबर्ट डब्ल्यू. बोवर यूएस 3,472,712 गेट किया गया था, जो 14 अक्टूबर, 1969 को जारी किया गया था, 27 अक्टूबर, 1966 को अपील किया गया था। बोवर और एच. डी. डिल ने अंतर्राष्ट्रीय इलेक्ट्रॉन यूक्ति मीटिंग, वाशिंगटन, डी.सी., 1966 में गेट के रूप में स्रोत-ड्रेन मास्क का उपयोग करते हुए इंसुलेटेड गेट फील्ड इफेक्ट ट्रांजिस्टर के नाम से प्रकाशित इस कार्य का पहला प्रकाशन प्रस्तुत किया गया हैं। बोवर के काम ने स्व-संरेखित-गेट का वर्णन किया मौस्फेट, एल्यूमीनियम और पॉलीसिलिकॉन दोनों गेटों के साथ बनाया गया है। इसने स्रोत और ड्रेन क्षेत्रों को परिभाषित करने के लिए मास्क के रूप में गेट इलेक्ट्रोड का उपयोग करके स्रोत और ड्रेन बनाने के लिए [[आयन आरोपण]] और प्रसार दोनों का उपयोग किया था। बेल लैब्स टीम ने 1966 में IEDM की इस बैठक में भाग लिया, और उन्होंने 1966 में अपनी प्रस्तुति के पश्चात बोवर के साथ इस काम पर चर्चा की। बोवर ने पहले गेट के रूप में एल्यूमीनियम का उपयोग करके स्व-संरेखित गेट बनाया था और 1966 में प्रस्तुति से पहले यूक्ति बनाया था। गेट के रूप में पॉलीसिलिकॉन का उपयोग किया था।
 
स्व-संरेखित गेट में सामान्यतः आयन आरोपण सम्मिलित होता है, जो 1960 के दशक का अन्य अर्धचालक प्रक्रिया नवाचार है। आयन आरोपण और स्व-संरेखित फाटकों के इतिहास अत्यधिक परस्पर जुड़े हुए हैं, जैसा कि आरबी फेयर गेट गहन इतिहास में बताया गया है।<ref>
{{cite journal
{{cite journal
  | doi = 10.1109/5.658764
  | doi = 10.1109/5.658764
Line 120: Line 121:
  | date = Jan 1998
  | date = Jan 1998
  | url =  
  | url =  
  }}</ref>
  }}</ref> स्व-संरेखित सिलिकॉन-गेट तकनीक का उपयोग करने वाला पहला व्यावसायिक उत्पाद 1968 में फेयरचाइल्ड अर्धचालक 3708 8-बिट एनालॉग मल्टीप्लेक्सर था, जिसे फेडेरिको फागिन गेट डिजाइन किया गया था, जिसने अवधारणा के पूर्वोक्त गैर-कार्यशील प्रमाणों को उद्योग में परिवर्तित के लिए कई आविष्कारों का बीड़ा उठाया था। वास्तव में उसके पश्चात अपनाया गया हैं।<ref>
स्व-संरेखित सिलिकॉन-गेट तकनीक का उपयोग करने वाला पहला व्यावसायिक उत्पाद 1968 में फेयरचाइल्ड सेमीकंडक्टर 3708 8-बिट एनालॉग मल्टीप्लेक्सर था, जिसे फेडेरिको फागिन द्वारा डिजाइन किया गया था, जिसने अवधारणा के पूर्वोक्त गैर-कार्यशील प्रमाणों को उद्योग में बदलने के लिए कई आविष्कारों का बीड़ा उठाया था। वास्तव में उसके बाद अपनाया गया।<ref>
{{cite book
{{cite book
  | title = International biographical dictionary of computer pioneers, Volume 1995, Part 2
  | title = International biographical dictionary of computer pioneers, Volume 1995, Part 2
Line 141: Line 141:
  | url = https://books.google.com/books?id=2cu1Oh_COv8C&pg=PA359
  | url = https://books.google.com/books?id=2cu1Oh_COv8C&pg=PA359
  }}</ref>
  }}</ref>
== निर्माण प्रक्रिया ==
== निर्माण प्रक्रिया ==
स्व-संरेखित द्वारों का महत्व उन्हें बनाने की प्रक्रिया में आता है। स्रोत और नाली के प्रसार के लिए गेट ऑक्साइड को मास्क के रूप में उपयोग करने की प्रक्रिया दोनों प्रक्रिया को सरल बनाती है और उपज में काफी सुधार करती है।
स्व-संरेखित गेटों का महत्व उन्हें बनाने की प्रक्रिया में आता है। स्रोत और ड्रेन के प्रसार के लिए गेट ऑक्साइड को मास्क के रूप में उपयोग करने की प्रक्रिया दोनों प्रक्रिया को सरल बनाती है और उपज में अत्यधिक सुधार करती है।


=== प्रक्रिया कदम ===
=== प्रक्रिया का चरण ===
स्व-संरेखित गेट बनाने के चरण निम्नलिखित हैं:
स्व-संरेखित गेट बनाने के चरण निम्नलिखित हैं:<ref name="Process">{{cite book
<ref name="Process">{{cite book
   | last = Streetman | first=Ben |author2=Banerjee
   | last = Streetman | first=Ben |author2=Banerjee
   | title = ठोस राज्य इलेक्ट्रॉनिक उपकरण| publisher=PHI
   | title = ठोस राज्य इलेक्ट्रॉनिक उपकरण| publisher=PHI
   | year=2006 | pages = 269–27, 313 | isbn=978-81-203-3020-7}}</ref>
   | year=2006 | pages = 269–27, 313 | isbn=978-81-203-3020-7}}</ref>


[[File:cleanroom1.jpg|thumb|एक क्लीनरूम सुविधा जहां ये चरण किए जाते हैं]]इन कदमों को सबसे पहले फेडेरिको फागिन द्वारा बनाया गया था और 1968 में फेयरचाइल्ड सेमीकंडक्टर में विकसित सिलिकॉन गेट टेक्नोलॉजी प्रक्रिया में इसका उपयोग करते हुए पहले वाणिज्यिक एकीकृत सर्किट, फेयरचाइल्ड 3708 के निर्माण के लिए उपयोग किया गया था। <ref>Faggin, F., Klein, T., and Vadasz, L.: "Insulated Gate Field Effect Transistor Integrated Circuits With Silicon Gates". IEEE International Electron Devices Meeting, Washington D.C, 1968</ref>
[[File:cleanroom1.jpg|thumb|एक क्लीनरूम सुविधा जहां ये चरण किए जाते हैं]]इन चरणों को सबसे पहले फेडेरिको फागिन गेट बनाया गया था और 1968 में फेयरचाइल्ड अर्धचालक में विकसित सिलिकॉन गेट टेक्नोलॉजी प्रक्रिया में इसका उपयोग करते हुए पहले वाणिज्यिक एकीकृत परिपथ, फेयरचाइल्ड 3708 के निर्माण के लिए उपयोग किया गया था। <ref>Faggin, F., Klein, T., and Vadasz, L.: "Insulated Gate Field Effect Transistor Integrated Circuits With Silicon Gates". IEEE International Electron Devices Meeting, Washington D.C, 1968</ref>
: 1. फील्ड ऑक्साइड पर कुएँ खुदे हुए होते हैं जहाँ ट्रांजिस्टर बनने होते हैं। प्रत्येक अच्छी तरह से एमओएस ट्रांजिस्टर के स्रोत, नाली और सक्रिय गेट क्षेत्रों को परिभाषित करता है।
: 1. फील्ड ऑक्साइड पर कुएँ खुदे हुए होते हैं जहाँ ट्रांजिस्टर बनने होते हैं। प्रत्येक अच्छी तरह से एमओएस ट्रांजिस्टर के स्रोत, ड्रेन और सक्रिय गेट क्षेत्रों को परिभाषित करता है।


: 2. सूखी [[थर्मल ऑक्सीकरण]] प्रक्रिया का उपयोग करके, [[गेट ऑक्साइड]] (SiO2) की एक पतली परत (5-200 एनएम)<sub>2</sub>) सिलिकॉन वेफर पर उगाया जाता है।
: 2. सूखी [[थर्मल ऑक्सीकरण|ऊष्मीय ऑक्सीकरण]] प्रक्रिया का उपयोग करके, [[गेट ऑक्साइड]] (SiO2) की पतली परत (5-200 NM)<sub>2</sub>) सिलिकॉन वेफर पर उगाया जाता है।


: 3. रासायनिक वाष्प जमाव (सीवीडी) प्रक्रिया का उपयोग करके गेट ऑक्साइड के ऊपर [[पॉलीसिलिकॉन]] की एक परत उगाई जाती है।
: 3. रासायनिक वाष्प जमाव (सीवीडी) प्रक्रिया का उपयोग करके गेट ऑक्साइड के ऊपर [[पॉलीसिलिकॉन]] की परत लेपित की जाती है।


: 4. पॉलीसिलिकॉन के ऊपर फोटोरेसिस्ट की एक परत लगाई जाती है।
: 4. पॉलीसिलिकॉन के ऊपर फोटोरेसिस्ट की परत लगाई जाती है।


: 5. फोटोरेसिस्ट के ऊपर एक मास्क रखा जाता है और [[पराबैंगनी प्रकाश]] के संपर्क में आता है; यह उन क्षेत्रों में फोटोरेसिस्ट परत को तोड़ देता है जहां मास्क ने इसकी रक्षा नहीं की थी।
: 5. फोटोरेसिस्ट के ऊपर मास्क रखा जाता है और [[पराबैंगनी प्रकाश]] के संपर्क में आता है, यह उन क्षेत्रों में फोटोरेसिस्ट परत को तोड़ देता है जहां मास्क ने इसकी रक्षा नहीं की थी।


: 6. Photoresist को एक विशेष डेवलपर समाधान के साथ प्रदर्शित किया जाता है। इसका उद्देश्य उस फोटोरेसिस्ट को हटाना है जो यूवी प्रकाश द्वारा टूट गया था।
: 6. फोटो प्रतिरोध को विशेष डेवलपर समाधान के साथ प्रदर्शित किया जाता है। इसका उद्देश्य उस फोटोरेसिस्ट को हटाना है जो यूवी प्रकाश गेट टूट गया था।


: 7. पॉलीसिलिकॉन और गेट ऑक्साइड जो फोटोरेसिस्ट द्वारा कवर नहीं किया जाता है, उसे बफर्ड आयन ईच प्रक्रिया से हटा दिया जाता है। यह आमतौर पर एक एसिड समाधान होता है जिसमें [[ हाइड्रोफ्लुओरिक अम्ल ]] होता है।
: 7. पॉलीसिलिकॉन और गेट ऑक्साइड जो फोटोरेसिस्ट गेट कवर नहीं किया जाता है, उसे बफर्ड आयन ईच प्रक्रिया से हटा दिया जाता है। यह सामान्यतः एसिड समाधान होता है जिसमें [[ हाइड्रोफ्लुओरिक अम्ल |हाइड्रोफ्लुओरिक अम्ल]] होता है।


: 8. सिलिकॉन वेफर से बाकी फोटोरेसिस्ट को हटा दिया जाता है। गेट ऑक्साइड के ऊपर और फील्ड ऑक्साइड के ऊपर अब पॉलीसिलिकॉन के साथ एक वेफर है।
: 8. सिलिकॉन वेफर से बाकी फोटोरेसिस्ट को हटा दिया जाता है। गेट ऑक्साइड के ऊपर और फील्ड ऑक्साइड के ऊपर अब पॉलीसिलिकॉन के साथ वेफर है।


: 9. गेट क्षेत्र को छोड़कर जो पॉलीसिलिकॉन गेट द्वारा संरक्षित है, ट्रांजिस्टर के स्रोत और नाली क्षेत्रों को उजागर करते हुए पतले ऑक्साइड को उकेरा जाता है।
: 9. गेट क्षेत्र को छोड़कर जो पॉलीसिलिकॉन गेट गेट संरक्षित है, ट्रांजिस्टर के स्रोत और ड्रेन क्षेत्रों को प्रकाशित करते हुए पतले ऑक्साइड को उकेरा जाता है।


: 10. पारंपरिक डोपिंग प्रक्रिया, या आयन-प्रत्यारोपण नामक प्रक्रिया का उपयोग करके, स्रोत, नाली और पॉलीसिलिकॉन को डोप किया जाता है। सिलिकॉन गेट के नीचे पतला ऑक्साइड डोपिंग प्रक्रिया के लिए मास्क का काम करता है। यह कदम वह है जो गेट को स्व-संरेखित करता है। स्रोत और नाली क्षेत्र स्वचालित रूप से (पहले से मौजूद) गेट के साथ ठीक से संरेखित होते हैं।
: 10. पारंपरिक डोपिंग प्रक्रिया, या आयन-प्रत्यारोपण नामक प्रक्रिया का उपयोग करके, स्रोत, ड्रेन और पॉलीसिलिकॉन को डोप किया जाता है। सिलिकॉन गेट के नीचे पतला ऑक्साइड डोपिंग प्रक्रिया के लिए मास्क का काम करता है। यह कदम वह है जो गेट को स्व-संरेखित करता है। स्रोत और ड्रेन क्षेत्र स्वचालित रूप से (पहले से सम्मिलित) गेट के साथ ठीक से संरेखित होते हैं।


: 11. वेफर एक उच्च तापमान भट्टी (>{{convert|800|°C|°F|sigfig=2|disp=or}}). यह स्रोत और नाली क्षेत्रों को बनाने के लिए डोपेंट को आगे क्रिस्टल संरचना में फैलाता है और परिणामस्वरूप डोपेंट गेट के नीचे थोड़ा फैलता है।
: 11. वेफर उच्च तापमान भट्टी (>{{convert|800|°C|°F|sigfig=2|disp=or}}). यह स्रोत और ड्रेन क्षेत्रों को बनाने के लिए डोपेंट को आगे क्रिस्टल संरचना में फैलाता है और परिणामस्वरूप डोपेंट गेट के नीचे थोड़ा फैलता है।


: 12. उजागर क्षेत्रों की रक्षा के लिए सिलिकॉन डाइऑक्साइड के वाष्प जमाव के साथ प्रक्रिया जारी है, और प्रक्रिया को पूरा करने के लिए शेष सभी चरणों के साथ।
: 12. प्रकाशित क्षेत्रों की रक्षा के लिए सिलिकॉन डाइऑक्साइड के वाष्प को एकत्रित करने के साथ प्रक्रिया जारी है, और प्रक्रिया को पूरा करने के लिए शेष सभी चरणों के साथ उपयोग किया जाता हैं।


== यह भी देखें ==
== यह भी देखें ==
* सेमीकंडक्टर डिवाइस निर्माण
* अर्धचालक यूक्ति निर्माण
* [[माइक्रोफैब्रिकेशन]]
* [[माइक्रोफैब्रिकेशन]]


Line 188: Line 185:
==संदर्भ==
==संदर्भ==
{{reflist}}
{{reflist}}
[[Category: 1966 परिचय]] [[Category: इतालवी आविष्कार]] [[Category: MOSFETs]] [[Category: ट्रांजिस्टर के प्रकार]]


[[Category: Machine Translated Page]]
[[Category:1966 परिचय]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:CS1 maint]]
[[Category:Citation Style 1 templates|M]]
[[Category:Collapse templates]]
[[Category:Created On 24/05/2023]]
[[Category:Created On 24/05/2023]]
[[Category:Lua-based templates]]
[[Category:MOSFETs]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates based on the Citation/CS1 Lua module]]
[[Category:Templates generating COinS|Cite magazine]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia fully protected templates|Cite magazine]]
[[Category:Wikipedia metatemplates]]
[[Category:इतालवी आविष्कार]]
[[Category:ट्रांजिस्टर के प्रकार]]

Latest revision as of 16:29, 15 June 2023

अर्धचालक यूक्ति की निर्माण तकनीक में स्व-संरेखित गेट ट्रांजिस्टर निर्माण के दृष्टिकोण से उपयोग किया जाता है जिसके लिए मौस्फेट गेट जो धातु ऑक्साइड अर्धचालक क्षेत्रीय प्रभाव ट्रांजिस्टर के इलेक्ट्रोड गेट का उपयोग स्रोत (ट्रांजिस्टर) के डोपिंग के लिए और ड्रेन (ट्रांजिस्टर) क्षेत्र को मास्क करने लिए उपयोग किया जाता है। यह तकनीक सुनिश्चित करती है कि गेट स्वाभाविक रूप से और सही प्रकार से स्रोत और ड्रेन के किनारों से संयोजित करता है।

एमओएस ट्रांजिस्टर में स्व संरेखित गेट का उपयोग प्रमुख नवाचारों में से है जिसके कारण 1970 के दशक में कंप्यूटिंग शक्ति में बड़ी वृद्धि हुई हैं। स्व संरेखित गेट गेट अभी भी अधिकांश रूप से आधुनिक एकीकृत परिपथ अर्धचालक यूक्ति निर्माण में उपयोग किए जाते हैं।

परिचय

आईसी निर्माण

एक मानक मौस्फेट का आरेख

एकीकृत परिपथ (आईसी, या चिप्स) बहुचरणीय प्रक्रिया में उत्पादित होते हैं जो सिलिकॉन की डिस्क की सतह पर कई परतें बनाता है जिसे वेफर (इलेक्ट्रॉनिक्स) कहा जाता है। प्रत्येक परत को फोटो प्रतिरोध में वेफर का लेपन करके और फिर इसे स्टैंसिल जैसे फोटोमास्क के माध्यम से प्रकाशित की जाने वाली पराबैंगनी प्रकाश से प्रकाशित किया जाता है। इस प्रक्रिया के आधार पर प्रकाश के संपर्क में आने वाला फोटोरेसिस्ट या तो कठिन हो जाता है या नरम हो जाता है, और दोनों ही स्थितियों में, नरम भागों को धो दिया जाता है। इसका परिणाम यह होता हैं कि वेफर की सतह पर सूक्ष्म क्रम बन जाते है जहां शीर्ष परत का भाग प्रकाशित होता है जबकि शेष शेष फोटोरेसिस्ट के अनुसार संरक्षित होता है।

इसके पश्चात वेफर को कई प्रकारी की प्रक्रियाओं से अवगत कराया जाता है जो वेफर के उक्त भागों से सामग्री को जोड़ते या हटाते हैं, जिससे फोटोरेसिस्ट गेट असुरक्षित हैं। इस सामान्य प्रक्रिया में, वेफर को लगभग 1000 C तक गर्म किया जाता है और फिर डोपिंग (अर्धचालक) (सामान्यतः बोरॉन या फास्फोरस) युक्त गैस के संपर्क में लाया जाता है जो सिलिकॉन के विद्युत गुणों को परिवर्तित कर देता है। यह सिलिकॉन को डोपेंट के प्रकार और/या मात्रा के आधार पर इलेक्ट्रॉन दाता, इलेक्ट्रॉन रिसेप्टर, या निकट विसंवाहक बनने की अनुमति देता है। ठेठ आईसी में इस प्रक्रिया का उपयोग अलग-अलग ट्रांजिस्टर बनाने के लिए किया जाता है जो आईसी के प्रमुख तत्व बनाते हैं।

मौस्फेट में, ट्रांजिस्टर के तीन भाग स्रोत, ड्रेन और गेट हैं। इस क्षेत्रीय प्रभाव में इसकी चालकता में परिवर्तन करने की प्रक्रिया को संदर्भित किया जाता है जो तब होता है जब गेट पर वोल्टेज रखा जाता है। इसका मुख्य बिंदु यह है कि यह विद्युत क्षेत्र स्रोत और ड्रेन को अलग करने वाले चैनल क्षेत्र को स्रोत-ड्रेन के समान प्रकार का बना सकता है, इस प्रकार ट्रांजिस्टर को चालू कर सकता है। चूंकि गेट से ड्रेन तक कोई धारा प्रवाहित नहीं होती है, इसलिए FET की स्विचिंग ऊर्जा पहले के द्विध्रुवी जंक्शन ट्रांजिस्टर प्रकारों की तुलना में बहुत कम होती है, जहां गेट या आधार जैसा कि यह ज्ञात था कि यह धारा के अनुरूप था।

प्राचीन पद्धति

प्रारंभिक मौस्फेट निर्माण पद्धतियों में, गेट एल्यूमीनियम से बना था जो 660 C पर पिघलता है, इसलिए इसे लगभग 1000 C पर सभी डोपिंग चरणों के पूरा होने के पश्चात इस प्रक्रिया के अंतिम चरणों में से के रूप में एकत्रित करना पड़ता था।

इस प्रकार पूर्ण रूप से वेफर को पहले विशेष विद्युत गुणवत्ता के रूप में या तो धनात्मक, या पी, या ऋणात्मक, एन पक्षपाती के रूप में चुना जाता है। उदाहरण में आधार सामग्री p है जिसे n-चैनल या nएमओएस कहा जाता है। यह मास्क तब उन क्षेत्रों का उत्पादन करने के लिए उपयोग किया जाता है जहां ट्रांजिस्टर के ऋणात्मक n खंड रखे जाएंगे। वेफर को तब लगभग 1000 C तक गर्म किया जाता है, और डोपिंग गैस के संपर्क में लाया जाता है जो n वर्गों का उत्पादन करने के लिए वेफर की सतह में फैल जाती है। फिर वेफर के ऊपर विसंवाहक सामग्री जो सिलिकॉन डाइऑक्साइड की बनी होती हैं उसकी पतली परत लेपित की जाती है। अंत में, गेट को नए फोटो-लिथोग्राफिक ऑपरेशन में इंसुलेटिंग परत के ऊपर क्रम दिया गया है। यह सुनिश्चित करने के लिए कि गेट वास्तव में अंतर्निहित स्रोत और ड्रेन को ओवरलैप करता है, गेट सामग्री को n वर्गों के बीच के अंतर से अधिक चौड़ा होना चाहिए, जो सामान्यतः तीन गुना से अधिक होता हैं। यह इस क्षेत्र को खराब कर देता है और गेट और स्रोत-ड्रेन के बीच में अतिरिक्त धारिता बनाता है। इस परजीवी धारिता की आवश्यकता है कि साफ स्विचिंग सुनिश्चित करने के लिए पूरी चिप को उच्च शक्ति स्तरों पर संचालित किया जाए जो अक्षम है। इसके अतिरिक्त, गेट के अंतर्निहित स्रोत-ड्रेन के मिसलिग्न्मेंट में भिन्नता का अर्थ है कि उच्च चिप-टू-चिप परिवर्तनशीलता है, भले ही वे ठीक से काम कर रहे हों।

स्व-संरेखण

स्व-संरेखित गेट अपने धारा स्वरूप में कई चरणों में विकसित हुआ हैं। इसकी अग्रिम कुंजी यह खोज थी कि भारी मात्रा में डोप किया गया पॉली-सिलिकॉन एल्यूमीनियम को परिवर्तित करने के लिए पर्याप्त प्रवाहकीय था। इसका अर्थ था कि मल्टी-स्टेप अर्धचालक यूक्ति फैब्रिकेशन में किसी भी स्तर पर गेट लेयर बनाई जा सकती है।[1]: p.1 (see Fig. 1.1) 

स्व-संरेखित प्रक्रिया में, कुंजी गेट-इन्सुलेटिंग परत प्रक्रिया की शुरुआत के पास बनती है। फिर गेट जमा किया जाता है और शीर्ष पर क्रम किया जाता है। फिर स्रोत ड्रेनेज को डोप किया जाता है (पॉली-सिलिकॉन के लिए गेट साथ डोप किए जाते हैं)। स्रोत-ड्रेन क्रम इस प्रकार केवल स्रोत और ड्रेन के बाहरी किनारों का प्रतिनिधित्व करता है, उन वर्गों के अंदरूनी किनारे को गेट गेट ही मास्क किया जाता है। परिणामस्वरूप, स्रोत और ड्रेन गेट से स्वयं संरेखित होते हैं। चूंकि वे सदैव पूर्ण रूप से स्थित होते हैं, गेट को वांछित से अधिक व्यापक बनाने की कोई आवश्यकता नहीं होती है, और परजीवी धारिता बहुत कम हो जाती है। संरेखण समय और चिप-टू-चिप परिवर्तनशीलता इसी तरह कम हो जाती है।[2]

एल्यूमीनियम, मोलिब्डेनम और अनाकार सिलिकॉन का उपयोग करने वाले विभिन्न गेट सामग्रियों के प्रारंभिक प्रयोग के पश्चात, अर्धचालक उद्योग ने पॉलीक्रिस्टलाइन सिलिकॉन (पॉली-सिलिकॉन), तथाकथित सिलिकॉन-गेट टेक्नोलॉजी (एसजीटी) या स्व-गठबंधन से बने स्व-संरेखित गेटों को लगभग सार्वभौमिक रूप से अपनाया गया हैं। सिलिकॉन-गेट प्रौद्योगिकी, जिसके परजीवी धारिता में कमी पर कई अतिरिक्त लाभ थे। इस प्रकार एसजीटी की महत्वपूर्ण विशेषता यह थी कि ट्रांजिस्टर पूर्ण रूप से उच्च गुणवत्ता वाले ऊष्मीय ऑक्साइड के सर्वश्रेष्ठ रोधकों में से एक के नीचे दब गया था, जिससे नए प्रकार के उपकरण बनाना संभव हो गया, जो पारंपरिक तकनीक के साथ संभव नहीं था या अन्य सामग्रियों से बने स्व-संरेखित गेट्स के साथ विशेष रूप से महत्वपूर्ण हैं चार्ज-युग्मित यूक्ति या आवेश युग्मित यूक्ति (सीसीडी), इस प्रतिबिंब संवेदकों के लिए उपयोग किया जाता है, और गैर-वाष्पशील मेमोरी यूक्ति फ्लोटिंग सिलिकॉन-गेट संरचनाओं का उपयोग करते हैं। इन उपकरणों ने इसकी कार्यक्षमता की सीमा को बढ़ा दिया है जिसे ठोस अवस्था वाले इलेक्ट्रॉनिक्स के साथ प्राप्त किया जा सकता है।

स्व-संरेखित गेट बनाने के लिए कुछ नवाचारों की आवश्यकता थी:[3]

  • इस प्रकार यह नई प्रक्रिया गेट का निर्माण करेगी,
  • अनाकार सिलिकॉन से पॉलीक्रिस्टलाइन सिलिकॉन में स्विच (क्योंकि अनाकार सिलिकॉन टूट जाएगा जहां यह ऑक्साइड इन्सुलेट सतह में विभिन्न चरणों से गुजरेगा),
  • पॉलीक्रिस्टलाइन सिलिकॉन की संरचना के लिए फोटोलिथोग्राफी विधि,
  • सिलिकॉन में सम्मिलित अशुद्धियों को कम करने की विधि है।

इन नवाचारों से पहले, धातु गेट वाले उपकरणों पर स्व-संरेखित गेटों का प्रदर्शन किया गया था, किन्तु उनका वास्तविक प्रभाव सिलिकॉन-गेट उपकरणों पर था।

इतिहास

एल्युमिनियम-गेट एमओएस प्रोसेस टेक्नोलॉजी एमओएस ट्रांजिस्टर के स्रोत और ड्रेन क्षेत्रों की परिभाषा और डोपिंग के साथ शुरू हुई, इसके पश्चात गेट मास्क ने ट्रांजिस्टर के पतले-ऑक्साइड क्षेत्र को परिभाषित किया था। अतिरिक्त प्रसंस्करण चरणों के साथ, उपकरण निर्माण को पूरा करने वाले पतले-ऑक्साइड क्षेत्र पर एल्यूमीनियम गेट बनाया जाएगा। स्रोत और ड्रेन यह मास्क के संबंध में गेट मास्क के अपरिहार्य मिसलिग्न्मेंट के कारण, गेट क्षेत्र और स्रोत और ड्रेन क्षेत्रों के बीच अत्यधिक बड़ा ओवरलैप क्षेत्र होना आवश्यक था, यह सुनिश्चित करने के लिए कि पतला-ऑक्साइड क्षेत्र पुल करेगा स्रोत और ड्रेन, यहां तक ​​कि सबसे बुरी स्थिति के गलत संरेखण के अनुसार। इस आवश्यकता के परिणामस्वरूप गेट-टू-सोर्स और गेट-टू-ड्रेन परजीवी कैपेसिटेंस होते हैं जो स्रोत और ड्रेन मास्क के संबंध में गेट ऑक्साइड मास्क के मिसलिग्न्मेंट के आधार पर वेफर से वेफर तक बड़े और परिवर्तनशील होते हैं। परिणाम उत्पादित एकीकृत परिपथों की गति में अवांछनीय प्रसार था, और सैद्धांतिक रूप से संभव की तुलना में बहुत कम गति थी यदि परजीवी धारिता को न्यूनतम तक कम किया जा सकता था। प्रदर्शन पर सबसे प्रतिकूल परिणामों के साथ ओवरलैप कैपेसिटेंस गेट-टू-ड्रेन पैरासिटिक कैपेसिटेंस, Cgd था, जो प्रसिद्ध मिलर प्रभाव गेट ट्रांजिस्टर के गेट-टू-सोर्स कैपेसिटेंस को Cgd के लाभ से गुणा करके बढ़ाता था। वह परिपथ जिसका वह ट्रांजिस्टर भाग था। प्रभाव ट्रांजिस्टर की स्विचिंग गति में अत्यधिक कमी थी।

1966 में, रॉबर्ट डब्ल्यू. बोवर ने महसूस किया कि यदि गेट इलेक्ट्रोड को पहले परिभाषित किया गया था, तो न केवल गेट और स्रोत और ड्रेन के बीच परजीवी धारिता को कम करना संभव होगा, बल्कि यह उन्हें मिसलिग्न्मेंट के प्रति असंवेदनशील भी बना देगा। उन्होंने विधि प्रस्तावित की जिसमें ट्रांजिस्टर के स्रोत और ड्रेन क्षेत्रों को परिभाषित करने के लिए एल्यूमीनियम गेट इलेक्ट्रोड को मास्क के रूप में उपयोग किया गया था। चूंकि, चूंकि एल्यूमीनियम स्रोत और ड्रेन जंक्शनों के पारंपरिक डोपिंग के लिए आवश्यक उच्च तापमान का सामना नहीं कर सका, बोवर ने आयन इम्प्लांटेशन का उपयोग करने का प्रस्ताव दिया, ह्यूजेस एयरक्राफ्ट, उनके नियोक्ता में नई डोपिंग तकनीक अभी भी विकास में है, और अभी तक अन्य प्रयोगशालाओं में उपलब्ध नहीं है। जबकि बोवर का विचार अवधारणात्मक रूप से सही था, व्यवहार में यह काम नहीं करता था, क्योंकि ट्रांजिस्टर को पर्याप्त रूप से निष्क्रिय करना और आयन आरोपण गेट सिलिकॉन क्रिस्टल संरचना को किए गए विकिरण क्षति को ठीक करना असंभव था, क्योंकि इन दो परिचालनों में अधिक तापमान की आवश्यकता होगी। एल्युमिनियम गेट से बचे रहने वालों में से। इस प्रकार उनके आविष्कार ने सिद्धांत का प्रमाण प्रदान किया, किन्तु बोवर की विधि से कभी भी कोई व्यावसायिक एकीकृत परिपथ नहीं बनाया गया था। अधिक दुर्दम्य गेट सामग्री की आवश्यकता थी।

1967 में, बेल लैब्स के जॉन सी. सारस और सहयोगियों ने एल्यूमीनियम गेट को वैक्यूम-वाष्पीकृत अनाकार सिलिकॉन से बने इलेक्ट्रोड से बदल दिया और स्व-संरेखित गेट एमओएस ट्रांजिस्टर के निर्माण में सफल रहे। चूंकि, प्रक्रिया, जैसा कि वर्णित है, केवल सिद्धांत का प्रमाण था, केवल असतत ट्रांजिस्टर के निर्माण के लिए उपयुक्त था और एकीकृत परिपथों के लिए नहीं, और इसके जांचकर्ताओं गेट आगे नहीं बढ़ाया गया हैं।

1968 में, एमओएस उद्योग उच्च थ्रेशोल्ड वोल्टेज (एचवीटी) के साथ एल्यूमीनियम गेट ट्रांजिस्टर का उपयोग कर रहा था और एमओएस एकीकृत परिपथ की गति बढ़ाने और बिजली अपव्यय को कम करने के लिए कम थ्रेसहोल्ड वोल्टेज (एलवीटी) एमओएस प्रक्रिया की इच्छा थी। एल्यूमीनियम गेट के साथ उच्च थ्रेसहोल्ड वोल्टेज ट्रांजिस्टर ने 100 सिलिकॉन ओरिएंटेशन के उपयोग की मांग की, जो चूंकि परजीवी एमओएस ट्रांजिस्टर के लिए बहुत कम थ्रेशोल्ड वोल्टेज का उत्पादन करता था, इसके फलस्वरूप एमओएस ट्रांजिस्टर तब बनाया गया था जब क्षेत्रीय ऑक्साइड पर एल्यूमीनियम के दो जंक्शनों को लेपन कर दिया गया था। इस प्रकार होने वाली आपूर्ति वोल्टेज से हटकर परजीवी थ्रेशोल्ड वोल्टेज को बढ़ाने के लिए, फील्ड ऑक्साइड के अनुसार चयनित क्षेत्रों में एन-टाइप डोपिंग स्तर को बढ़ाना आवश्यक था, और इसे शुरू में तथाकथित चैनल-स्टॉप के उपयोग से पूरा किया गया था। यह प्रति मास्क, और पश्चात में आयन आरोपण के साथ उपयोग किया जाता हैं।

फेयरचाइल्ड में सिलिकॉन-गेट प्रौद्योगिकी का विकास

एसजीटी वाणिज्यिक एमओएस एकीकृत परिपथ बनाने के लिए उपयोग की जाने वाली पहली प्रक्रिया प्रौद्योगिकी थी जिसे पश्चात में 1960 के दशक में पूरे उद्योग गेट व्यापक रूप से अपनाया गया था। 1967 के अंत में, टॉम क्लेन, फेयरचाइल्ड अर्धचालक आर एंड डी लैब्स में काम कर रहे थे, और लेस वाडाज़ को रिपोर्ट कर रहे थे, उन्होंने महसूस किया कि भारी पी-टाइप डॉप्ड सिलिकॉन और एन-टाइप सिलिकॉन के बीच फलन का कार्य अंतर एल्यूमीनियम के बीच कार्य फ़ंक्शन अंतर से 1.1 वोल्ट कम था। और वही एन-टाइप सिलिकॉन का उपयोग किया जाता हैं। इसका अर्थ यह था कि सिलिकॉन गेट के साथ एमओएस ट्रांजिस्टर का थ्रेसहोल्ड वोल्टेज एमओएस ट्रांजिस्टर के थ्रेसहोल्ड वोल्टेज से 1.1 वोल्ट कम हो सकता है, जो उसी प्रारंभिक सामग्री पर बने एल्यूमीनियम गेट के साथ होता है। इसलिए, कोई [111] सिलिकॉन अभिविन्यास के साथ प्रारंभिक सामग्री का उपयोग कर सकता है और साथ ही फ़ील्ड ऑक्साइड के अनुसार चैनल-स्टॉपर मास्क या आयन इम्प्लांटेशन के उपयोग के बिना पर्याप्त परजीवी थ्रेसहोल्ड वोल्टेज और कम थ्रेसहोल्ड वोल्टेज ट्रांजिस्टर दोनों प्राप्त कर सकता है। पी-टाइप डोप्ड सिलिकॉन गेट के साथ न केवल स्व-संरेखित गेट ट्रांजिस्टर बनाना संभव होगा बल्कि उच्च थ्रेसहोल्ड वोल्टेज प्रक्रिया के समान सिलिकॉन अभिविन्यास का उपयोग करके कम थ्रेसहोल्ड वोल्टेज प्रक्रिया भी संभव होगी।

फरवरी 1968 में, फेडेरिको फागिन लेस वाडाज़ के समूह में सम्मिलित हो गए और उन्हें लो-थ्रेशोल्ड-वोल्टेज, स्व-संरेखित गेट एमओएस प्रक्रिया प्रौद्योगिकी के विकास का प्रभारी बनाया गया हैं। फैजिन का पहला काम अनाकार सिलिकॉन गेट के लिए सटीक संरचना समाधान विकसित करना था, और फिर उन्होंने सिलिकॉन गेट के साथ एमओएस IC बनाने के लिए प्रक्रिया संरचना और विस्तृत प्रसंस्करण चरणों का निर्माण किया गया हैं। उन्होंने धातु के उपयोग के बिना अनाकार सिलिकॉन और सिलिकॉन जंक्शनों के बीच सीधा संपर्क बनाने के लिए 'बंद संपर्कों' का भी आविष्कार किया, ऐसी तकनीक जिसने बहुत अधिक परिपथ घनत्व की अनुमति दी, विशेष रूप से यादृच्छिक तर्क परिपथ के लिए उपयोगी हैं।

अपने गेट डिज़ाइन किए गए परीक्षण क्रम का उपयोग करके प्रक्रिया को मान्य और विशेषता देने के पश्चात, फागिन ने अप्रैल 1968 तक पहला काम करने वाला एमओएस सिलिकॉन-गेट ट्रांजिस्टर और परीक्षण संरचनाएँ बनाईं। फिर उन्होंने सिलिकॉन गेट, फेयरचाइल्ड 3708, 8-बिट एनालॉग का उपयोग करके पहला एकीकृत परिपथ डिज़ाइन किया हैं। डिकोडिंग लॉजिक के साथ मल्टीप्लेक्सर, जिसमें फेयरचाइल्ड 3705 की समान कार्यक्षमता थी, धातु-गेट प्रोडक्शन आईसी जिसे फेयरचाइल्ड अर्धचालक को इसके कड़े विनिर्देशों के कारण बनाने में कठिनाई हुई थी।

जुलाई 1968 में 3708 की उपलब्धता ने अगले महीनों के समय प्रक्रिया को और उत्तम बनाने के लिए मंच भी प्रदान किया था, जिससे अक्टूबर 1968 में ग्राहकों को पहले 3708 नमूनों की शिपमेंट हुई और इसे अंत से पहले सामान्य बाजार में व्यावसायिक रूप से उपलब्ध कराया गया। 1968. जुलाई से अक्टूबर 1968 की अवधि के समय, फागिन ने प्रक्रिया में दो अतिरिक्त महत्वपूर्ण चरण जोड़े गए हैं:

  • वाष्प-चरण का एकीकरण गेट प्राप्त पॉली-क्रिस्टलीय सिलिकॉन के साथ वैक्यूम-वाष्पीकृत अनाकार सिलिकॉन के स्थान पर किया जाता हैं। वाष्पित होने के पश्चात से यह चरण आवश्यक हो गया हैं, इसमें सिलिकॉन ऑक्साइड की सतह में विभिन्न चरणों से गुजरने पर तोड़ दिया गया हैं।
  • फ़ॉस्फ़ोरस गेट्टरिंग का उपयोग अशुद्धियों को सोखने के लिए, सदैव ट्रांजिस्टर में सम्मिलित होता है, जिससे विश्वसनीयता की समस्या होती है। फॉस्फोरस गेटरिंग ने लीकेज धारा को अत्यधिक कम करने की अनुमति दी और थ्रेसहोल्ड वोल्टेज बहाव से बचने के लिए जो अभी भी एल्युमिनियम गेट के साथ एमओएस तकनीक से ग्रस्त है (एल्युमीनियम गेट के साथ एमओएस ट्रांजिस्टर आवश्यक उच्च तापमान के कारण फॉस्फोरस गेटरिंग के लिए उपयुक्त नहीं थे)।

सिलिकॉन गेट के साथ, एमओएस ट्रांजिस्टर की दीर्घकालिक विश्वसनीयता जल्द ही बाइपोलर आईसी के स्तर तक पहुंच गई, जिससे एमओएस प्रौद्योगिकी को व्यापक रूप से अपनाने के लिए बड़ी बाधा दूर हो गई।

1968 के अंत तक सिलिकॉन-गेट तकनीक ने प्रभावशाली परिणाम प्राप्त किए थे। चूंकि 3708 को 3705 के समान उत्पादन टूलिंग का उपयोग करने की सुविधा के लिए 3705 के लगभग समान क्षेत्र के लिए डिज़ाइन किया गया था, इसे अत्यधिक छोटा बनाया जा सकता था। बहरहाल, की तुलना में इसका उत्तम प्रदर्शन था 3705: यह 5 गुना तेज था, इसमें लगभग 100 गुना कम लीकेज धारा था, और एनालॉग स्विच बनाने वाले बड़े ट्रांजिस्टर का ऑन रेजिस्टेंस 3 गुना कम था।[4]: pp6-7 

इंटेल पर व्यावसायीकरण

सिलिकॉन-गेट तकनीक (एसजीटी) को इंटेल गेट इसकी स्थापना जुलाई 1968 में अपनाया गया था, और कुछ वर्षों के भीतर दुनिया भर में एमओएस एकीकृत परिपथ के निर्माण के लिए मुख्य तकनीक बन गई, जो आज तक चली आ रही है। फ्लोटिंग सिलिकॉन-गेट ट्रांजिस्टर का उपयोग करके गैर-वाष्पशील मेमोरी विकसित करने वाली इंटेल भी पहली कंपनी थी।

सिलिकॉन-गेट तकनीक का उपयोग करने वाली पहली मेमोरी चिप इंटेल 1101 स्टेटिक रैंडम एक्सेस मेमोरी (स्टैटिक रैंडम-एक्सेस मेमोरी) चिप थी, 1968 में अर्धचालक यूक्ति फैब्रिकेशन और 1969 में प्रदर्शित हुई।[5] पहला वाणिज्यिक सिंगल-चिप माइक्रोप्रोसेसर, इंटेल 4004, फागिन गेट अपनी सिलिकॉन-गेट एमओएस IC तकनीक का उपयोग करके विकसित किया गया था। मार्सियन हॉफ, अपार्टमेंट मेज़र और मासाटोशी द्वीप ने संरचना में योगदान दिया हैं।[6]

एसजीटी पर मूल दस्तावेज

  • बोवर, आरडब्ल्यू और डिल, आरजी (1966) हैं। स्रोत-ड्रेन मास्क के रूप में गेट का उपयोग करके गढ़े गए इंसुलेटेड गेट फील्ड इफेक्ट ट्रांजिस्टर। IEEE अंतर्राष्ट्रीय इलेक्ट्रॉन उपकरण बैठक, 1966
  • फागिन, एफ., क्लेन, टी., और वाडाज़, एल.: इंसुलेटेड गेट फील्ड इफेक्ट ट्रांजिस्टर एकीकृत परिपथ विद सिलिकॉन गेट्स। IEEE अंतर्राष्ट्रीय इलेक्ट्रॉन उपकरण बैठक, वाशिंगटन डीसी, 1968 [http://www.intel4004.com/images/iedm_covart.jpg
  • यूएस 3475234, केर्विन, राॅबर्ट ई; क्लेन, डोनाल्ड एल & सैरेस, जाॅन सी, "एमआईएस संरचना बनाने की विधि", published 28-10-1969, assigned to बेल टेलीफोन लेबोरेटरीज इंक. 
  • फेडेरिको फागिन और थॉमस क्लेन।: कम थ्रेसहोल्ड वाले एमओएस उपकरणों की तेज पीढ़ी नई लहर, सिलिकॉन-गेट आईसी के क्रेस्ट की सवारी कर रही है। फेयरचाइल्ड 3708 पर कवर स्टोरी, इलेक्ट्रॉनिक्स पत्रिका, 29 सितंबर, 1969।
  • वैडास्ज, एल एल; ग्रोव, ए एस; रोव, टी ए; मोरे, जी ई (October 1969). "सिलिकॉन गेट प्रौद्योगिकी". IEEE स्पैक्ट्रम. pp. 27–35.
  • एफ. फागिन, टी. क्लेन सिलिकॉन गेट टेक्नोलॉजी, सॉलिड स्टेट इलेक्ट्रॉनिक्स, 1970, वॉल्यूम। 13, पीपी। 1125–1144।
  • यूएस 3673471, क्लेन, थाॅमस & फैजिन, फेडरीको, "MOS प्रकार के उपकरणों के लिए डोप्ड सेमीकंडक्टर इलेक्ट्रोड", published 1972-06-27, assigned to फेयरचाइल्ड कैमरा एंड इंस्ट्रूमेंट कॉर्पोरेशन 

पेटेंट

स्व-संरेखित गेट डिज़ाइन को 1969 में केर्विन, डोनाल्ड एल. क्लेन और सारस की टीम गेट पेटेंट कराया गया था।[7] यह स्वतंत्र रूप से रॉबर्ट डब्ल्यू बोवर (यू.एस. 3,472,712, 14 अक्टूबर, 1969 को जारी, 27 अक्टूबर, 1966 को दायर) गेट आविष्कार किया गया था। बेल लैब्स केर्विन एट अल द्वारा पेटेंट 27 मार्च, 1967 तक पंजीकृत नहीं किया गया था, आर.डब्ल्यू. बोवर और एच.डी. डिल गेट प्रकाशित किए जाने के कई महीनों पश्चात और 1966 में इंटरनेशनल इलेक्ट्रॉन यूक्ति मीटिंग, वाशिंगटन, डीसी में इस काम का पहला प्रकाशन प्रस्तुत किया गया था।[8]

बोवर से जुड़े इस नियम के अनुसार इस पर कार्य करने के लिए तीसरे परिपथ कोर्ट ऑफ अपील्स ने निर्धारित किया कि केर्विन, डोनाल्ड एल. क्लेन और सारस स्व-संरेखित सिलिकॉन गेट ट्रांजिस्टर के आविष्कारक थे। उस आधार पर, उन्हें मूल पेटेंट यूएस 3,475,234 से सम्मानित किया गया था। वास्तव में स्व-संरेखित गेट मौस्फेट का आविष्कार रॉबर्ट डब्ल्यू. बोवर यूएस 3,472,712 गेट किया गया था, जो 14 अक्टूबर, 1969 को जारी किया गया था, 27 अक्टूबर, 1966 को अपील किया गया था। बोवर और एच. डी. डिल ने अंतर्राष्ट्रीय इलेक्ट्रॉन यूक्ति मीटिंग, वाशिंगटन, डी.सी., 1966 में गेट के रूप में स्रोत-ड्रेन मास्क का उपयोग करते हुए इंसुलेटेड गेट फील्ड इफेक्ट ट्रांजिस्टर के नाम से प्रकाशित इस कार्य का पहला प्रकाशन प्रस्तुत किया गया हैं। बोवर के काम ने स्व-संरेखित-गेट का वर्णन किया मौस्फेट, एल्यूमीनियम और पॉलीसिलिकॉन दोनों गेटों के साथ बनाया गया है। इसने स्रोत और ड्रेन क्षेत्रों को परिभाषित करने के लिए मास्क के रूप में गेट इलेक्ट्रोड का उपयोग करके स्रोत और ड्रेन बनाने के लिए आयन आरोपण और प्रसार दोनों का उपयोग किया था। बेल लैब्स टीम ने 1966 में IEDM की इस बैठक में भाग लिया, और उन्होंने 1966 में अपनी प्रस्तुति के पश्चात बोवर के साथ इस काम पर चर्चा की। बोवर ने पहले गेट के रूप में एल्यूमीनियम का उपयोग करके स्व-संरेखित गेट बनाया था और 1966 में प्रस्तुति से पहले यूक्ति बनाया था। गेट के रूप में पॉलीसिलिकॉन का उपयोग किया था।

स्व-संरेखित गेट में सामान्यतः आयन आरोपण सम्मिलित होता है, जो 1960 के दशक का अन्य अर्धचालक प्रक्रिया नवाचार है। आयन आरोपण और स्व-संरेखित फाटकों के इतिहास अत्यधिक परस्पर जुड़े हुए हैं, जैसा कि आरबी फेयर गेट गहन इतिहास में बताया गया है।[9] स्व-संरेखित सिलिकॉन-गेट तकनीक का उपयोग करने वाला पहला व्यावसायिक उत्पाद 1968 में फेयरचाइल्ड अर्धचालक 3708 8-बिट एनालॉग मल्टीप्लेक्सर था, जिसे फेडेरिको फागिन गेट डिजाइन किया गया था, जिसने अवधारणा के पूर्वोक्त गैर-कार्यशील प्रमाणों को उद्योग में परिवर्तित के लिए कई आविष्कारों का बीड़ा उठाया था। वास्तव में उसके पश्चात अपनाया गया हैं।[10][11]

निर्माण प्रक्रिया

स्व-संरेखित गेटों का महत्व उन्हें बनाने की प्रक्रिया में आता है। स्रोत और ड्रेन के प्रसार के लिए गेट ऑक्साइड को मास्क के रूप में उपयोग करने की प्रक्रिया दोनों प्रक्रिया को सरल बनाती है और उपज में अत्यधिक सुधार करती है।

प्रक्रिया का चरण

स्व-संरेखित गेट बनाने के चरण निम्नलिखित हैं:[12]

एक क्लीनरूम सुविधा जहां ये चरण किए जाते हैं

इन चरणों को सबसे पहले फेडेरिको फागिन गेट बनाया गया था और 1968 में फेयरचाइल्ड अर्धचालक में विकसित सिलिकॉन गेट टेक्नोलॉजी प्रक्रिया में इसका उपयोग करते हुए पहले वाणिज्यिक एकीकृत परिपथ, फेयरचाइल्ड 3708 के निर्माण के लिए उपयोग किया गया था। [13]

1. फील्ड ऑक्साइड पर कुएँ खुदे हुए होते हैं जहाँ ट्रांजिस्टर बनने होते हैं। प्रत्येक अच्छी तरह से एमओएस ट्रांजिस्टर के स्रोत, ड्रेन और सक्रिय गेट क्षेत्रों को परिभाषित करता है।
2. सूखी ऊष्मीय ऑक्सीकरण प्रक्रिया का उपयोग करके, गेट ऑक्साइड (SiO2) की पतली परत (5-200 NM)2) सिलिकॉन वेफर पर उगाया जाता है।
3. रासायनिक वाष्प जमाव (सीवीडी) प्रक्रिया का उपयोग करके गेट ऑक्साइड के ऊपर पॉलीसिलिकॉन की परत लेपित की जाती है।
4. पॉलीसिलिकॉन के ऊपर फोटोरेसिस्ट की परत लगाई जाती है।
5. फोटोरेसिस्ट के ऊपर मास्क रखा जाता है और पराबैंगनी प्रकाश के संपर्क में आता है, यह उन क्षेत्रों में फोटोरेसिस्ट परत को तोड़ देता है जहां मास्क ने इसकी रक्षा नहीं की थी।
6. फोटो प्रतिरोध को विशेष डेवलपर समाधान के साथ प्रदर्शित किया जाता है। इसका उद्देश्य उस फोटोरेसिस्ट को हटाना है जो यूवी प्रकाश गेट टूट गया था।
7. पॉलीसिलिकॉन और गेट ऑक्साइड जो फोटोरेसिस्ट गेट कवर नहीं किया जाता है, उसे बफर्ड आयन ईच प्रक्रिया से हटा दिया जाता है। यह सामान्यतः एसिड समाधान होता है जिसमें हाइड्रोफ्लुओरिक अम्ल होता है।
8. सिलिकॉन वेफर से बाकी फोटोरेसिस्ट को हटा दिया जाता है। गेट ऑक्साइड के ऊपर और फील्ड ऑक्साइड के ऊपर अब पॉलीसिलिकॉन के साथ वेफर है।
9. गेट क्षेत्र को छोड़कर जो पॉलीसिलिकॉन गेट गेट संरक्षित है, ट्रांजिस्टर के स्रोत और ड्रेन क्षेत्रों को प्रकाशित करते हुए पतले ऑक्साइड को उकेरा जाता है।
10. पारंपरिक डोपिंग प्रक्रिया, या आयन-प्रत्यारोपण नामक प्रक्रिया का उपयोग करके, स्रोत, ड्रेन और पॉलीसिलिकॉन को डोप किया जाता है। सिलिकॉन गेट के नीचे पतला ऑक्साइड डोपिंग प्रक्रिया के लिए मास्क का काम करता है। यह कदम वह है जो गेट को स्व-संरेखित करता है। स्रोत और ड्रेन क्षेत्र स्वचालित रूप से (पहले से सम्मिलित) गेट के साथ ठीक से संरेखित होते हैं।
11. वेफर उच्च तापमान भट्टी (>800 °C or 1,500 °F). यह स्रोत और ड्रेन क्षेत्रों को बनाने के लिए डोपेंट को आगे क्रिस्टल संरचना में फैलाता है और परिणामस्वरूप डोपेंट गेट के नीचे थोड़ा फैलता है।
12. प्रकाशित क्षेत्रों की रक्षा के लिए सिलिकॉन डाइऑक्साइड के वाष्प को एकत्रित करने के साथ प्रक्रिया जारी है, और प्रक्रिया को पूरा करने के लिए शेष सभी चरणों के साथ उपयोग किया जाता हैं।

यह भी देखें

टिप्पणियाँ


संदर्भ

  1. Mead, Carver; Conway, Lynn (1991). वीएलएसआई सिस्टम का परिचय. Addison Wesley Publishing Company. ISBN 978-0-201-04358-7. OCLC 634332043.
  2. Yanda, Heynes, and Miller (2005). Demystifying Chipmaking. pp. 148–149. ISBN 978-0-7506-7760-8.{{cite book}}: CS1 maint: multiple names: authors list (link)
  3. Orton, John Wilfred (2004). The Story of Semiconductors. p. 114. ISBN 978-0-19-853083-1.
  4. Federico Faggin and Thomas Klein Electronics magazine (September 29, 1969) A Faster Generation Of MOS Devices With Low Thresholds Is Riding The Crest Of The New Wave, Silicon-Gate IC's see pp6-7
  5. Sah, Chih-Tang (October 1988). "एमओएस ट्रांजिस्टर का विकास-गर्भाधान से वीएलएसआई तक" (PDF). Proceedings of the IEEE. 76 (10): 1280–1326 (1303). doi:10.1109/5.16328. ISSN 0018-9219.
  6. "1971: Microprocessor Integrates CPU Function onto a Single Chip". The Silicon Engine. Computer History Museum. Retrieved 22 July 2019.
  7. US 3475234, Kerwin, Robert E.; Klein, Donald L. & Sarace, John C., "एमआईएस संरचना बनाने की विधि", published 28-10-1969, assigned to Bell Telephone Laboratories Inc. 
  8. Bower, RW & Dill, RG (1966). "Insulated gate field effect transistors fabricated using the gate as source-drain mask". Electron Devices Meeting, 1966 International. IEEE. 12: 102–104. doi:10.1109/IEDM.1966.187724.
  9. Richard B. Fair (Jan 1998). "History of Some Early Developments in Ion-Implantation Technology Leading to Silicon Transistor Manufacturing". Proc. IEEE. 86 (1): 111–137. doi:10.1109/5.658764.
  10. John A. N. Lee (1995). International biographical dictionary of computer pioneers, Volume 1995, Part 2. Taylor & Francis US. p. 289. ISBN 978-1-884964-47-3.
  11. Bo Lojek (2007). History of semiconductor engineering. Springer. p. 359. ISBN 978-3-540-34257-1.
  12. Streetman, Ben; Banerjee (2006). ठोस राज्य इलेक्ट्रॉनिक उपकरण. PHI. pp. 269–27, 313. ISBN 978-81-203-3020-7.
  13. Faggin, F., Klein, T., and Vadasz, L.: "Insulated Gate Field Effect Transistor Integrated Circuits With Silicon Gates". IEEE International Electron Devices Meeting, Washington D.C, 1968