एलन विचरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{short description|Measure of frequency stability in clocks and oscillators}}
{{short description|Measure of frequency stability in clocks and oscillators}}


[[File:AllanDeviation.svg|thumb|right|300px|अधिक त्रुटिहीन संदर्भ घड़ी के साथ तुलना करके घड़ी का सबसे आसानी से परीक्षण किया जाता है। समय के अंतराल के समय τ, जैसा कि संदर्भ घड़ी द्वारा मापा जाता है, परीक्षण के अनुसार घड़ी τy से आगे बढ़ती है, जहां y उस अंतराल पर औसत (सापेक्ष) घड़ी आवृत्ति है। यदि हम दिखाए गए अनुसार लगातार दो अंतरालों को मापते हैं, तो हम का मान प्राप्त कर सकते हैं {{nowrap|(''y'' − ''y''′)<sup>2</sup>}}—छोटा मान अधिक स्थिर और त्रुटिहीन घड़ी का संकेत देता है। यदि हम इस प्रक्रिया को अनेक बार दोहराते हैं, तो का औसत मान {{nowrap|(''y'' − ''y''′)<sup>2</sup>}} अवलोकन समय τ के लिए एलन प्रसरण (या एलन विचलन वर्ग) के दोगुने के बराबर है।]]एलन प्रसरण (AVAR), जिसे दो-नमूना प्रसरण के रूप में भी जाना जाता है, घड़ियों, [[थरथरानवाला]] और [[एम्पलीफायर]]ों में [[आवृत्ति स्थिरता]] का उपाय है। इसका नाम डेविड डब्ल्यू एलन के नाम पर रखा गया है और इसे गणितीय रूप में व्यक्त किया गया है <math>\sigma_y^2(\tau)</math>.
[[File:AllanDeviation.svg|thumb|right|300px|अधिक सटीक संदर्भ घड़ी के साथ तुलना करके घड़ी का सबसे आसानी से परीक्षण किया जाता है। समय के अंतराल के दौरान τ, जैसा कि संदर्भ घड़ी द्वारा मापा जाता है, परीक्षण के तहत घड़ी τy से आगे बढ़ती है, जहां y उस अंतराल पर औसत (सापेक्ष) घड़ी आवृत्ति है। यदि हम दिखाए गए अनुसार लगातार दो अंतरालों को मापते हैं, तो हम का मान प्राप्त कर सकते हैं {{nowrap|(''y'' − ''y''′)<sup>2</sup>}}—छोटा मान अधिक स्थिर और सटीक घड़ी का संकेत देता है। यदि हम इस प्रक्रिया को कई बार दोहराते हैं, तो का औसत मान {{nowrap|(''y'' − ''y''′)<sup>2</sup>}} अवलोकन समय τ के लिए एलन प्रसरण (या एलन विचलन वर्ग) के दोगुने के बराबर है।]]एलन प्रसरण (AVAR), जिसे दो-नमूना प्रसरण के रूप में भी जाना जाता है, घड़ियों, [[थरथरानवाला]] और [[एम्पलीफायर]]ों में [[आवृत्ति स्थिरता]] का उपाय है। इसका नाम डेविड डब्ल्यू एलन के नाम पर रखा गया है और इसे गणितीय रूप में व्यक्त किया गया है <math>\sigma_y^2(\tau)</math>.
एलन विचलन (एडीईवी), जिसे सिग्मा-ताऊ के नाम से भी जाना जाता है, एलन भिन्नता का वर्गमूल है, <math>\sigma_y(\tau)</math>.
एलन विचलन (एडीईवी), जिसे सिग्मा-ताऊ के नाम से भी जाना जाता है, एलन भिन्नता का वर्गमूल है, <math>\sigma_y(\tau)</math>.


एम-नमूना भिन्नता एम नमूने का उपयोग करके आवृत्ति स्थिरता का उपाय है, माप और अवलोकन समय के मध्य समय टी <math>\tau</math>. एम-नमूना विचरण के रूप में व्यक्त किया गया है
एम-नमूना भिन्नता एम नमूने का उपयोग करके आवृत्ति स्थिरता का उपाय है, माप और अवलोकन समय के बीच समय टी <math>\tau</math>. एम-नमूना विचरण के रूप में व्यक्त किया गया है


:<math>\sigma_y^2(M, T, \tau).</math>
:<math>\sigma_y^2(M, T, \tau).</math>
एलन विचरण का उद्देश्य ध्वनि प्रक्रियाओं के कारण स्थिरता का अनुमान लगाना है, न कि व्यवस्थित त्रुटियों या खामियों जैसे कि आवृत्ति बहाव या तापमान प्रभाव। एलन विचरण और एलन विचलन आवृत्ति स्थिरता का वर्णन करते हैं। नीचे दिए गए खंड #मूल्य की व्याख्या भी देखें।
एलन विचरण का उद्देश्य शोर प्रक्रियाओं के कारण स्थिरता का अनुमान लगाना है, न कि व्यवस्थित त्रुटियों या खामियों जैसे कि आवृत्ति बहाव या तापमान प्रभाव। एलन विचरण और एलन विचलन आवृत्ति स्थिरता का वर्णन करते हैं। नीचे दिए गए खंड #मूल्य की व्याख्या भी देखें।


एलन प्रसरण के विभिन्न अनुकूलन या परिवर्तन भी हैं, विशेष रूप से संशोधित एलन प्रसरण MAVAR या MVAR, कुल प्रसरण, और [[हैडमार्ड विचरण]]। [[समय विचलन]] (टीडीईवी) या समय भिन्नता (टीवीएआर) जैसे समय-स्थिरता संस्करण भी उपस्तिथ हैं। एलन विचरण और इसके वेरिएंट [[ समयनिर्धारक |समयनिर्धारक]] के दायरे से बाहर उपयोगी सिद्ध हुए हैं और जब भी ध्वनि प्रक्रिया बिना शर्त स्थिर नहीं होती है, तो उपयोग करने के लिए उत्तम सांख्यिकीय उपकरणों का सेट होता है, इस प्रकार व्युत्पन्न उपस्तिथ होता है।
एलन प्रसरण के विभिन्न अनुकूलन या परिवर्तन भी हैं, विशेष रूप से संशोधित एलन प्रसरण MAVAR या MVAR, कुल प्रसरण, और [[हैडमार्ड विचरण]]। [[समय विचलन]] (टीडीईवी) या समय भिन्नता (टीवीएआर) जैसे समय-स्थिरता संस्करण भी मौजूद हैं। एलन विचरण और इसके वेरिएंट [[ समयनिर्धारक |समयनिर्धारक]] के दायरे से बाहर उपयोगी साबित हुए हैं और जब भी शोर प्रक्रिया बिना शर्त स्थिर नहीं होती है, तो उपयोग करने के लिए बेहतर सांख्यिकीय उपकरणों का सेट होता है, इस प्रकार व्युत्पन्न मौजूद होता है।


सामान्य एम-नमूना भिन्नता महत्वपूर्ण बनी हुई है, जिससे कि यह मापन में मृत समय की अनुमति देता है, और पूर्वाग्रह कार्य एलन भिन्नता मूल्यों में रूपांतरण की अनुमति देते हैं। फिर भी, अधिकांश अनुप्रयोगों के लिए 2-नमूना, या एलन विचरण का विशेष मामला <math>T = \tau</math> सबसे बड़ी रुचि है।
सामान्य एम-नमूना भिन्नता महत्वपूर्ण बनी हुई है, क्योंकि यह मापन में मृत समय की अनुमति देता है, और पूर्वाग्रह कार्य एलन भिन्नता मूल्यों में रूपांतरण की अनुमति देते हैं। फिर भी, अधिकांश अनुप्रयोगों के लिए 2-नमूना, या एलन विचरण का विशेष मामला <math>T = \tau</math> सबसे बड़ी रुचि है।


[[File:AllanDeviationExample.gif|thumb|right|300px|घड़ी के एलन विचलन का उदाहरण प्लॉट। बहुत कम अवलोकन समय τ पर, ध्वनि के कारण एलन विचलन अधिक होता है। अधिक τ पर, यह घट जाती है जिससे कि ध्वनि औसत हो जाता है। अभी भी लंबे τ पर, एलन विचलन फिर से बढ़ने लगता है, यह सुझाव देता है कि तापमान परिवर्तन, घटकों की उम्र बढ़ने, या ऐसे अन्य कारकों के कारण घड़ी की आवृत्ति धीरे-धीरे बढ़ रही है। त्रुटि पट्टियाँ τ के साथ बढ़ती हैं जिससे कि बड़े τ के लिए बहुत सारे डेटा बिंदु प्राप्त करने में समय लगता है।]]
[[File:AllanDeviationExample.gif|thumb|right|300px|घड़ी के एलन विचलन का उदाहरण प्लॉट। बहुत कम अवलोकन समय τ पर, शोर के कारण एलन विचलन अधिक होता है। अधिक τ पर, यह घट जाती है क्योंकि शोर औसत हो जाता है। अभी भी लंबे τ पर, एलन विचलन फिर से बढ़ने लगता है, यह सुझाव देता है कि तापमान परिवर्तन, घटकों की उम्र बढ़ने, या ऐसे अन्य कारकों के कारण घड़ी की आवृत्ति धीरे-धीरे बढ़ रही है। त्रुटि पट्टियाँ τ के साथ बढ़ती हैं क्योंकि बड़े τ के लिए बहुत सारे डेटा बिंदु प्राप्त करने में समय लगता है।]]


== पृष्ठभूमि ==
== पृष्ठभूमि ==
[[क्रिस्टल थरथरानवाला]] और परमाणु घड़ियों की स्थिरता की जांच करते समय, यह पाया गया कि उनके पास केवल सफेद ध्वनि से युक्त [[चरण शोर|चरण ध्वनि]] नहीं था, बल्कि [[झिलमिलाहट शोर|झिलमिलाहट ध्वनि]] भी था। ये ध्वनि रूप [[मानक विचलन]] जैसे पारंपरिक सांख्यिकीय उपकरणों के लिए चुनौती बन जाते हैं, जिससे कि अनुमानक अभिसरण नहीं करेगा। इस प्रकार ध्वनि को भिन्न-भिन्न कहा जाता है। स्थिरता के विश्लेषण के प्रारंभिक प्रयासों में सैद्धांतिक विश्लेषण और व्यावहारिक माप दोनों सम्मिलित थे।<ref name="Cutler1966">{{Citation |last1=Cutler |first1=L. S. |last2=Searle |first2=C. L. |url=http://wwwusers.ts.infn.it/~milotti/Didattica/Segnali/Cutler&Searle_1966.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://wwwusers.ts.infn.it/~milotti/Didattica/Segnali/Cutler&Searle_1966.pdf |archive-date=2022-10-09 |url-status=live |title=Some Aspects of the Theory and Measurements of Frequency Fluctuations in Frequency Standards |journal=Proceedings of the IEEE |volume=54 |number=2 |date=February 1966 |pages=136–154 |doi=10.1109/proc.1966.4627}}</ref><ref name="Leeson1966">{{Citation|last=Leeson |first=D. B |title=A simple Model of Feedback Oscillator Noise Spectrum |url=http://ccnet.stanford.edu/cgi-bin/course.cgi?cc=ee246&action=handout_download&handout_id=ID113350669026291 |pages=329–330 |journal=Proceedings of the IEEE |volume=54 |number=2 |date=February 1966 |access-date=20 September 2012 |url-status=dead |archive-url=https://web.archive.org/web/20140201231407/http://ccnet.stanford.edu/cgi-bin/course.cgi?cc=ee246&action=handout_download&handout_id=ID113350669026291 |archive-date=1 February 2014 |doi=10.1109/proc.1966.4682}}</ref>
[[क्रिस्टल थरथरानवाला]] और परमाणु घड़ियों की स्थिरता की जांच करते समय, यह पाया गया कि उनके पास केवल सफेद शोर से युक्त [[चरण शोर]] नहीं था, बल्कि [[झिलमिलाहट शोर]] भी था। ये शोर रूप [[मानक विचलन]] जैसे पारंपरिक सांख्यिकीय उपकरणों के लिए चुनौती बन जाते हैं, क्योंकि अनुमानक अभिसरण नहीं करेगा। इस प्रकार शोर को अलग-अलग कहा जाता है। स्थिरता के विश्लेषण के शुरुआती प्रयासों में सैद्धांतिक विश्लेषण और व्यावहारिक माप दोनों शामिल थे।<ref name="Cutler1966">{{Citation |last1=Cutler |first1=L. S. |last2=Searle |first2=C. L. |url=http://wwwusers.ts.infn.it/~milotti/Didattica/Segnali/Cutler&Searle_1966.pdf |archive-url=https://ghostarchive.org/archive/20221009/http://wwwusers.ts.infn.it/~milotti/Didattica/Segnali/Cutler&Searle_1966.pdf |archive-date=2022-10-09 |url-status=live |title=Some Aspects of the Theory and Measurements of Frequency Fluctuations in Frequency Standards |journal=Proceedings of the IEEE |volume=54 |number=2 |date=February 1966 |pages=136–154 |doi=10.1109/proc.1966.4627}}</ref><ref name="Leeson1966">{{Citation|last=Leeson |first=D. B |title=A simple Model of Feedback Oscillator Noise Spectrum |url=http://ccnet.stanford.edu/cgi-bin/course.cgi?cc=ee246&action=handout_download&handout_id=ID113350669026291 |pages=329–330 |journal=Proceedings of the IEEE |volume=54 |number=2 |date=February 1966 |access-date=20 September 2012 |url-status=dead |archive-url=https://web.archive.org/web/20140201231407/http://ccnet.stanford.edu/cgi-bin/course.cgi?cc=ee246&action=handout_download&handout_id=ID113350669026291 |archive-date=1 February 2014 |doi=10.1109/proc.1966.4682}}</ref>
इस प्रकार के ध्वनि होने का महत्वपूर्ण पक्ष परिणाम यह था कि चूंकि माप के विभिन्न विधि एक-दूसरे से सहमत नहीं थे, इसलिए माप की पुनरावृत्ति का मुख्य पहलू प्राप्त नहीं किया जा सका। यह स्रोतों की तुलना करने और आपूर्तिकर्ताओं से आवश्यकता के लिए सार्थक विनिर्देश बनाने की संभावना को सीमित करता है। अनिवार्य रूप से सभी प्रकार के वैज्ञानिक और व्यावसायिक उपयोग तब समर्पित मापों तक सीमित थे, जो उम्मीद है कि उस एप्लिकेशन की आवश्यकता पर कब्जा कर लेंगे।
इस प्रकार के शोर होने का महत्वपूर्ण पक्ष परिणाम यह था कि चूंकि माप के विभिन्न तरीके एक-दूसरे से सहमत नहीं थे, इसलिए माप की पुनरावृत्ति का मुख्य पहलू प्राप्त नहीं किया जा सका। यह स्रोतों की तुलना करने और आपूर्तिकर्ताओं से आवश्यकता के लिए सार्थक विनिर्देश बनाने की संभावना को सीमित करता है। अनिवार्य रूप से सभी प्रकार के वैज्ञानिक और व्यावसायिक उपयोग तब समर्पित मापों तक सीमित थे, जो उम्मीद है कि उस एप्लिकेशन की आवश्यकता पर कब्जा कर लेंगे।


इन समस्याओं का समाधान करने के लिए, डेविड एलन ने एम-नमूना भिन्नता और (अप्रत्यक्ष रूप से) दो-नमूना भिन्नता प्रस्तुत की।<ref name=Allan1966/>जबकि दो-नमूना विचरण ने सभी प्रकार के ध्वनि को पूरी प्रकार से भिन्न करने की अनुमति नहीं दी, इसने दो या दो से अधिक ऑसिलेटर्स के मध्य चरण या आवृत्ति माप की समय-श्रृंखला के लिए अनेक ध्वनि-रूपों को सार्थक रूप से भिन्न करने का साधन प्रदान किया। एलन ने सामान्य 2-नमूना भिन्नता के माध्यम से किसी भी एम-नमूना भिन्नता को किसी भी एन-नमूना भिन्नता के मध्य परिवर्तित करने के लिए विधि प्रदान की, इस प्रकार सभी एम-नमूना भिन्नता तुलनीय हो गई। रूपांतरण तंत्र ने यह भी सिद्ध किया कि एम-नमूना विचरण बड़े एम के लिए अभिसरण नहीं करता है, इस प्रकार उन्हें कम उपयोगी बना देता है। आईईईई ने बाद में 2-नमूना भिन्नता को पसंदीदा उपाय के रूप में पहचाना।<ref name="IEEE1139">{{cite journal | doi = 10.1109/IEEESTD.1999.90575 | title=Definitions of physical quantities for fundamental frequency and time metrology &ndash; Random Instabilities | journal=IEEE STD 1139-1999| isbn=978-0-7381-1753-9 | year=1999 }}</ref>
इन समस्याओं का समाधान करने के लिए, डेविड एलन ने एम-नमूना भिन्नता और (अप्रत्यक्ष रूप से) दो-नमूना भिन्नता पेश की।<ref name=Allan1966/>जबकि दो-नमूना विचरण ने सभी प्रकार के शोर को पूरी तरह से अलग करने की अनुमति नहीं दी, इसने दो या दो से अधिक ऑसिलेटर्स के बीच चरण या आवृत्ति माप की समय-श्रृंखला के लिए कई शोर-रूपों को सार्थक रूप से अलग करने का साधन प्रदान किया। एलन ने सामान्य 2-नमूना भिन्नता के माध्यम से किसी भी एम-नमूना भिन्नता को किसी भी एन-नमूना भिन्नता के बीच परिवर्तित करने के लिए विधि प्रदान की, इस प्रकार सभी एम-नमूना भिन्नता तुलनीय हो गई। रूपांतरण तंत्र ने यह भी साबित किया कि एम-नमूना विचरण बड़े एम के लिए अभिसरण नहीं करता है, इस प्रकार उन्हें कम उपयोगी बना देता है। आईईईई ने बाद में 2-नमूना भिन्नता को पसंदीदा उपाय के रूप में पहचाना।<ref name="IEEE1139">{{cite journal | doi = 10.1109/IEEESTD.1999.90575 | title=Definitions of physical quantities for fundamental frequency and time metrology &ndash; Random Instabilities | journal=IEEE STD 1139-1999| isbn=978-0-7381-1753-9 | year=1999 }}</ref>
प्रारंभिक चिंता समय से संबंधित थी- और आवृत्ति-माप उपकरण जिनके माप के मध्य मृत समय था। माप की ऐसी श्रृंखला ने संकेत का निरंतर अवलोकन नहीं किया और इस प्रकार माप में [[व्यवस्थित पूर्वाग्रह]] प्रस्तुत किया। इन पूर्वाग्रहों का अनुमान लगाने में बहुत सावधानी बरती गई। जीरो-डेड-टाइम काउंटरों की शुरूआत ने आवश्यकता को दूर कर दिया, किन्तु पूर्वाग्रह-विश्लेषण उपकरण उपयोगी सिद्ध हुए हैं।
प्रारंभिक चिंता समय से संबंधित थी- और आवृत्ति-माप उपकरण जिनके माप के बीच मृत समय था। माप की ऐसी श्रृंखला ने संकेत का निरंतर अवलोकन नहीं किया और इस प्रकार माप में [[व्यवस्थित पूर्वाग्रह]] पेश किया। इन पूर्वाग्रहों का अनुमान लगाने में बहुत सावधानी बरती गई। जीरो-डेड-टाइम काउंटरों की शुरूआत ने आवश्यकता को दूर कर दिया, लेकिन पूर्वाग्रह-विश्लेषण उपकरण उपयोगी साबित हुए हैं।


चिंता का अन्य प्रारंभिक पहलू इस बात से संबंधित था कि माप उपकरण की [[बैंडविड्थ (सिग्नल प्रोसेसिंग)]] माप को कैसे प्रभावित करेगी, जैसे कि इसे नोट करने की आवश्यकता है। यह बाद में पाया गया कि एल्गोरिदमिक रूप से अवलोकन को बदलकर <math>\tau</math>, केवल कम <math>\tau</math> मूल्य प्रभावित होंगे, जबकि उच्च मूल्य अप्रभावित रहेंगे। का परिवर्तन <math>\tau</math> इसे पूर्णांक एकाधिक होने देकर किया जाता है <math>n</math> माप [[ समय आधार |समय आधार]] का <math>\tau_0</math>:
चिंता का अन्य प्रारंभिक पहलू इस बात से संबंधित था कि माप उपकरण की [[बैंडविड्थ (सिग्नल प्रोसेसिंग)]] माप को कैसे प्रभावित करेगी, जैसे कि इसे नोट करने की आवश्यकता है। यह बाद में पाया गया कि एल्गोरिदमिक रूप से अवलोकन को बदलकर <math>\tau</math>, केवल कम <math>\tau</math> मूल्य प्रभावित होंगे, जबकि उच्च मूल्य अप्रभावित रहेंगे। का परिवर्तन <math>\tau</math> इसे पूर्णांक एकाधिक होने देकर किया जाता है <math>n</math> माप [[ समय आधार |समय आधार]] का <math>\tau_0</math>:


:<math>\tau = n \tau_0.</math>
:<math>\tau = n \tau_0.</math>
डीबी लेसन द्वारा क्रिस्टल ऑसिलेटर्स के भौतिकी का विश्लेषण किया गया था,<ref name=Leeson1966/>और परिणाम को अब लीसन के समीकरण के रूप में जाना जाता है। थरथरानवाला में फीडबैक फीडबैक एम्पलीफायर का सफेद ध्वनि और झिलमिलाहट ध्वनि बना देगा और क्रिस्टल पावर-लॉ ध्वनि बन जाएगा <math>f^{-2}</math> सफेद आवृत्ति ध्वनि और <math>f^{-3}</math> झिलमिलाहट आवृत्ति ध्वनि क्रमशः। इन ध्वनि रूपों का प्रभाव है कि समय-त्रुटि के नमूने संसाधित करते समय मानक भिन्नता अनुमानक अभिसरण नहीं करता है। जब ऑसिलेटर स्थिरता पर काम प्रारंभ हुआ, तो फीडबैक ऑसिलेटर्स की यह यांत्रिकी अज्ञात थी, किन्तु लेसन द्वारा उसी समय प्रस्तुत किया गया था जब सांख्यिकीय उपकरणों का सेट डेविड डब्ल्यू एलन द्वारा उपलब्ध कराया गया था। लीसन प्रभाव पर अधिक विस्तृत प्रस्तुति के लिए, आधुनिक चरण-ध्वनि साहित्य देखें।<ref name="Rubiola2009">{{Citation |last=Rubiola |first=Enrico |title=Phase Noise and Frequency Stability in Oscillators |publisher=Cambridge university press |isbn=978-0-521-88677-2 |year=2008}}</ref>
डीबी लेसन द्वारा क्रिस्टल ऑसिलेटर्स के भौतिकी का विश्लेषण किया गया था,<ref name=Leeson1966/>और परिणाम को अब लीसन के समीकरण के रूप में जाना जाता है। थरथरानवाला में फीडबैक फीडबैक एम्पलीफायर का सफेद शोर और झिलमिलाहट शोर बना देगा और क्रिस्टल पावर-लॉ शोर बन जाएगा <math>f^{-2}</math> सफेद आवृत्ति शोर और <math>f^{-3}</math> झिलमिलाहट आवृत्ति शोर क्रमशः। इन शोर रूपों का प्रभाव है कि समय-त्रुटि के नमूने संसाधित करते समय मानक भिन्नता अनुमानक अभिसरण नहीं करता है। जब ऑसिलेटर स्थिरता पर काम शुरू हुआ, तो फीडबैक ऑसिलेटर्स की यह यांत्रिकी अज्ञात थी, लेकिन लेसन द्वारा उसी समय प्रस्तुत किया गया था जब सांख्यिकीय उपकरणों का सेट डेविड डब्ल्यू एलन द्वारा उपलब्ध कराया गया था। लीसन प्रभाव पर अधिक विस्तृत प्रस्तुति के लिए, आधुनिक चरण-शोर साहित्य देखें।<ref name="Rubiola2009">{{Citation |last=Rubiola |first=Enrico |title=Phase Noise and Frequency Stability in Oscillators |publisher=Cambridge university press |isbn=978-0-521-88677-2 |year=2008}}</ref>
== मूल्य की व्याख्या ==
== मूल्य की व्याख्या ==
एलन विचरण को नमूना अवधि के समय नमूने की गई [[आवृत्ति विचलन]] के लगातार रीडिंग के मध्य अंतर के वर्गों के समय के औसत के आधे के रूप में परिभाषित किया गया है। एलन विचरण नमूनों के मध्य उपयोग की जाने वाली समयावधि पर निर्भर करता है, इसलिए, यह नमूना अवधि का कार्य है, जिसे सामान्यतः τ के रूप में दर्शाया जाता है, इसी प्रकार वितरण को मापा जाता है, और इसे संख्या के अतिरिक्त ग्राफ के रूप में प्रदर्शित किया जाता है। कम एलन विचरण मापा अवधि के समय अच्छी स्थिरता वाली घड़ी की विशेषता है।
एलन विचरण को नमूना अवधि के दौरान नमूने की गई [[आवृत्ति विचलन]] के लगातार रीडिंग के बीच अंतर के वर्गों के समय के औसत के आधे के रूप में परिभाषित किया गया है। एलन विचरण नमूनों के बीच उपयोग की जाने वाली समयावधि पर निर्भर करता है, इसलिए, यह नमूना अवधि का कार्य है, जिसे आमतौर पर τ के रूप में दर्शाया जाता है, इसी तरह वितरण को मापा जाता है, और इसे संख्या के अतिरिक्त ग्राफ के रूप में प्रदर्शित किया जाता है। कम एलन विचरण मापा अवधि के दौरान अच्छी स्थिरता वाली घड़ी की विशेषता है।


एलन विचलन व्यापक रूप से भूखंडों के लिए उपयोग किया जाता है (पारंपरिक रूप से लॉग-लॉग प्लॉट | लॉग-लॉग प्रारूप में) और संख्याओं की प्रस्तुति। यह पसंद किया जाता है, जिससे कि यह सापेक्ष आयाम स्थिरता देता है, जिससे त्रुटियों के अन्य स्रोतों के साथ तुलना में आसानी होती है।
एलन विचलन व्यापक रूप से भूखंडों के लिए उपयोग किया जाता है (पारंपरिक रूप से लॉग-लॉग प्लॉट | लॉग-लॉग प्रारूप में) और संख्याओं की प्रस्तुति। यह पसंद किया जाता है, क्योंकि यह सापेक्ष आयाम स्थिरता देता है, जिससे त्रुटियों के अन्य स्रोतों के साथ तुलना में आसानी होती है।


1.3 का एलन विचलन{{e|−9}} अवलोकन के समय 1 s (अर्थात τ = 1 s) की व्याख्या की जानी चाहिए जिससे कि 1.3 के सापेक्ष मूल माध्य वर्ग (RMS) मान के साथ 1 सेकंड के अतिरिक्त दो प्रेक्षणों के मध्य आवृत्ति में अस्थिरता है{{e|−9}}. 10 मेगाहर्ट्ज घड़ी के लिए, यह 13 मेगाहर्ट्ज आरएमएस मूवमेंट के बराबर होगा। यदि ऑसिलेटर की चरण स्थिरता की आवश्यकता होती है, तो समय विचलन वेरिएंट से परामर्श किया जाना चाहिए और उसका उपयोग किया जाना चाहिए।
1.3 का एलन विचलन{{e|−9}} अवलोकन के समय 1 s (अर्थात τ = 1 s) की व्याख्या की जानी चाहिए क्योंकि 1.3 के सापेक्ष मूल माध्य वर्ग (RMS) मान के साथ 1 सेकंड के अलावा दो प्रेक्षणों के बीच आवृत्ति में अस्थिरता है{{e|−9}}. 10 मेगाहर्ट्ज घड़ी के लिए, यह 13 मेगाहर्ट्ज आरएमएस मूवमेंट के बराबर होगा। यदि ऑसिलेटर की चरण स्थिरता की आवश्यकता होती है, तो समय विचलन वेरिएंट से परामर्श किया जाना चाहिए और उसका उपयोग किया जाना चाहिए।


कोई एलन भिन्नता और अन्य समय-क्षेत्र भिन्नताओं को समय (चरण) और आवृत्ति स्थिरता के आवृत्ति-डोमेन उपायों में परिवर्तित कर सकता है।<ref>http://www.allanstime.com/Publications/DWA/Conversion_from_Allan_variance_to_Spectral_Densities.pdf. {{Webarchive|url=https://web.archive.org/web/20120206212113/http://www.allanstime.com/Publications/DWA/Conversion_from_Allan_variance_to_Spectral_Densities.pdf |date=6 February 2012 }}</ref>
कोई एलन भिन्नता और अन्य समय-क्षेत्र भिन्नताओं को समय (चरण) और आवृत्ति स्थिरता के आवृत्ति-डोमेन उपायों में परिवर्तित कर सकता है।<ref>http://www.allanstime.com/Publications/DWA/Conversion_from_Allan_variance_to_Spectral_Densities.pdf. {{Webarchive|url=https://web.archive.org/web/20120206212113/http://www.allanstime.com/Publications/DWA/Conversion_from_Allan_variance_to_Spectral_Densities.pdf |date=6 February 2012 }}</ref>
Line 42: Line 42:


:<math>\sigma_y^2(M, T, \tau) = \frac{1}{M - 1} \left\{\sum_{i=0}^{M-1}\bar{y}_i^2 - \frac{1}{M} \left[ \sum_{i=0}^{M-1} \bar{y}_i\right]^2 \right\},</math>
:<math>\sigma_y^2(M, T, \tau) = \frac{1}{M - 1} \left\{\sum_{i=0}^{M-1}\bar{y}_i^2 - \frac{1}{M} \left[ \sum_{i=0}^{M-1} \bar{y}_i\right]^2 \right\},</math>
कहाँ <math>M</math> विचरण में प्रयुक्त आवृत्ति नमूनों की संख्या है, <math>T</math> प्रत्येक आवृत्ति नमूने के मध्य का समय है, और <math>\tau</math> प्रत्येक आवृत्ति अनुमान की समय अवधि है।
कहाँ <math>M</math> विचरण में प्रयुक्त आवृत्ति नमूनों की संख्या है, <math>T</math> प्रत्येक आवृत्ति नमूने के बीच का समय है, और <math>\tau</math> प्रत्येक आवृत्ति अनुमान की समय अवधि है।


अहम पहलू यह है <math>M</math>-सैंपल वेरिएंस मॉडल में टाइम देकर डेड-टाइम सम्मिलित किया जा सकता है <math>T</math> से भिन्न हो <math>\tau</math>.
अहम पहलू यह है <math>M</math>-सैंपल वेरिएंस मॉडल में टाइम देकर डेड-टाइम शामिल किया जा सकता है <math>T</math> से भिन्न हो <math>\tau</math>.


इस सूत्र को देखने का वैकल्पिक (और समतुल्य) विधि जो विशिष्ट नमूना प्रसरण सूत्र से संबंध को अधिक स्पष्ट बनाता है, गुणा करके प्राप्त किया जाता है <math>\frac{1}{M - 1}</math> द्वारा <math>M</math> और कर्ली ब्रेसिज़ के अंदर 2 शब्दों को विभाजित करके <math>M</math>:
इस सूत्र को देखने का वैकल्पिक (और समतुल्य) तरीका जो विशिष्ट नमूना प्रसरण सूत्र से संबंध को अधिक स्पष्ट बनाता है, गुणा करके प्राप्त किया जाता है <math>\frac{1}{M - 1}</math> द्वारा <math>M</math> और कर्ली ब्रेसिज़ के अंदर 2 शब्दों को विभाजित करके <math>M</math>:


:<math>\begin{align}
:<math>\begin{align}
Line 64: Line 64:
कहाँ <math>\tau</math> अवलोकन अवधि है, <math>\bar{y}_n</math> अवलोकन समय पर nवां #भिन्नात्मक आवृत्ति औसत है <math>\tau</math>.
कहाँ <math>\tau</math> अवलोकन अवधि है, <math>\bar{y}_n</math> अवलोकन समय पर nवां #भिन्नात्मक आवृत्ति औसत है <math>\tau</math>.


नमूने उनके मध्य बिना किसी डेड-टाइम के लिए जाते हैं, जो अनुमति देकर हासिल किया जाता है
नमूने उनके बीच बिना किसी डेड-टाइम के लिए जाते हैं, जो अनुमति देकर हासिल किया जाता है


:<math>T = \tau.</math>
:<math>T = \tau.</math>
=== एलन विचलन ===
=== एलन विचलन ===
मानक विचलन और विचरण की प्रकार, एलन विचलन को एलन विचरण के वर्गमूल के रूप में परिभाषित किया गया है:
मानक विचलन और विचरण की तरह, एलन विचलन को एलन विचरण के वर्गमूल के रूप में परिभाषित किया गया है:


:<math>\sigma_y(\tau) = \sqrt{\sigma_y^2(\tau)}.</math>
:<math>\sigma_y(\tau) = \sqrt{\sigma_y^2(\tau)}.</math>
Line 81: Line 81:


: <math>\omega_\text{n} = 2\pi \nu_\text{n}.</math>
: <math>\omega_\text{n} = 2\pi \nu_\text{n}.</math>
कुल चरण को पूरी प्रकार से चक्रीय घटक में भिन्न किया जा सकता है <math>\omega_\text{n} t</math>, उतार-चढ़ाव वाले घटक के साथ <math>\varphi(t)</math>:
कुल चरण को पूरी तरह से चक्रीय घटक में अलग किया जा सकता है <math>\omega_\text{n} t</math>, उतार-चढ़ाव वाले घटक के साथ <math>\varphi(t)</math>:


: <math>\Phi(t) = \omega_\text{n}t + \varphi(t) = 2\pi \nu_\text{n}t + \varphi(t).</math>
: <math>\Phi(t) = \omega_\text{n}t + \varphi(t) = 2\pi \nu_\text{n}t + \varphi(t).</math>
=== समय त्रुटि ===
=== समय त्रुटि ===
समय-त्रुटि फलन x(t) अपेक्षित नाममात्र समय और वास्तविक सामान्य समय के मध्य का अंतर है:
समय-त्रुटि फ़ंक्शन x(t) अपेक्षित नाममात्र समय और वास्तविक सामान्य समय के बीच का अंतर है:


: <math>x(t) = \frac{\varphi(t)}{2\pi \nu_\text{n}} = \frac{\Phi(t)}{2\pi \nu_\text{n}} - t = T(t) - t.</math>
: <math>x(t) = \frac{\varphi(t)}{2\pi \nu_\text{n}} = \frac{\Phi(t)}{2\pi \nu_\text{n}} - t = T(t) - t.</math>
मापे गए मानों के लिए समय-त्रुटि श्रृंखला TE(t) को संदर्भ समय फलन T से परिभाषित किया गया है{{sub|ref}}(टी) के रूप में
मापे गए मानों के लिए समय-त्रुटि श्रृंखला TE(t) को संदर्भ समय फ़ंक्शन T से परिभाषित किया गया है{{sub|ref}}(टी) के रूप में


: <math>TE(t) = T(t) - T_\text{ref}(t).</math>
: <math>TE(t) = T(t) - T_\text{ref}(t).</math>
=== आवृत्ति फंक्शन ===
=== फ्रीक्वेंसी फंक्शन ===
आवृत्ति फलन <math>\nu(t)</math> समय के साथ आवृत्ति है, के रूप में परिभाषित किया गया है
आवृत्ति समारोह <math>\nu(t)</math> समय के साथ आवृत्ति है, के रूप में परिभाषित किया गया है


: <math>\nu(t) = \frac{1}{2\pi} \frac{d\Phi(t)}{dt}.</math>
: <math>\nu(t) = \frac{1}{2\pi} \frac{d\Phi(t)}{dt}.</math>
=== आंशिक आवृत्ति ===
=== आंशिक आवृत्ति ===
भिन्नात्मक आवृत्ति y(t) आवृत्ति के मध्य सामान्यीकृत अंतर है <math>\nu(t)</math> और नाममात्र आवृत्ति <math>\nu_\text{n}</math>:
भिन्नात्मक आवृत्ति y(t) आवृत्ति के बीच सामान्यीकृत अंतर है <math>\nu(t)</math> और नाममात्र आवृत्ति <math>\nu_\text{n}</math>:


:<math>y(t) = \frac{\nu(t) - \nu_\text{n}}{\nu_\text{n}} = \frac{\nu(t)}{\nu_\text{n}} - 1.</math>
:<math>y(t) = \frac{\nu(t) - \nu_\text{n}}{\nu_\text{n}} = \frac{\nu(t)}{\nu_\text{n}} - 1.</math>
Line 109: Line 109:
:<math>\bar{y}(t, \tau) = \frac{x(t + \tau) - x(t)}{\tau}.</math>
:<math>\bar{y}(t, \tau) = \frac{x(t + \tau) - x(t)}{\tau}.</math>
== अनुमानक ==
== अनुमानक ==
यह परिभाषा सांख्यिकीय [[अपेक्षित मूल्य]] पर आधारित है, जो अनंत समय में एकीकृत होती है। वास्तविक दुनिया की स्थिति ऐसी समय-श्रृंखला की अनुमति नहीं देती है, जिस स्थिति में इसके स्थान पर सांख्यिकीय अनुमानक का उपयोग करने की आवश्यकता होती है। अनेक भिन्न-भिन्न अनुमानकों को प्रस्तुत किया जाएगा और चर्चा की जाएगी।
यह परिभाषा सांख्यिकीय [[अपेक्षित मूल्य]] पर आधारित है, जो अनंत समय में एकीकृत होती है। वास्तविक दुनिया की स्थिति ऐसी समय-श्रृंखला की अनुमति नहीं देती है, जिस स्थिति में इसके स्थान पर सांख्यिकीय अनुमानक का उपयोग करने की आवश्यकता होती है। कई अलग-अलग अनुमानकों को प्रस्तुत किया जाएगा और चर्चा की जाएगी।


=== कन्वेंशन ===
=== कन्वेंशन ===
Line 151: Line 151:


:<math>\sigma_y^2(\tau, N) = \operatorname{AVAR}(\tau, N) = \frac{1}{2\tau^2(N - 2)} \sum_{i=0}^{N-3}(x_{i+2} - 2x_{i+1} + x_i)^2.</math>
:<math>\sigma_y^2(\tau, N) = \operatorname{AVAR}(\tau, N) = \frac{1}{2\tau^2(N - 2)} \sum_{i=0}^{N-3}(x_{i+2} - 2x_{i+1} + x_i)^2.</math>
चूँकि, ये सूत्र केवल τ = τ के लिए गणना प्रदान करते हैं<sub>0</sub> मामला। τ के भिन्न मान की गणना करने के लिए, नई समय-श्रृंखला प्रदान करने की आवश्यकता है।
हालाँकि, ये सूत्र केवल τ = τ के लिए गणना प्रदान करते हैं<sub>0</sub> मामला। τ के भिन्न मान की गणना करने के लिए, नई समय-श्रृंखला प्रदान करने की आवश्यकता है।


=== गैर-अतिव्यापी चर τ अनुमानक ===
=== गैर-अतिव्यापी चर τ अनुमानक ===
समय-श्रृंखला लेना और पिछले n − 1 नमूने को छोड़ना, τ के साथ नई (छोटी) समय-श्रृंखला उत्पन्न होगी<sub>0</sub> आसन्न नमूनों के मध्य के समय के रूप में, जिसके लिए एलन विचरण की गणना साधारण अनुमानकों के साथ की जा सकती है। इन्हें नए चर n को प्रस्तुतकरने के लिए संशोधित किया जा सकता है, जिससे कि कोई नई समय-श्रृंखला उत्पन्न न हो, बल्कि n के विभिन्न मूल्यों के लिए मूल समय श्रृंखला का पुन: उपयोग किया जा सके। अनुमानक बन जाते हैं
समय-श्रृंखला लेना और पिछले n − 1 नमूने को छोड़ना, τ के साथ नई (छोटी) समय-श्रृंखला उत्पन्न होगी<sub>0</sub> आसन्न नमूनों के बीच के समय के रूप में, जिसके लिए एलन विचरण की गणना साधारण अनुमानकों के साथ की जा सकती है। इन्हें नए वेरिएबल n को पेश करने के लिए संशोधित किया जा सकता है, ताकि कोई नई समय-श्रृंखला उत्पन्न न हो, बल्कि n के विभिन्न मूल्यों के लिए मूल समय श्रृंखला का पुन: उपयोग किया जा सके। अनुमानक बन जाते हैं


:<math>\sigma_y^2(n\tau_0, M) = \operatorname{AVAR}(n\tau_0, M) = \frac{1}{2\frac{M-1}{n}} \sum_{i=0}^{\frac{M-1}{n} - 1}\left(\bar{y}_{ni+n} - \bar{y}_{ni}\right)^2</math>
:<math>\sigma_y^2(n\tau_0, M) = \operatorname{AVAR}(n\tau_0, M) = \frac{1}{2\frac{M-1}{n}} \sum_{i=0}^{\frac{M-1}{n} - 1}\left(\bar{y}_{ni+n} - \bar{y}_{ni}\right)^2</math>
Line 164: Line 164:
साथ <math>n \le \frac{N - 1}{2}</math>.
साथ <math>n \le \frac{N - 1}{2}</math>.


इन अनुमानकों में महत्वपूर्ण कमी है कि वे नमूना डेटा की महत्वपूर्ण मात्रा छोड़ देंगे, जिससे कि उपलब्ध नमूनों में से केवल 1/n का उपयोग किया जा रहा है।
इन अनुमानकों में महत्वपूर्ण कमी है कि वे नमूना डेटा की महत्वपूर्ण मात्रा छोड़ देंगे, क्योंकि उपलब्ध नमूनों में से केवल 1/n का उपयोग किया जा रहा है।


=== अतिव्यापी चर τ अनुमानक ===
=== अतिव्यापी चर τ अनुमानक ===
जे जे स्नाइडर द्वारा प्रस्तुत तकनीक<ref name=Snyder1981>Snyder, J. J.: ''An ultra-high resolution frequency meter'', pages 464–469, Frequency Control Symposium #35, 1981.</ref> उत्तम उपकरण प्रदान किया, जिससे कि माप मूल श्रृंखला से बाहर एन ओवरलैप्ड श्रृंखला में ओवरलैप किए गए थे। ओवरलैपिंग एलन प्रसरण अनुमानक हॉवे, एलन और बार्न्स द्वारा प्रस्तुत किया गया था।<ref name=Howe1981/> यह प्रसंस्करण से पहले एन नमूने के ब्लॉक में औसत समय या सामान्यीकृत आवृत्ति नमूने के बराबर दिखाया जा सकता है। परिणामी भविष्यवक्ता बन जाता है
जे जे स्नाइडर द्वारा प्रस्तुत तकनीक<ref name=Snyder1981>Snyder, J. J.: ''An ultra-high resolution frequency meter'', pages 464–469, Frequency Control Symposium #35, 1981.</ref> बेहतर उपकरण प्रदान किया, क्योंकि माप मूल श्रृंखला से बाहर एन ओवरलैप्ड श्रृंखला में ओवरलैप किए गए थे। ओवरलैपिंग एलन प्रसरण अनुमानक हॉवे, एलन और बार्न्स द्वारा पेश किया गया था।<ref name=Howe1981/>यह प्रसंस्करण से पहले एन नमूने के ब्लॉक में औसत समय या सामान्यीकृत आवृत्ति नमूने के बराबर दिखाया जा सकता है। परिणामी भविष्यवक्ता बन जाता है


:<math>
:<math>
Line 178: Line 178:


:<math>\sigma_y^2(n\tau_0, N) = \operatorname{AVAR}(n\tau_0, N) = \frac{1}{2n^2\tau_0^2(N - 2n)} \sum_{i=0}^{N-2n-1} (x_{i+2n} - 2x_{i+n} + x_i)^2.</math>
:<math>\sigma_y^2(n\tau_0, N) = \operatorname{AVAR}(n\tau_0, N) = \frac{1}{2n^2\tau_0^2(N - 2n)} \sum_{i=0}^{N-2n-1} (x_{i+2n} - 2x_{i+n} + x_i)^2.</math>
अतिव्यापी अनुमानकों का गैर-अतिव्यापी अनुमानकों की तुलना में कहीं उत्तम प्रदर्शन होता है, जिससे कि n बढ़ता है और समय-श्रृंखला मध्यम लंबाई की होती है। अतिव्यापी अनुमानकों को आईईईई में पसंदीदा एलन प्रसरण अनुमानकों के रूप में स्वीकार किया गया है,<ref name=IEEE1139/> यह टी<ref name=itutg810>ITU-T Rec. G.810: [http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-G.810-199608-I!!PDF-E&type=items ''Definitions and terminology for synchronization and networks''], ITU-T Rec. G.810 (08/96).</ref> इसलिए<ref name=ETSIEN3004610101>ETSI EN 300 462-1-1: [http://www.etsi.org/deliver/etsi_en/300400_300499/3004620701/01.01.01_20/en_3004620701v010101c.pdf ''Definitions and terminology for synchronisation networks''], ETSI EN 300 462-1-1 V1.1.1 (1998–05).</ref> तुलनीय माप के लिए मानक जैसे दूरसंचार योग्यता के लिए आवश्यक।
अतिव्यापी अनुमानकों का गैर-अतिव्यापी अनुमानकों की तुलना में कहीं बेहतर प्रदर्शन होता है, क्योंकि n बढ़ता है और समय-श्रृंखला मध्यम लंबाई की होती है। अतिव्यापी अनुमानकों को IEEE में पसंदीदा एलन प्रसरण अनुमानकों के रूप में स्वीकार किया गया है,<ref name=IEEE1139/>यह टी<ref name=itutg810>ITU-T Rec. G.810: [http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-G.810-199608-I!!PDF-E&type=items ''Definitions and terminology for synchronization and networks''], ITU-T Rec. G.810 (08/96).</ref> इसलिए<ref name=ETSIEN3004610101>ETSI EN 300 462-1-1: [http://www.etsi.org/deliver/etsi_en/300400_300499/3004620701/01.01.01_20/en_3004620701v010101c.pdf ''Definitions and terminology for synchronisation networks''], ETSI EN 300 462-1-1 V1.1.1 (1998–05).</ref> तुलनीय माप के लिए मानक जैसे दूरसंचार योग्यता के लिए आवश्यक।


=== संशोधित एलन विचरण ===
=== संशोधित एलन विचरण ===
पारंपरिक एलन प्रसरण अनुमानकों का उपयोग करके झिलमिलाहट चरण समायोजन से सफेद चरण समायोजन को भिन्न करने में असमर्थता को संबोधित करने के लिए, एल्गोरिथम फ़िल्टरिंग बैंडविड्थ को n से कम कर देता है। यह फ़िल्टरिंग परिभाषा और अनुमानकों के लिए संशोधन प्रदान करता है और अब इसे संशोधित एलन भिन्नता नामक भिन्नता के भिन्न वर्ग के रूप में पहचाना जाता है। संशोधित एलन भिन्नता माप आवृत्ति स्थिरता माप है, जैसा कि एलन भिन्नता है।
पारंपरिक एलन प्रसरण अनुमानकों का उपयोग करके झिलमिलाहट चरण मॉड्यूलेशन से सफेद चरण मॉड्यूलेशन को अलग करने में असमर्थता को संबोधित करने के लिए, एल्गोरिथम फ़िल्टरिंग बैंडविड्थ को n से कम कर देता है। यह फ़िल्टरिंग परिभाषा और अनुमानकों के लिए संशोधन प्रदान करता है और अब इसे संशोधित एलन भिन्नता नामक भिन्नता के अलग वर्ग के रूप में पहचाना जाता है। संशोधित एलन भिन्नता माप आवृत्ति स्थिरता माप है, जैसा कि एलन भिन्नता है।


=== समय स्थिरता अनुमानक ===
=== समय स्थिरता अनुमानक ===
समय स्थिरता (σ<sub>''x''</sub>) सांख्यिकीय माप, जिसे अधिकांशतः समय विचलन (TDEV) कहा जाता है, की गणना संशोधित एलन विचलन (MDEV) से की जा सकती है। टीडीईवी मूल एलन विचलन के अतिरिक्त एमडीईवी पर आधारित है, जिससे कि एमडीईवी सफेद और झिलमिलाहट चरण समायोजन (पीएम) के मध्य भेदभाव कर सकता है। निम्नलिखित संशोधित एलन भिन्नता के आधार पर समय भिन्नता अनुमान है:
समय स्थिरता (σ<sub>''x''</sub>) सांख्यिकीय माप, जिसे अक्सर समय विचलन (TDEV) कहा जाता है, की गणना संशोधित एलन विचलन (MDEV) से की जा सकती है। टीडीईवी मूल एलन विचलन के अतिरिक्त एमडीईवी पर आधारित है, क्योंकि एमडीईवी सफेद और झिलमिलाहट चरण मॉड्यूलेशन (पीएम) के बीच भेदभाव कर सकता है। निम्नलिखित संशोधित एलन भिन्नता के आधार पर समय भिन्नता अनुमान है:


:<math>\sigma_x^2(\tau) = \frac{\tau^2}{3}\bmod\sigma_y^2(\tau),</math>
:<math>\sigma_x^2(\tau) = \frac{\tau^2}{3}\bmod\sigma_y^2(\tau),</math>
और इसी प्रकार समय विचलन के लिए संशोधित एलन विचलन के लिए:
और इसी तरह समय विचलन के लिए संशोधित एलन विचलन के लिए:


:<math>\sigma_x(\tau) = \frac{\tau}{\sqrt{3}}\bmod\sigma_y(\tau).</math>
:<math>\sigma_x(\tau) = \frac{\tau}{\sqrt{3}}\bmod\sigma_y(\tau).</math>
TDEV को सामान्यीकृत किया जाता है जिससे कि यह समय स्थिर τ = τ के लिए सफेद PM के मौलिक विचलन के बराबर हो<sub>0</sub>. सांख्यिकीय उपायों के मध्य सामान्यीकरण पैमाने के कारक को समझने के लिए, निम्नलिखित प्रासंगिक सांख्यिकीय नियम है: स्वतंत्र यादृच्छिक चर X और Y के लिए, विचरण (σ<sub>''z''</sub><sup>योग या अंतर (z = x − y) का 2</sup>) उनके प्रसरण (σ) का योग वर्ग है<sub>''z''</sub><sup>2</sup> = पी<sub>''x''</sub><sup>2</sup> + पृ<sub>''y''</sub><sup>2</sup>). योग या अंतर का विचरण (y = x<sub>2''τ''</sub> - एक्स<sub>''τ''</sub>) यादृच्छिक चर के दो स्वतंत्र नमूने यादृच्छिक चर (σ<sub>''y''</sub><sup>2</sup> = 2σ<sub>''x''</sub><sup>2</sup>). MDEV स्वतंत्र चरण माप (x) का दूसरा अंतर है जिसका विचरण (σ<sub>''x''</sub><sup>2</sup>). चूंकि गणना दोहरा अंतर है, जिसके लिए तीन स्वतंत्र चरण माप (x<sub>2''τ''</sub> -2x<sub>''τ''</sub> + x), संशोधित एलन विचरण (एमवीएआर) चरण माप के प्रसरण का तीन गुना है।
TDEV को सामान्यीकृत किया जाता है ताकि यह समय स्थिर τ = τ के लिए सफेद PM के शास्त्रीय विचलन के बराबर हो<sub>0</sub>. सांख्यिकीय उपायों के बीच सामान्यीकरण पैमाने के कारक को समझने के लिए, निम्नलिखित प्रासंगिक सांख्यिकीय नियम है: स्वतंत्र यादृच्छिक चर X और Y के लिए, विचरण (σ<sub>''z''</sub><sup>योग या अंतर (z = x − y) का 2</sup>) उनके प्रसरण (σ) का योग वर्ग है<sub>''z''</sub><sup>2</sup> = पी<sub>''x''</sub><sup>2</sup> + पृ<sub>''y''</sub><sup>2</sup>). योग या अंतर का विचरण (y = x<sub>2''τ''</sub> - एक्स<sub>''τ''</sub>) यादृच्छिक चर के दो स्वतंत्र नमूने यादृच्छिक चर (σ<sub>''y''</sub><sup>2</sup> = 2σ<sub>''x''</sub><sup>2</sup>). MDEV स्वतंत्र चरण माप (x) का दूसरा अंतर है जिसका विचरण (σ<sub>''x''</sub><sup>2</sup>). चूंकि गणना दोहरा अंतर है, जिसके लिए तीन स्वतंत्र चरण माप (x<sub>2''τ''</sub> -2x<sub>''τ''</sub> + x), संशोधित एलन विचरण (एमवीएआर) चरण माप के प्रसरण का तीन गुना है।


=== अन्य अनुमानक ===
=== अन्य अनुमानक ===
आगे की घटनाओं ने समान स्थिरता माप, आवृत्ति के विचरण / विचलन के लिए उत्तम अनुमान विधियों का उत्पादन किया है, किन्तु इन्हें भिन्न-भिन्न नामों से जाना जाता है जैसे कि हैडमार्ड विचरण, [[संशोधित हैडमार्ड विचरण]], कुल विचरण, [[संशोधित कुल विचरण]] और [[थियो विचरण]]। ये उत्तम आत्मविश्वास सीमा या रैखिक आवृत्ति बहाव को संभालने की क्षमता के लिए आँकड़ों के उत्तम उपयोग में खुद को भिन्न करते हैं।
आगे की घटनाओं ने समान स्थिरता माप, आवृत्ति के विचरण / विचलन के लिए बेहतर अनुमान विधियों का उत्पादन किया है, लेकिन इन्हें अलग-अलग नामों से जाना जाता है जैसे कि हैडमार्ड विचरण, [[संशोधित हैडमार्ड विचरण]], कुल विचरण, [[संशोधित कुल विचरण]] और [[थियो विचरण]]। ये बेहतर आत्मविश्वास सीमा या रैखिक आवृत्ति बहाव को संभालने की क्षमता के लिए आँकड़ों के बेहतर उपयोग में खुद को अलग करते हैं।


== [[विश्वास अंतराल]] और स्वतंत्रता के समकक्ष डिग्री ==
== [[विश्वास अंतराल]] और स्वतंत्रता के समकक्ष डिग्री ==
सांख्यिकीय अनुमानक प्रयुक्त नमूना श्रृंखला पर अनुमानित मूल्य की गणना करेंगे। अनुमान सही मूल्य से विचलित हो सकते हैं और मूल्यों की श्रेणी जिसमें कुछ संभावना के लिए सही मूल्य सम्मिलित होगा, विश्वास अंतराल के रूप में जाना जाता है। विश्वास अंतराल नमूना श्रृंखला में टिप्पणियों की संख्या, प्रमुख ध्वनि प्रकार और उपयोग किए जा रहे अनुमानक पर निर्भर करता है। चौड़ाई सांख्यिकीय निश्चितता पर भी निर्भर करती है जिसके लिए कॉन्फिडेंस इंटरवल मान सीमित सीमा बनाता है, इस प्रकार सांख्यिकीय निश्चितता है कि सही मूल्य मूल्यों की उस सीमा के अंदर है। चर-τ अनुमानकों के लिए, τ<sub>0</sub> एकाधिक n भी चर है।
सांख्यिकीय अनुमानक प्रयुक्त नमूना श्रृंखला पर अनुमानित मूल्य की गणना करेंगे। अनुमान सही मूल्य से विचलित हो सकते हैं और मूल्यों की श्रेणी जिसमें कुछ संभावना के लिए सही मूल्य शामिल होगा, विश्वास अंतराल के रूप में जाना जाता है। विश्वास अंतराल नमूना श्रृंखला में टिप्पणियों की संख्या, प्रमुख शोर प्रकार और उपयोग किए जा रहे अनुमानक पर निर्भर करता है। चौड़ाई सांख्यिकीय निश्चितता पर भी निर्भर करती है जिसके लिए कॉन्फिडेंस इंटरवल मान सीमित सीमा बनाता है, इस प्रकार सांख्यिकीय निश्चितता है कि सही मूल्य मूल्यों की उस सीमा के भीतर है। चर-τ अनुमानकों के लिए, τ<sub>0</sub> एकाधिक n भी चर है।


=== कॉन्फिडेंस इंटरवल ===
=== कॉन्फिडेंस इंटरवल ===
[[स्केल्ड ची-स्क्वायर वितरण|स्केल्ड ची-वर्ग वितरण]] का उपयोग करके ची-वर्ग वितरण का उपयोग करके विश्वास अंतराल स्थापित किया जा सकता है:<ref name=IEEE1139/><ref name=Howe1981>D. A. Howe, D. W. Allan, J. A. Barnes: [http://tf.boulder.nist.gov/general/pdf/554.pdf ''Properties of signal sources and measurement methods''], pages 464–469, Frequency Control Symposium #35, 1981.</ref>
[[स्केल्ड ची-स्क्वायर वितरण]] का उपयोग करके ची-स्क्वायर वितरण का उपयोग करके विश्वास अंतराल स्थापित किया जा सकता है:<ref name=IEEE1139/><ref name=Howe1981>D. A. Howe, D. W. Allan, J. A. Barnes: [http://tf.boulder.nist.gov/general/pdf/554.pdf ''Properties of signal sources and measurement methods''], pages 464–469, Frequency Control Symposium #35, 1981.</ref>
:<math>\chi^2 = \frac{\text{df}\,s^2}{\sigma^2},</math>
:<math>\chi^2 = \frac{\text{df}\,s^2}{\sigma^2},</math>
कहाँ एस<sup>2</sup> हमारे अनुमान, σ का नमूना प्रसरण है<sup>2</sup> वास्तविक विचरण मान है, df अनुमानक के लिए स्वतंत्रता की कोटि है, और χ<sup>2</sup> निश्चित प्रायिकता के लिए स्वतंत्रता की कोटि है। 90% प्रायिकता के लिए, प्रायिकता वक्र पर 5% से 95% की सीमा को कवर करते हुए, असमानता का उपयोग करके ऊपरी और निचली सीमाएँ पाई जा सकती हैं
कहाँ एस<sup>2</sup> हमारे अनुमान, σ का नमूना प्रसरण है<sup>2</sup> वास्तविक विचरण मान है, df अनुमानक के लिए स्वतंत्रता की कोटि है, और χ<sup>2</sup> निश्चित प्रायिकता के लिए स्वतंत्रता की कोटि है। 90% प्रायिकता के लिए, प्रायिकता वक्र पर 5% से 95% की सीमा को कवर करते हुए, असमानता का उपयोग करके ऊपरी और निचली सीमाएँ पाई जा सकती हैं
Line 209: Line 209:


=== स्वतंत्रता की प्रभावी डिग्री ===
=== स्वतंत्रता की प्रभावी डिग्री ===
[[स्वतंत्रता की डिग्री (सांख्यिकी)]] अनुमान में योगदान करने में सक्षम मुक्त चर की संख्या का प्रतिनिधित्व करती है। अनुमानक और ध्वनि के प्रकार के आधार पर, स्वतंत्रता की प्रभावी डिग्री भिन्न होती है। एन और एन के आधार पर अनुमानक सूत्र अनुभवजन्य रूप से पाए गए हैं:<ref name=Howe1981/>:{| class="wikitable"
[[स्वतंत्रता की डिग्री (सांख्यिकी)]] अनुमान में योगदान करने में सक्षम मुक्त चर की संख्या का प्रतिनिधित्व करती है। अनुमानक और शोर के प्रकार के आधार पर, स्वतंत्रता की प्रभावी डिग्री भिन्न होती है। एन और एन के आधार पर अनुमानक सूत्र अनुभवजन्य रूप से पाए गए हैं:<ref name=Howe1981/>:{| class="wikitable"


|+ Allan variance degrees of freedom
|+ Allan variance degrees of freedom
Line 220: Line 220:
|-
|-


|white phase modulation (डब्लूपीएम)
|white phase modulation (WPM)


|<math>\text{df} \cong \frac{(N + 1)(N - 2n)}{2(N - n)}</math>
|<math>\text{df} \cong \frac{(N + 1)(N - 2n)}{2(N - n)}</math>
Line 226: Line 226:
|-
|-


|flicker phase modulation (एफपीएम)
|flicker phase modulation (FPM)


|<math>\text{df} \cong \exp\left[\left(\ln \frac{N - 1}{2n} \ln \frac{(2n + 1)(N - 1)}{4}\right)^{-1/2}\right]</math>
|<math>\text{df} \cong \exp\left[\left(\ln \frac{N - 1}{2n} \ln \frac{(2n + 1)(N - 1)}{4}\right)^{-1/2}\right]</math>
Line 249: Line 249:


|}
|}
==विद्युत-कानून ध्वनि ==
==बिजली-कानून शोर ==
एलन विचरण विभिन्न विद्युत-कानून ध्वनि प्रकारों का भिन्न-भिन्न व्यवहार करेगा, जिससे उन्हें आसानी से पहचाना जा सकेगा और उनकी ताकत का अनुमान लगाया जा सकेगा। परंपरा के रूप में, मापन प्रणाली की चौड़ाई (उच्च कोना आवृत्ति) को f निरूपित किया जाता है<sub>''H''</sub>.
एलन विचरण विभिन्न बिजली-कानून शोर प्रकारों का अलग-अलग व्यवहार करेगा, जिससे उन्हें आसानी से पहचाना जा सकेगा और उनकी ताकत का अनुमान लगाया जा सकेगा। परंपरा के रूप में, मापन प्रणाली की चौड़ाई (उच्च कोना आवृत्ति) को f निरूपित किया जाता है<sub>''H''</sub>.
{| class="wikitable"
{| class="wikitable"
|+ Allan variance power-law response
|+ Allan variance power-law response
Line 262: Line 262:
!Allan deviation<br /> <math>\sigma_y(\tau)</math>
!Allan deviation<br /> <math>\sigma_y(\tau)</math>
|-
|-
|white phase modulation (डब्लूपीएम)
|white phase modulation (WPM)
|<math>f^0=1</math>
|<math>f^0=1</math>
|<math>f^2</math>
|<math>f^2</math>
Line 270: Line 270:
|<math>\frac{\sqrt{3 f_H}}{2\pi\tau}\sqrt{h_2}</math>
|<math>\frac{\sqrt{3 f_H}}{2\pi\tau}\sqrt{h_2}</math>
|-
|-
|flicker phase modulation (एफपीएम)
|flicker phase modulation (FPM)
|<math>f^{-1}</math>
|<math>f^{-1}</math>
|<math>f^1=f</math>
|<math>f^1=f</math>
Line 302: Line 302:
|<math>\frac{\pi\sqrt{2\tau}}{\sqrt{3}}\sqrt{h_{-2}}</math>
|<math>\frac{\pi\sqrt{2\tau}}{\sqrt{3}}\sqrt{h_{-2}}</math>
|}
|}
जैसा में पाया गया<ref name="NBSTN394">J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. Sydnor, R. F. C. Vessot, G. M. R. Winkler: ''[https://tf.nist.gov/general/tn1337/Tn146.PDF Characterization of Frequency Stability]'', NBS Technical Note 394, 1970.</ref><ref>J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, Jr., W. L. Smith, R. L. Sydnor, R. F. C. Vessot, G. M. R. Winkler: ''[https://tf.nist.gov/general/tn1337/Tn146.PDF Characterization of Frequency Stability]'', IEEE Transactions on Instruments and Measurements 20, pp. 105–120, 1971.</ref> और आधुनिक रूपों में।<ref name="Bregni2002">Bregni, Stefano: [https://books.google.com/books?id=APEBaL4WHNoC ''Synchronisation of digital telecommunication networks''], Wiley 2002, {{ISBN|0-471-61550-1}}.</ref><ref name="NISTSP1065">NIST SP 1065: [https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=50505 ''Handbook of Frequency Stability Analysis''] .</ref>
जैसा में पाया गया<ref name="NBSTN394">J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. Sydnor, R. F. C. Vessot, G. M. R. Winkler: ''[https://tf.nist.gov/general/tn1337/Tn146.PDF Characterization of Frequency Stability]'', NBS Technical Note 394, 1970.</ref><ref>J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, Jr., W. L. Smith, R. L. Sydnor, R. F. C. Vessot, G. M. R. Winkler: ''[https://tf.nist.gov/general/tn1337/Tn146.PDF Characterization of Frequency Stability]'', IEEE Transactions on Instruments and Measurements 20, pp. 105–120, 1971.</ref> और आधुनिक रूपों में।<ref name=Bregni2002>Bregni, Stefano: [https://books.google.com/books?id=APEBaL4WHNoC ''Synchronisation of digital telecommunication networks''], Wiley 2002, {{ISBN|0-471-61550-1}}.</ref><ref name=NISTSP1065>NIST SP 1065: [https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=50505 ''Handbook of Frequency Stability Analysis''] .</ref>
 
एलन विचरण WPM और FPM के बीच अंतर करने में असमर्थ है, लेकिन अन्य पावर-लॉ शोर प्रकारों को हल करने में सक्षम है। WPM और FPM में अंतर करने के लिए, संशोधित एलन प्रसरण को नियोजित करने की आवश्यकता है।
एलन विचरण डब्लूपीएम और एफपीएम के मध्य अंतर करने में असमर्थ है, किन्तु अन्य पावर-लॉ ध्वनि प्रकारों को हल करने में सक्षम है। डब्लूपीएम और एफपीएम में अंतर करने के लिए, संशोधित एलन प्रसरण को नियोजित करने की आवश्यकता है।


उपरोक्त सूत्र मानते हैं
उपरोक्त सूत्र मानते हैं


:<math>\tau \gg \frac{1}{2\pi f_H},</math>
:<math>\tau \gg \frac{1}{2\pi f_H},</math>
और इस प्रकार अवलोकन समय की बैंडविड्थ उपकरण बैंडविड्थ से बहुत कम है। जब यह स्थिति पूरी नहीं होती है, तो ध्वनि के सभी रूप उपकरण की बैंडविड्थ पर निर्भर करते हैं।
और इस प्रकार अवलोकन समय की बैंडविड्थ उपकरण बैंडविड्थ से बहुत कम है। जब यह स्थिति पूरी नहीं होती है, तो शोर के सभी रूप उपकरण की बैंडविड्थ पर निर्भर करते हैं।


===α-μ मानचित्रण ===
===α-μ मैपिंग ===
प्रपत्र के चरण मॉडुलन का विस्तृत मानचित्रण
प्रपत्र के चरण मॉडुलन का विस्तृत मानचित्रण


Line 324: Line 323:


:<math>\sigma_y^2(\tau) = K_\alpha h_\alpha \tau^\mu</math>
:<math>\sigma_y^2(\tau) = K_\alpha h_\alpha \tau^\mu</math>
α और μ के मध्य मानचित्रण प्रदान करके अधिक सरल किया जा सकता है। α और K के मध्य मानचित्रण<sub>''α''</sub> सुविधा के लिए भी प्रस्तुत है:<ref name=IEEE1139/>
α और μ के बीच मैपिंग प्रदान करके काफी सरल किया जा सकता है। α और K के बीच मानचित्रण<sub>''α''</sub> सुविधा के लिए भी प्रस्तुत है:<ref name=IEEE1139/>


:{| class="wikitable"
:{| class="wikitable"
Line 359: Line 358:
|<math>\frac{3f_H}{4\pi^2}</math>
|<math>\frac{3f_H}{4\pi^2}</math>
|}
|}
=== चरण ध्वनि से सामान्य रूपांतरण ===
=== चरण शोर से सामान्य रूपांतरण ===
वर्णक्रमीय चरण ध्वनि के साथ संकेत <math>S_\varphi</math> इकाइयों रेड के साथ<sup>2</sup>/Hz को एलन प्रसरण में किसके द्वारा परिवर्तित किया जा सकता है<ref name=NISTSP1065/>
वर्णक्रमीय चरण शोर के साथ संकेत <math>S_\varphi</math> इकाइयों रेड के साथ<sup>2</sup>/Hz को एलन प्रसरण में किसके द्वारा परिवर्तित किया जा सकता है<ref name=NISTSP1065/>


: <math>\sigma^2_y(\tau) = \frac{2}{\nu_0^2} \int^{f_b}_0 S_\varphi(f) \frac{\sin^4(\pi \tau f)}{(\pi \tau)^2} \, df.</math>
: <math>\sigma^2_y(\tau) = \frac{2}{\nu_0^2} \int^{f_b}_0 S_\varphi(f) \frac{\sin^4(\pi \tau f)}{(\pi \tau)^2} \, df.</math>
== रैखिक प्रतिक्रिया ==
== रैखिक प्रतिक्रिया ==
जबकि एलन विचरण का उपयोग ध्वनि के रूपों को भिन्न करने के लिए किया जाता है, यह समय के लिए कुछ किन्तु सभी रैखिक प्रतिक्रियाओं पर निर्भर नहीं करेगा। वे तालिका में दिए गए हैं:
जबकि एलन विचरण का उपयोग शोर के रूपों को अलग करने के लिए किया जाता है, यह समय के लिए कुछ लेकिन सभी रैखिक प्रतिक्रियाओं पर निर्भर नहीं करेगा। वे तालिका में दिए गए हैं:
:{| class="wikitable"
:{| class="wikitable"
|+ Allan variance linear response
|+ Allan variance linear response
Line 394: Line 393:
इस प्रकार, रैखिक बहाव आउटपुट परिणाम में योगदान देगा। वास्तविक प्रणाली को मापते समय, रैखिक बहाव या अन्य बहाव तंत्र को अनुमानित करने और एलन भिन्नता की गणना करने से पहले समय-श्रृंखला से निकालने की आवश्यकता हो सकती है।<ref name=Bregni2002/>
इस प्रकार, रैखिक बहाव आउटपुट परिणाम में योगदान देगा। वास्तविक प्रणाली को मापते समय, रैखिक बहाव या अन्य बहाव तंत्र को अनुमानित करने और एलन भिन्नता की गणना करने से पहले समय-श्रृंखला से निकालने की आवश्यकता हो सकती है।<ref name=Bregni2002/>
== समय और आवृत्ति फ़िल्टर गुण ==
== समय और आवृत्ति फ़िल्टर गुण ==
एलन विचरण और दोस्तों के गुणों का विश्लेषण करने में, सामान्यीकृत आवृत्ति पर फ़िल्टर गुणों पर विचार करना उपयोगी सिद्ध हुआ है। के लिए एलन प्रसरण की परिभाषा से प्रारंभ करें
एलन विचरण और दोस्तों के गुणों का विश्लेषण करने में, सामान्यीकृत आवृत्ति पर फ़िल्टर गुणों पर विचार करना उपयोगी साबित हुआ है। के लिए एलन प्रसरण की परिभाषा से प्रारंभ करें


:<math>\sigma_y^2(\tau) = \frac{1}{2}\left\langle\left(\bar{y}_{i+1} - \bar{y}_i\right)^2\right\rangle,</math>
:<math>\sigma_y^2(\tau) = \frac{1}{2}\left\langle\left(\bar{y}_{i+1} - \bar{y}_i\right)^2\right\rangle,</math>
Line 407: Line 406:
:<math>\left\vert H_A(f)\right\vert^2 = \frac{2\sin^4\pi \tau f}{(\pi \tau f)^2}.</math>
:<math>\left\vert H_A(f)\right\vert^2 = \frac{2\sin^4\pi \tau f}{(\pi \tau f)^2}.</math>
== पूर्वाग्रह कार्य ==
== पूर्वाग्रह कार्य ==
एम-नमूना भिन्नता, और परिभाषित विशेष मामला एलन भिन्नता, नमूने एम की विभिन्न संख्या और टी और τ के मध्य भिन्न संबंध के आधार पर व्यवस्थित पूर्वाग्रह का अनुभव करेगा। इन पूर्वाग्रहों को दूर करने के लिए, पूर्वाग्रह-कार्य B<sub>1</sub> और बी<sub>2</sub> परिभाषित किया गया है<ref name=NBSTN375>Barnes, J. A.: [http://tf.boulder.nist.gov/general/pdf/11.pdf ''Tables of Bias Functions, ''B''<sub>1</sub> and ''B''<sub>2</sub>, for Variances Based On Finite Samples of Processes with Power Law Spectral Densities''], NBS Technical Note 375, 1969.</ref> और विभिन्न एम और टी मूल्यों के मध्य रूपांतरण की अनुमति देता है।
एम-नमूना भिन्नता, और परिभाषित विशेष मामला एलन भिन्नता, नमूने एम की विभिन्न संख्या और टी और τ के बीच अलग संबंध के आधार पर व्यवस्थित पूर्वाग्रह का अनुभव करेगा। इन पूर्वाग्रहों को दूर करने के लिए, पूर्वाग्रह-कार्य B<sub>1</sub> और बी<sub>2</sub> परिभाषित किया गया है<ref name=NBSTN375>Barnes, J. A.: [http://tf.boulder.nist.gov/general/pdf/11.pdf ''Tables of Bias Functions, ''B''<sub>1</sub> and ''B''<sub>2</sub>, for Variances Based On Finite Samples of Processes with Power Law Spectral Densities''], NBS Technical Note 375, 1969.</ref> और विभिन्न एम और टी मूल्यों के बीच रूपांतरण की अनुमति देता है।


ये पूर्वाग्रह कार्य M नमूनों को Mτ से जोड़ने के परिणामस्वरूप होने वाले पूर्वाग्रह को संभालने के लिए पर्याप्त नहीं हैं<sub>0</sub> एमटी पर अवलोकन समय<sub>0</sub> माप के अंत के अतिरिक्त एम माप ब्लॉकों के मध्य वितरित मृत-समय के साथ। इसने बी की आवश्यकता का प्रतिपादन किया<sub>3</sub> पक्षपात।<ref name=NISTTN1318/>
ये पूर्वाग्रह कार्य M नमूनों को Mτ से जोड़ने के परिणामस्वरूप होने वाले पूर्वाग्रह को संभालने के लिए पर्याप्त नहीं हैं<sub>0</sub> एमटी पर अवलोकन समय<sub>0</sub> माप के अंत के अतिरिक्त एम माप ब्लॉकों के बीच वितरित मृत-समय के साथ। इसने बी की आवश्यकता का प्रतिपादन किया<sub>3</sub> पक्षपात।<ref name=NISTTN1318/>


पूर्वाग्रह कार्यों का मूल्यांकन विशेष μ मान के लिए किया जाता है, इसलिए [[शोर पहचान|ध्वनि पहचान]] का उपयोग करके पाए जाने वाले प्रमुख ध्वनि रूप के लिए α-μ मानचित्रण करने की आवश्यकता होती है। वैकल्पिक रूप से,<ref name=Allan1966/><ref name=NBSTN375/> पूर्वाग्रह कार्यों का उपयोग करके माप से प्रमुख ध्वनि प्रपत्र का μ मान अनुमान लगाया जा सकता है।
पूर्वाग्रह कार्यों का मूल्यांकन विशेष μ मान के लिए किया जाता है, इसलिए [[शोर पहचान]] का उपयोग करके पाए जाने वाले प्रमुख शोर रूप के लिए α-μ मानचित्रण करने की आवश्यकता होती है। वैकल्पिक रूप से,<ref name=Allan1966/><ref name=NBSTN375/>पूर्वाग्रह कार्यों का उपयोग करके माप से प्रमुख शोर प्रपत्र का μ मान अनुमान लगाया जा सकता है।


=== बी<sub>1</sub> पूर्वाग्रह फलन ===
=== बी<sub>1</sub> पूर्वाग्रह समारोह ===
बी<sub>1</sub> पूर्वाग्रह फलन एम-नमूना भिन्नता को 2-नमूना भिन्नता (एलन भिन्नता) से संबंधित करता है, माप टी के मध्य का समय और प्रत्येक माप के लिए समय τ स्थिर रखता है। यह परिभाषित है<ref name=NBSTN375/> जैसा
बी<sub>1</sub> पूर्वाग्रह समारोह एम-नमूना भिन्नता को 2-नमूना भिन्नता (एलन भिन्नता) से संबंधित करता है, माप टी के बीच का समय और प्रत्येक माप के लिए समय τ स्थिर रखता है। यह परिभाषित है<ref name=NBSTN375/>जैसा


:<math>B_1(N, r, \mu) = \frac{\left\langle\sigma_y^2(N, T, \tau)\right\rangle}{\left\langle\sigma_y^2(2, T, \tau)\right\rangle},</math>
:<math>B_1(N, r, \mu) = \frac{\left\langle\sigma_y^2(N, T, \tau)\right\rangle}{\left\langle\sigma_y^2(2, T, \tau)\right\rangle},</math>
Line 420: Line 419:


:<math>r = \frac{T}{\tau}.</math>
:<math>r = \frac{T}{\tau}.</math>
पूर्वाग्रह फलन विश्लेषण के पश्चात् बन जाता है
पूर्वाग्रह समारोह विश्लेषण के बाद बन जाता है


:<math>B_1(N, r, \mu) = \frac{1 + \sum_{n=1}^{N-1} \frac{N - n}{N(N - 1)} \left[ 2(rn)^{\mu+2} - (rn + 1)^{\mu+2} - |rn - 1|^{\mu+2} \right]}{1 + \frac{1}{2} \left[ 2r^{\mu+2} - (r + 1)^{\mu+2} - |r - 1|^{\mu+2} \right]}.</math>
:<math>B_1(N, r, \mu) = \frac{1 + \sum_{n=1}^{N-1} \frac{N - n}{N(N - 1)} \left[ 2(rn)^{\mu+2} - (rn + 1)^{\mu+2} - |rn - 1|^{\mu+2} \right]}{1 + \frac{1}{2} \left[ 2r^{\mu+2} - (r + 1)^{\mu+2} - |r - 1|^{\mu+2} \right]}.</math>
=== बी<sub>2</sub> पूर्वाग्रह फलन ===
=== बी<sub>2</sub> पूर्वाग्रह समारोह ===
बी<sub>2</sub> पूर्वाग्रह फलन नमूना समय टी के लिए 2-नमूना भिन्नता को 2-नमूना भिन्नता (एलन भिन्नता) के साथ संबंधित करता है, नमूने एन = 2 की संख्या और अवलोकन समय τ स्थिर रखते हुए। यह परिभाषित है<ref name=NBSTN375/> जैसा
बी<sub>2</sub> पूर्वाग्रह समारोह नमूना समय टी के लिए 2-नमूना भिन्नता को 2-नमूना भिन्नता (एलन भिन्नता) के साथ संबंधित करता है, नमूने एन = 2 की संख्या और अवलोकन समय τ स्थिर रखते हुए। यह परिभाषित है<ref name=NBSTN375/>जैसा


:<math>B_2(r, \mu) = \frac{\left\langle\sigma_y^2(2, T, \tau)\right\rangle}{\left\langle\sigma_y^2(2, \tau, \tau)\right\rangle},</math>
:<math>B_2(r, \mu) = \frac{\left\langle\sigma_y^2(2, T, \tau)\right\rangle}{\left\langle\sigma_y^2(2, \tau, \tau)\right\rangle},</math>
Line 430: Line 429:


:<math>r = \frac{T}{\tau}.</math>
:<math>r = \frac{T}{\tau}.</math>
पूर्वाग्रह फलन विश्लेषण के पश्चात् बन जाता है
पूर्वाग्रह समारोह विश्लेषण के बाद बन जाता है


:<math>B_2(r, \mu) = \frac{1 + \frac{1}{2} \left[ 2r^{\mu+2} - (r + 1)^{\mu+2} - |r - 1|^{\mu+2} \right]}{2\left(1 - 2^\mu\right)}.</math>
:<math>B_2(r, \mu) = \frac{1 + \frac{1}{2} \left[ 2r^{\mu+2} - (r + 1)^{\mu+2} - |r - 1|^{\mu+2} \right]}{2\left(1 - 2^\mu\right)}.</math>


=== बी<sub>3</sub> पूर्वाग्रह फलन ===
=== बी<sub>3</sub> पूर्वाग्रह समारोह ===
बी<sub>3</sub> पूर्वाग्रह फलन नमूना समय एमटी के लिए 2-नमूना भिन्नता से संबंधित है<sub>0</sub> और अवलोकन समय Mτ<sub>0</sub> 2-नमूना भिन्नता (एलन भिन्नता) के साथ और परिभाषित किया गया है<ref name=NISTTN1318>J. A. Barnes, D. W. Allan: [http://tf.boulder.nist.gov/general/pdf/878.pdf ''Variances Based on Data with Dead Time Between the Measurements''], NIST Technical Note 1318, 1990.</ref> जैसा
बी<sub>3</sub> पूर्वाग्रह समारोह नमूना समय एमटी के लिए 2-नमूना भिन्नता से संबंधित है<sub>0</sub> और अवलोकन समय Mτ<sub>0</sub> 2-नमूना भिन्नता (एलन भिन्नता) के साथ और परिभाषित किया गया है<ref name=NISTTN1318>J. A. Barnes, D. W. Allan: [http://tf.boulder.nist.gov/general/pdf/878.pdf ''Variances Based on Data with Dead Time Between the Measurements''], NIST Technical Note 1318, 1990.</ref> जैसा


:<math>B_3(N, M, r, \mu) = \frac{\left\langle\sigma_y^2(N, M, T, \tau)\right\rangle}{\left\langle\sigma_y^2(N, T, \tau)\right\rangle},</math>
:<math>B_3(N, M, r, \mu) = \frac{\left\langle\sigma_y^2(N, M, T, \tau)\right\rangle}{\left\langle\sigma_y^2(N, T, \tau)\right\rangle},</math>
Line 441: Line 440:
:<math>T = M T_0,</math>
:<math>T = M T_0,</math>
:<math>\tau = M \tau_0.</math>
:<math>\tau = M \tau_0.</math>
बी<sub>3</sub> बायस फलन गैर-अतिव्यापी और अतिव्यापी चर τ अनुमानक मानों को अवलोकन समय τ के मृत-समय माप के आधार पर समायोजित करने के लिए उपयोगी है<sub>0</sub> और टिप्पणियों के मध्य का समय टी<sub>0</sub> सामान्य मृत-समय अनुमानों के लिए।
बी<sub>3</sub> बायस फ़ंक्शन गैर-अतिव्यापी और अतिव्यापी चर τ अनुमानक मानों को अवलोकन समय τ के मृत-समय माप के आधार पर समायोजित करने के लिए उपयोगी है<sub>0</sub> और टिप्पणियों के बीच का समय टी<sub>0</sub> सामान्य मृत-समय अनुमानों के लिए।


पूर्वाग्रह फलन विश्लेषण के पश्चात् बन जाता है (एन = 2 स्थिति के लिए)
पूर्वाग्रह समारोह विश्लेषण के बाद बन जाता है (एन = 2 मामले के लिए)


: <math>B_3(2, M, r, \mu) = \frac{2M + MF(Mr) - \sum_{n=1}^{M-1} (M - n) \left[ 2F(nr) - F\big((M + n)r\big) + F\big((M - n)r\big) \right]}{M^{\mu+2} [F(r) + 2]},</math>
: <math>B_3(2, M, r, \mu) = \frac{2M + MF(Mr) - \sum_{n=1}^{M-1} (M - n) \left[ 2F(nr) - F\big((M + n)r\big) + F\big((M - n)r\big) \right]}{M^{\mu+2} [F(r) + 2]},</math>
Line 451: Line 450:




===τ पूर्वाग्रह फलन ===
===τ पूर्वाग्रह समारोह ===
जबकि औपचारिक रूप से तैयार नहीं किया गया है, यह α-µ मानचित्रण के परिणामस्वरूप अप्रत्यक्ष रूप से अनुमान लगाया गया है। भिन्न-भिन्न τ के लिए दो एलन भिन्नता माप की तुलना करते समय, ही μ गुणांक के रूप में ही प्रभावशाली ध्वनि मानते हुए, पूर्वाग्रह को परिभाषित किया जा सकता है
जबकि औपचारिक रूप से तैयार नहीं किया गया है, यह α-µ मैपिंग के परिणामस्वरूप अप्रत्यक्ष रूप से अनुमान लगाया गया है। अलग-अलग τ के लिए दो एलन भिन्नता माप की तुलना करते समय, ही μ गुणांक के रूप में ही प्रभावशाली शोर मानते हुए, पूर्वाग्रह को परिभाषित किया जा सकता है


:<math>B_\tau(\tau_1, \tau_2, \mu) = \frac{\left\langle\sigma_y^2(2, \tau_2, \tau_2)\right\rangle}{\left\langle\sigma_y^2(2, \tau_1, \tau_1) \right\rangle}.</math>
:<math>B_\tau(\tau_1, \tau_2, \mu) = \frac{\left\langle\sigma_y^2(2, \tau_2, \tau_2)\right\rangle}{\left\langle\sigma_y^2(2, \tau_1, \tau_1) \right\rangle}.</math>
पूर्वाग्रह फलन विश्लेषण के पश्चात् बन जाता है
पूर्वाग्रह समारोह विश्लेषण के बाद बन जाता है


:<math>B_\tau(\tau_1, \tau_2, \mu) = \left( \frac{\tau_2}{\tau_1} \right)^\mu.</math>
:<math>B_\tau(\tau_1, \tau_2, \mu) = \left( \frac{\tau_2}{\tau_1} \right)^\mu.</math>
=== मूल्यों के मध्य रूपांतरण ===
=== मूल्यों के बीच रूपांतरण ===
माप के सेट से दूसरे सेट में परिवर्तित करने के लिए B<sub>1</sub>, बी<sub>2</sub> और τ पूर्वाग्रह कार्यों को इकट्ठा किया जा सकता है। सबसे पहले बी<sub>1</sub> फलन कनवर्ट करता है (एन<sub>1</sub>, टी<sub>1</sub>,टी<sub>1</sub>) मूल्य में (2, टी<sub>1</sub>,टी<sub>1</sub>), जिसमें से बी<sub>2</sub> फलन (2, τ<sub>1</sub>,टी<sub>1</sub>) मान, इस प्रकार τ पर एलन प्रसरण<sub>1</sub>. एलन प्रसरण माप को τ से τ बायस फलन का उपयोग करके परिवर्तित किया जा सकता है<sub>1</sub> टी के लिए<sub>2</sub>, जिससे तब (2, टी<sub>2</sub>,टी<sub>2</sub>) बी का उपयोग करना<sub>2</sub> और फिर अंत में बी का उपयोग करना<sub>1</sub> में (एन<sub>2</sub>, टी<sub>2</sub>,टी<sub>2</sub>) विचरण। पूर्ण रूपान्तरण हो जाता है
माप के सेट से दूसरे सेट में परिवर्तित करने के लिए B<sub>1</sub>, बी<sub>2</sub> और τ पूर्वाग्रह कार्यों को इकट्ठा किया जा सकता है। सबसे पहले बी<sub>1</sub> फ़ंक्शन कनवर्ट करता है (एन<sub>1</sub>, टी<sub>1</sub>,टी<sub>1</sub>) मूल्य में (2, टी<sub>1</sub>,टी<sub>1</sub>), जिसमें से बी<sub>2</sub> फ़ंक्शन (2, τ<sub>1</sub>,टी<sub>1</sub>) मान, इस प्रकार τ पर एलन प्रसरण<sub>1</sub>. एलन प्रसरण माप को τ से τ बायस फ़ंक्शन का उपयोग करके परिवर्तित किया जा सकता है<sub>1</sub> टी के लिए<sub>2</sub>, जिससे तब (2, टी<sub>2</sub>,टी<sub>2</sub>) बी का उपयोग करना<sub>2</sub> और फिर अंत में बी का उपयोग करना<sub>1</sub> में (एन<sub>2</sub>, टी<sub>2</sub>,टी<sub>2</sub>) विचरण। पूर्ण रूपान्तरण हो जाता है


:<math>\left\langle \sigma_y^2(N_2, T_2, \tau_2) \right\rangle = \left( \frac{\tau_2}{\tau_1} \right)^\mu \left[ \frac{B_1(N_2, r_2, \mu) B_2(r_2, \mu)}{B_1(N_1, r_1, \mu) B_2(r_1, \mu)} \right] \left\langle \sigma_y^2(N_1, T_1, \tau_1) \right\rangle,</math>
:<math>\left\langle \sigma_y^2(N_2, T_2, \tau_2) \right\rangle = \left( \frac{\tau_2}{\tau_1} \right)^\mu \left[ \frac{B_1(N_2, r_2, \mu) B_2(r_2, \mu)}{B_1(N_1, r_1, \mu) B_2(r_1, \mu)} \right] \left\langle \sigma_y^2(N_1, T_1, \tau_1) \right\rangle,</math>
Line 468: Line 467:


:<math>\left\langle \sigma_y^2(N_2, M_2, T_2, \tau_2) \right\rangle = \left( \frac{\tau_2}{\tau_1} \right)^\mu \left[ \frac{B_3(N_2, M_2, r_2, \mu) B_1(N_2, r_2, \mu) B_2(r_2, \mu)}{B_3(N_1, M_1, r_1, \mu) B_1(N_1, r_1, \mu) B_2(r_1, \mu)} \right] \left\langle \sigma_y^2(N_1, M_1, T_1, \tau_1) \right\rangle.</math>
:<math>\left\langle \sigma_y^2(N_2, M_2, T_2, \tau_2) \right\rangle = \left( \frac{\tau_2}{\tau_1} \right)^\mu \left[ \frac{B_3(N_2, M_2, r_2, \mu) B_1(N_2, r_2, \mu) B_2(r_2, \mu)}{B_3(N_1, M_1, r_1, \mu) B_1(N_1, r_1, \mu) B_2(r_1, \mu)} \right] \left\langle \sigma_y^2(N_1, M_1, T_1, \tau_1) \right\rangle.</math>
== मापन विवाद ==
== मापन मुद्दे ==
एलन प्रसरण या एलन विचलन की गणना करने के लिए माप करते समय, अनेक विवादों के कारण माप खराब हो सकते हैं। एलन विचरण के लिए विशिष्ट प्रभाव यहां सम्मिलित हैं, जहां परिणाम पक्षपाती होंगे।
एलन प्रसरण या एलन विचलन की गणना करने के लिए माप करते समय, कई मुद्दों के कारण माप खराब हो सकते हैं। एलन विचरण के लिए विशिष्ट प्रभाव यहां शामिल हैं, जहां परिणाम पक्षपाती होंगे।


===माप बैंडविड्थ सीमा===
===माप बैंडविड्थ सीमा===
शैनन-हार्टले प्रमेय के अंदर वर्णित मापन प्रणाली में Nyquist दर पर या उससे कम बैंडविड्थ होने की उम्मीद है। जैसा कि पावर-लॉ ध्वनि फ़ार्मुलों में देखा जा सकता है, सफेद और झिलमिलाहट ध्वनि समायोजन दोनों ऊपरी कोने की आवृत्ति पर निर्भर करते हैं <math>f_H</math> (इन प्रणालियों को केवल लो-पास फ़िल्टर्ड माना जाता है)। आवृत्ति फ़िल्टर गुण को ध्यान में रखते हुए, यह स्पष्ट रूप से देखा जा सकता है कि कम आवृत्ति वाले ध्वनि का परिणाम पर अधिक प्रभाव पड़ता है। अपेक्षाकृत सपाट चरण-समायोजन ध्वनि प्रकारों (जैसे डब्लूपीएम और एफपीएम) के लिए, फ़िल्टरिंग की प्रासंगिकता है, जबकि अधिक ढलान वाले ध्वनि प्रकारों के लिए ऊपरी आवृत्ति सीमा कम महत्व की हो जाती है, यह मानते हुए कि माप प्रणाली बैंडविड्थ व्यापक सापेक्ष है <math>\tau</math> जैसा दिया गया है
शैनन-हार्टले प्रमेय के भीतर वर्णित मापन प्रणाली में Nyquist दर पर या उससे कम बैंडविड्थ होने की उम्मीद है। जैसा कि पावर-लॉ शोर फ़ार्मुलों में देखा जा सकता है, सफेद और झिलमिलाहट शोर मॉड्यूलेशन दोनों ऊपरी कोने की आवृत्ति पर निर्भर करते हैं <math>f_H</math> (इन प्रणालियों को केवल लो-पास फ़िल्टर्ड माना जाता है)। फ़्रीक्वेंसी फ़िल्टर गुण को ध्यान में रखते हुए, यह स्पष्ट रूप से देखा जा सकता है कि कम आवृत्ति वाले शोर का परिणाम पर अधिक प्रभाव पड़ता है। अपेक्षाकृत सपाट चरण-मॉड्यूलेशन शोर प्रकारों (जैसे WPM और FPM) के लिए, फ़िल्टरिंग की प्रासंगिकता है, जबकि अधिक ढलान वाले शोर प्रकारों के लिए ऊपरी आवृत्ति सीमा कम महत्व की हो जाती है, यह मानते हुए कि माप प्रणाली बैंडविड्थ व्यापक सापेक्ष है <math>\tau</math> जैसा दिया गया है


:<math>\tau \gg \frac{1}{2\pi f_H}.</math>
:<math>\tau \gg \frac{1}{2\pi f_H}.</math>
जब यह धारणा पूरी नहीं होती है, प्रभावी बैंडविड्थ <math>f_H</math> माप के साथ नोट किया जाना चाहिए। रुचि रखने वालों को NBS TN394 से संपर्क करना चाहिए।<ref name=NBSTN394/>
जब यह धारणा पूरी नहीं होती है, प्रभावी बैंडविड्थ <math>f_H</math> माप के साथ नोट किया जाना चाहिए। रुचि रखने वालों को NBS TN394 से संपर्क करना चाहिए।<ref name=NBSTN394/>


यदि, चूंकि, कोई नमूना समय के पूर्णांक गुणकों का उपयोग करके अनुमानक की बैंडविड्थ को समायोजित करता है <math>n\tau_0</math>, तब सिस्टम बैंडविड्थ प्रभाव को नगण्य स्तर तक कम किया जा सकता है। दूरसंचार की जरूरतों के लिए, माप की तुलनीयता सुनिश्चित करने और विक्रेताओं को भिन्न-भिन्न कार्यान्वयन करने के लिए कुछ स्वतंत्रता की अनुमति देने के लिए इस प्रकार के विधियों की आवश्यकता होती है। आईटीयू-टी आरईसी। जी.813<ref name=ITUTG813>ITU-T Rec. G.813: [http://www.itu.int/rec/T-REC-G.813/recommendation.asp?lang=en&parent=T-REC-G.813-200303-I ''Timing characteristics of SDH equipment slave clock (SEC)''], ITU-T Rec. G.813 (03/2003).</ref> TDEV माप के लिए।
यदि, हालांकि, कोई नमूना समय के पूर्णांक गुणकों का उपयोग करके अनुमानक की बैंडविड्थ को समायोजित करता है <math>n\tau_0</math>, तब सिस्टम बैंडविड्थ प्रभाव को नगण्य स्तर तक कम किया जा सकता है। दूरसंचार की जरूरतों के लिए, माप की तुलनीयता सुनिश्चित करने और विक्रेताओं को अलग-अलग कार्यान्वयन करने के लिए कुछ स्वतंत्रता की अनुमति देने के लिए इस तरह के तरीकों की आवश्यकता होती है। आईटीयू-टी आरईसी। जी.813<ref name=ITUTG813>ITU-T Rec. G.813: [http://www.itu.int/rec/T-REC-G.813/recommendation.asp?lang=en&parent=T-REC-G.813-200303-I ''Timing characteristics of SDH equipment slave clock (SEC)''], ITU-T Rec. G.813 (03/2003).</ref> TDEV माप के लिए।


यह सिफारिश की जा सकती है कि पहले <math>\tau_0</math> गुणकों को नजरअंदाज किया जाना चाहिए, जैसे कि पता चला ध्वनि का अधिकांश हिस्सा माप प्रणाली बैंडविड्थ के पासबैंड के अंदर है।
यह सिफारिश की जा सकती है कि पहले <math>\tau_0</math> गुणकों को नजरअंदाज किया जाना चाहिए, जैसे कि पता चला शोर का अधिकांश हिस्सा माप प्रणाली बैंडविड्थ के पासबैंड के भीतर है।


हार्डवेयर बैंडविड्थ को सॉफ्टवेयर के माध्यम से कम करने के लिए एलन भिन्नता पर आगे के विकास किए गए थे। सॉफ्टवेयर बैंडविड्थ के इस विकास ने शेष ध्वनि को संबोधित करने की अनुमति दी, और विधि को अब संशोधित एलन विचरण के रूप में संदर्भित किया गया है। इस बैंडविड्थ कमी तकनीक को संशोधित एलन विचरण के वर्धित संस्करण के साथ भ्रमित नहीं होना चाहिए, जो स्मूथिंग फ़िल्टर बैंडविड्थ को भी बदलता है।
हार्डवेयर बैंडविड्थ को सॉफ्टवेयर के माध्यम से कम करने के लिए एलन भिन्नता पर आगे के विकास किए गए थे। सॉफ्टवेयर बैंडविड्थ के इस विकास ने शेष शोर को संबोधित करने की अनुमति दी, और विधि को अब संशोधित एलन विचरण के रूप में संदर्भित किया गया है। इस बैंडविड्थ कमी तकनीक को संशोधित एलन विचरण के वर्धित संस्करण के साथ भ्रमित नहीं होना चाहिए, जो स्मूथिंग फ़िल्टर बैंडविड्थ को भी बदलता है।


=== माप में मृत समय ===
=== माप में मृत समय ===
समय और आवृत्ति के अनेक माप उपकरणों में आर्मिंग टाइम, टाइम-बेस टाइम, प्रोसेसिंग टाइम के चरण होते हैं और फिर आर्मिंग को फिर से ट्रिगर कर सकते हैं। आर्मिंग का समय उस समय से होता है जब आर्मिंग ट्रिगर होता है जब स्टार्ट चैनल पर स्टार्ट इवेंट होता है। समय-आधार तब सुनिश्चित करता है कि स्टॉप चैनल पर किसी ईवेंट को स्टॉप इवेंट के रूप में स्वीकार करने से पहले कम से कम समय लगता है। ईवेंट की संख्या और प्रारंभ ईवेंट और स्टॉप ईवेंट के मध्य बीता हुआ समय रिकॉर्ड किया जाता है और प्रसंस्करण समय के समय प्रस्तुत किया जाता है। जब प्रसंस्करण होता है (निवास समय के रूप में भी जाना जाता है), उपकरण सामान्यतः और माप करने में असमर्थ होता है। प्रसंस्करण होने के पश्चात्, निरंतर मोड में उपकरण आर्म सर्किट को फिर से ट्रिगर करता है। स्टॉप इवेंट और अगले स्टार्ट इवेंट के मध्य का समय डेड टाइम हो जाता है, जिसके समय सिग्नल नहीं देखा जा रहा है। इस प्रकार के मृत समय व्यवस्थित माप पूर्वाग्रहों का परिचय देते हैं, जिन्हें उचित परिणाम प्राप्त करने के लिए क्षतिपूर्ति करने की आवश्यकता होती है। ऐसी माप प्रणालियों के लिए समय टी आसन्न प्रारंभ घटनाओं (और इस प्रकार माप) के मध्य के समय को दर्शाता है, जबकि <math>\tau</math> समय-आधार लंबाई को निरूपित करें, अर्थात किसी भी माप की प्रारंभ और समाप्ति घटना के मध्य की नाममात्र लंबाई।
समय और आवृत्ति के कई माप उपकरणों में आर्मिंग टाइम, टाइम-बेस टाइम, प्रोसेसिंग टाइम के चरण होते हैं और फिर आर्मिंग को फिर से ट्रिगर कर सकते हैं। आर्मिंग का समय उस समय से होता है जब आर्मिंग ट्रिगर होता है जब स्टार्ट चैनल पर स्टार्ट इवेंट होता है। समय-आधार तब सुनिश्चित करता है कि स्टॉप चैनल पर किसी ईवेंट को स्टॉप इवेंट के रूप में स्वीकार करने से पहले कम से कम समय लगता है। ईवेंट की संख्या और प्रारंभ ईवेंट और स्टॉप ईवेंट के बीच बीता हुआ समय रिकॉर्ड किया जाता है और प्रसंस्करण समय के दौरान प्रस्तुत किया जाता है। जब प्रसंस्करण होता है (निवास समय के रूप में भी जाना जाता है), उपकरण आमतौर पर और माप करने में असमर्थ होता है। प्रसंस्करण होने के बाद, निरंतर मोड में उपकरण आर्म सर्किट को फिर से ट्रिगर करता है। स्टॉप इवेंट और अगले स्टार्ट इवेंट के बीच का समय डेड टाइम हो जाता है, जिसके दौरान सिग्नल नहीं देखा जा रहा है। इस तरह के मृत समय व्यवस्थित माप पूर्वाग्रहों का परिचय देते हैं, जिन्हें उचित परिणाम प्राप्त करने के लिए क्षतिपूर्ति करने की आवश्यकता होती है। ऐसी माप प्रणालियों के लिए समय टी आसन्न प्रारंभ घटनाओं (और इस प्रकार माप) के बीच के समय को दर्शाता है, जबकि <math>\tau</math> समय-आधार लंबाई को निरूपित करें, अर्थात किसी भी माप की शुरुआत और समाप्ति घटना के बीच की नाममात्र लंबाई।


माप पर डेड-टाइम प्रभावों का उत्पादित परिणाम पर इतना प्रभाव पड़ता है कि इसके गुणों को ठीक से निर्धारित करने के लिए क्षेत्र का बहुत अध्ययन किया गया है। जीरो-डेड-टाइम काउंटरों की शुरूआत ने इस विश्लेषण की आवश्यकता को समाप्त कर दिया। शून्य-डेड-टाइम काउंटर में संपत्ति है कि माप की स्टॉप इवेंट का उपयोग निम्न ईवेंट की प्रारंभ की घटना के रूप में भी किया जा रहा है। इस प्रकार के काउंटर इवेंट और टाइम टाइमस्टैम्प जोड़े की श्रृंखला बनाते हैं, प्रत्येक चैनल के लिए समय-आधार द्वारा स्थान दिया जाता है। इस प्रकार के माप समय-श्रृंखला विश्लेषण के क्रम रूपों में भी उपयोगी सिद्ध हुए हैं।
माप पर डेड-टाइम प्रभावों का उत्पादित परिणाम पर इतना प्रभाव पड़ता है कि इसके गुणों को ठीक से निर्धारित करने के लिए क्षेत्र का बहुत अध्ययन किया गया है। जीरो-डेड-टाइम काउंटरों की शुरूआत ने इस विश्लेषण की आवश्यकता को समाप्त कर दिया। शून्य-डेड-टाइम काउंटर में संपत्ति है कि माप की स्टॉप इवेंट का उपयोग निम्न ईवेंट की शुरुआत की घटना के रूप में भी किया जा रहा है। इस तरह के काउंटर इवेंट और टाइम टाइमस्टैम्प जोड़े की श्रृंखला बनाते हैं, प्रत्येक चैनल के लिए समय-आधार द्वारा स्थान दिया जाता है। इस तरह के माप समय-श्रृंखला विश्लेषण के क्रम रूपों में भी उपयोगी साबित हुए हैं।


डेड टाइम के साथ किए जा रहे मापन को बायस फंक्शन बी का उपयोग करके ठीक किया जा सकता है<sub>1</sub>, बी<sub>2</sub> और बी<sub>3</sub>. इस प्रकार, मृत समय जैसे कि एलन भिन्नता तक पहुंच को प्रतिबंधित नहीं कर रहा है, किन्तु यह इसे और अधिक समस्याग्रस्त बना देता है। मृत समय ज्ञात होना चाहिए, जैसे कि नमूने टी के मध्य का समय स्थापित किया जा सकता है।
डेड टाइम के साथ किए जा रहे मापन को बायस फंक्शन बी का उपयोग करके ठीक किया जा सकता है<sub>1</sub>, बी<sub>2</sub> और बी<sub>3</sub>. इस प्रकार, मृत समय जैसे कि एलन भिन्नता तक पहुंच को प्रतिबंधित नहीं कर रहा है, लेकिन यह इसे और अधिक समस्याग्रस्त बना देता है। मृत समय ज्ञात होना चाहिए, जैसे कि नमूने टी के बीच का समय स्थापित किया जा सकता है।


=== माप की लंबाई और नमूनों का प्रभावी उपयोग ===
=== माप की लंबाई और नमूनों का प्रभावी उपयोग ===
# कॉन्फिडेंस इंटरवल पर प्रभाव का अध्ययन करना कि नमूना श्रृंखला की लंबाई एन है, और चर τ पैरामीटर एन कॉन्फिडेंस इंटरवल का प्रभाव बहुत बड़ा हो सकता है, जिससे कि एन के कुछ संयोजन के लिए स्वतंत्रता की #प्रभावी डिग्री छोटी हो सकती है और n प्रमुख ध्वनि रूप के लिए (उस τ के लिए)।
# कॉन्फिडेंस इंटरवल पर प्रभाव का अध्ययन करना कि नमूना श्रृंखला की लंबाई एन है, और वेरिएबल τ पैरामीटर एन कॉन्फिडेंस इंटरवल का प्रभाव बहुत बड़ा हो सकता है, क्योंकि एन के कुछ संयोजन के लिए स्वतंत्रता की #प्रभावी डिग्री छोटी हो सकती है और n प्रमुख शोर रूप के लिए (उस τ के लिए)।


इसका प्रभाव यह हो सकता है कि अनुमानित मूल्य वास्तविक मूल्य से बहुत कम या बहुत अधिक हो सकता है, जिससे परिणाम के गलत निष्कर्ष निकल सकते हैं।
इसका प्रभाव यह हो सकता है कि अनुमानित मूल्य वास्तविक मूल्य से बहुत कम या बहुत अधिक हो सकता है, जिससे परिणाम के गलत निष्कर्ष निकल सकते हैं।


यह अनुशंसा की जाती है कि कॉन्फिडेंस इंटरवल को डेटा के साथ प्लॉट किया जाए, जिससे कि प्लॉट के पाठक मूल्यों की सांख्यिकीय अनिश्चितता से अवगत हो सकें।
यह अनुशंसा की जाती है कि कॉन्फिडेंस इंटरवल को डेटा के साथ प्लॉट किया जाए, ताकि प्लॉट के पाठक मूल्यों की सांख्यिकीय अनिश्चितता से अवगत हो सकें।


यह अनुशंसा की जाती है कि नमूना अनुक्रम की लंबाई, अर्थात् नमूनों की संख्या N को उच्च रखा जाए जिससे कि यह सुनिश्चित किया जा सके कि विश्वास अंतराल ब्याज की τ सीमा से छोटा है।
यह अनुशंसा की जाती है कि नमूना अनुक्रम की लंबाई, यानी नमूनों की संख्या N को उच्च रखा जाए ताकि यह सुनिश्चित किया जा सके कि विश्वास अंतराल ब्याज की τ सीमा से छोटा है।


यह अनुशंसा की जाती है कि τ श्रेणी को τ द्वारा स्वीप किया जाए<sub>0</sub> गुणक एन ऊपरी अंत सापेक्ष एन में सीमित है, जैसे कि साजिश के पढ़ने को अत्यधिक अस्थिर अनुमानक मूल्यों से भ्रमित नहीं किया जा रहा है।
यह अनुशंसा की जाती है कि τ श्रेणी को τ द्वारा स्वीप किया जाए<sub>0</sub> गुणक एन ऊपरी अंत सापेक्ष एन में सीमित है, जैसे कि साजिश के पढ़ने को अत्यधिक अस्थिर अनुमानक मूल्यों से भ्रमित नहीं किया जा रहा है।


यह अनुशंसा की जाती है कि स्वतंत्रता मूल्यों की उत्तम डिग्री प्रदान करने वाले अनुमानकों का उपयोग एलन भिन्नता अनुमानकों के प्रतिस्थापन में या उन्हें पूरक के रूप में किया जाए जहां वे एलन भिन्नता अनुमानकों से उत्तम प्रदर्शन करते हैं। इनमें कुल प्रसरण और थियो प्रसरण अनुमानकों पर विचार किया जाना चाहिए।
यह अनुशंसा की जाती है कि स्वतंत्रता मूल्यों की बेहतर डिग्री प्रदान करने वाले अनुमानकों का उपयोग एलन भिन्नता अनुमानकों के प्रतिस्थापन में या उन्हें पूरक के रूप में किया जाए जहां वे एलन भिन्नता अनुमानकों से बेहतर प्रदर्शन करते हैं। इनमें कुल प्रसरण और थियो प्रसरण अनुमानकों पर विचार किया जाना चाहिए।


=== प्रमुख ध्वनि प्रकार ===
=== प्रमुख शोर प्रकार ===
बड़ी संख्या में रूपांतरण स्थिरांक, पूर्वाग्रह सुधार और विश्वास अंतराल प्रमुख ध्वनि प्रकार पर निर्भर करते हैं। उचित व्याख्या के लिए ध्वनि पहचान के माध्यम से ब्याज के विशेष τ के लिए प्रमुख ध्वनि प्रकार की पहचान की जानी चाहिए। प्रमुख ध्वनि प्रकार की पहचान करने में विफल रहने से पक्षपाती मूल्य उत्पन्न होंगे। इनमें से कुछ पूर्वाग्रह परिमाण के अनेक क्रम के हो सकते हैं, इसलिए यह बड़े महत्व का हो सकता है।
बड़ी संख्या में रूपांतरण स्थिरांक, पूर्वाग्रह सुधार और विश्वास अंतराल प्रमुख शोर प्रकार पर निर्भर करते हैं। उचित व्याख्या के लिए शोर पहचान के माध्यम से ब्याज के विशेष τ के लिए प्रमुख शोर प्रकार की पहचान की जानी चाहिए। प्रमुख शोर प्रकार की पहचान करने में विफल रहने से पक्षपाती मूल्य उत्पन्न होंगे। इनमें से कुछ पूर्वाग्रह परिमाण के कई क्रम के हो सकते हैं, इसलिए यह बड़े महत्व का हो सकता है।


=== रेखीय बहाव ===
=== रेखीय बहाव ===
सिग्नल पर व्यवस्थित प्रभाव केवल आंशिक रूप से रद्द कर दिया गया है। चरण और आवृत्ति ऑफसेट रद्द कर दिया गया है, किन्तु रैखिक बहाव या बहुपद चरण घटता के अन्य उच्च-डिग्री रूपों को रद्द नहीं किया जाएगा और इस प्रकार माप सीमा बनती है। कर्व फिटिंग और व्यवस्थित ऑफसेट को हटाने को नियोजित किया जा सकता है। अधिकांशतः रैखिक बहाव को हटाना पर्याप्त हो सकता है। हैडमार्ड विचरण जैसे रेखीय-बहाव अनुमानकों का उपयोग भी नियोजित किया जा सकता है। पल-आधारित अनुमानक का उपयोग करके रैखिक बहाव हटाने को नियोजित किया जा सकता है।
सिग्नल पर व्यवस्थित प्रभाव केवल आंशिक रूप से रद्द कर दिया गया है। चरण और आवृत्ति ऑफसेट रद्द कर दिया गया है, लेकिन रैखिक बहाव या बहुपद चरण घटता के अन्य उच्च-डिग्री रूपों को रद्द नहीं किया जाएगा और इस प्रकार माप सीमा बनती है। कर्व फिटिंग और व्यवस्थित ऑफसेट को हटाने को नियोजित किया जा सकता है। अक्सर रैखिक बहाव को हटाना पर्याप्त हो सकता है। हैडमार्ड विचरण जैसे रेखीय-बहाव अनुमानकों का उपयोग भी नियोजित किया जा सकता है। पल-आधारित अनुमानक का उपयोग करके रैखिक बहाव हटाने को नियोजित किया जा सकता है।


=== माप उपकरण अनुमानक पूर्वाग्रह ===
=== माप उपकरण अनुमानक पूर्वाग्रह ===
पारंपरिक उपकरणों ने केवल एकल घटनाओं या घटना जोड़े का माप प्रदान किया। जे. जे. स्नाइडर द्वारा अतिव्यापी मापन के उन्नत सांख्यिकीय उपकरण का परिचय<ref name=Snyder1981/> पारंपरिक अंकों/समय-आधार संतुलन को तोड़ते हुए आवृत्ति रीडआउट में बहुत उत्तम रिज़ॉल्यूशन की अनुमति दी। जबकि इस प्रकार के विधि अपने इच्छित उद्देश्य के लिए उपयोगी होते हैं, एलन विचरण गणनाओं के लिए ऐसे चिकने मापों का उपयोग करने से उच्च रिज़ॉल्यूशन का झूठा आभास होता है,<ref name="Rubiola2005">{{Cite journal|url=http://www.femto-st.fr/~rubiola/pdf-articles/journal/2005rsi-hi-res-freq-counters.pdf |doi=10.1063/1.1898203 |title=उच्च-रिज़ॉल्यूशन काउंटरों के साथ आवृत्ति और उसके नमूना विचरण की माप पर|year=2005 |last1=Rubiola |first1=Enrico |journal=Review of Scientific Instruments |volume=76 |issue=5 |pages=054703–054703–6 |arxiv=physics/0411227 |bibcode=2005RScI...76e4703R |s2cid=119062268 |url-status=dead |archive-url=https://web.archive.org/web/20110720220221/http://www.femto-st.fr/~rubiola/pdf-articles/journal/2005rsi-hi-res-freq-counters.pdf |archive-date=20 July 2011 }}</ref><ref name=Rubiola2005ifcs>Rubiola, Enrico: [http://www.femto-st.fr/~rubiola/pdf-articles/conference/2005-ifcs-counters.pdf ''On the measurement of frequency and of its sample variance with high-resolution counters''] {{webarchive |url=https://web.archive.org/web/20110720220233/http://www.femto-st.fr/~rubiola/pdf-articles/conference/2005-ifcs-counters.pdf |date=20 July 2011 }}, Proc. Joint IEEE International Frequency Control Symposium and Precise Time and Time Interval Systems and Applications Meeting pp. 46–49, Vancouver, Canada, 29–31 August 2005.</ref><ref name=Rubiola2008cntpres>Rubiola, Enrico: [http://www.femto-st.fr/~rubiola/pdf-slides/2008T-femto-counters.pdf ''High-resolution frequency counters (extended version, 53 slides)''] {{webarchive |url=https://web.archive.org/web/20110720220251/http://www.femto-st.fr/~rubiola/pdf-slides/2008T-femto-counters.pdf |date=20 July 2011 }}, seminar given at the FEMTO-ST Institute, at the Université Henri Poincaré, and at the Jet Propulsion Laboratory, NASA-Caltech.</ref> किन्तु लंबे τ के लिए प्रभाव धीरे-धीरे हटा दिया जाता है, और माप के निचले-τ क्षेत्र में पक्षपाती मान होते हैं। यह पूर्वाग्रह जितना होना चाहिए उससे कम मूल्य प्रदान कर रहा है, इसलिए यह अति-आशावादी पूर्वाग्रह है (यह मानते हुए कि कम संख्या वही है जो कोई चाहता है) पूर्वाग्रह, माप की उपयोगिता को सुधारने के अतिरिक्त इसे कम करता है। इस प्रकार के स्मार्ट एल्गोरिदम को सामान्यतः टाइम-स्टैम्प मोड का उपयोग करके अक्षम या अन्यथा बाधित किया जा सकता है, जो उपलब्ध होने पर बहुत पसंद किया जाता है।
पारंपरिक उपकरणों ने केवल एकल घटनाओं या घटना जोड़े का माप प्रदान किया। जे. जे. स्नाइडर द्वारा अतिव्यापी मापन के उन्नत सांख्यिकीय उपकरण का परिचय<ref name=Snyder1981/>पारंपरिक अंकों/समय-आधार संतुलन को तोड़ते हुए आवृत्ति रीडआउट में बहुत बेहतर रिज़ॉल्यूशन की अनुमति दी। जबकि इस तरह के तरीके अपने इच्छित उद्देश्य के लिए उपयोगी होते हैं, एलन विचरण गणनाओं के लिए ऐसे चिकने मापों का उपयोग करने से उच्च रिज़ॉल्यूशन का झूठा आभास होता है,<ref name="Rubiola2005">{{Cite journal|url=http://www.femto-st.fr/~rubiola/pdf-articles/journal/2005rsi-hi-res-freq-counters.pdf |doi=10.1063/1.1898203 |title=उच्च-रिज़ॉल्यूशन काउंटरों के साथ आवृत्ति और उसके नमूना विचरण की माप पर|year=2005 |last1=Rubiola |first1=Enrico |journal=Review of Scientific Instruments |volume=76 |issue=5 |pages=054703–054703–6 |arxiv=physics/0411227 |bibcode=2005RScI...76e4703R |s2cid=119062268 |url-status=dead |archive-url=https://web.archive.org/web/20110720220221/http://www.femto-st.fr/~rubiola/pdf-articles/journal/2005rsi-hi-res-freq-counters.pdf |archive-date=20 July 2011 }}</ref><ref name=Rubiola2005ifcs>Rubiola, Enrico: [http://www.femto-st.fr/~rubiola/pdf-articles/conference/2005-ifcs-counters.pdf ''On the measurement of frequency and of its sample variance with high-resolution counters''] {{webarchive |url=https://web.archive.org/web/20110720220233/http://www.femto-st.fr/~rubiola/pdf-articles/conference/2005-ifcs-counters.pdf |date=20 July 2011 }}, Proc. Joint IEEE International Frequency Control Symposium and Precise Time and Time Interval Systems and Applications Meeting pp. 46–49, Vancouver, Canada, 29–31 August 2005.</ref><ref name=Rubiola2008cntpres>Rubiola, Enrico: [http://www.femto-st.fr/~rubiola/pdf-slides/2008T-femto-counters.pdf ''High-resolution frequency counters (extended version, 53 slides)''] {{webarchive |url=https://web.archive.org/web/20110720220251/http://www.femto-st.fr/~rubiola/pdf-slides/2008T-femto-counters.pdf |date=20 July 2011 }}, seminar given at the FEMTO-ST Institute, at the Université Henri Poincaré, and at the Jet Propulsion Laboratory, NASA-Caltech.</ref> लेकिन लंबे τ के लिए प्रभाव धीरे-धीरे हटा दिया जाता है, और माप के निचले-τ क्षेत्र में पक्षपाती मान होते हैं। यह पूर्वाग्रह जितना होना चाहिए उससे कम मूल्य प्रदान कर रहा है, इसलिए यह अति-आशावादी पूर्वाग्रह है (यह मानते हुए कि कम संख्या वही है जो कोई चाहता है) पूर्वाग्रह, माप की उपयोगिता को सुधारने के अतिरिक्त इसे कम करता है। इस तरह के स्मार्ट एल्गोरिदम को आमतौर पर टाइम-स्टैम्प मोड का उपयोग करके अक्षम या अन्यथा बाधित किया जा सकता है, जो उपलब्ध होने पर बहुत पसंद किया जाता है।


== व्यावहारिक माप ==
== व्यावहारिक माप ==
जबकि एलन विचरण के मापन के लिए अनेक दृष्टिकोण तैयार किए जा सकते हैं, सरल उदाहरण यह बता सकता है कि माप कैसे किया जा सकता है।
जबकि एलन विचरण के मापन के लिए कई दृष्टिकोण तैयार किए जा सकते हैं, सरल उदाहरण यह बता सकता है कि माप कैसे किया जा सकता है।


=== नाप ===
=== नाप ===
एलन भिन्नता के सभी माप प्रभावी रूप से दो भिन्न-भिन्न घड़ियों की तुलना करेंगे। संदर्भ घड़ी और परीक्षण के अनुसार उपकरण (DUT) पर विचार करें, और दोनों में 10 मेगाहर्ट्ज की सामान्य नाममात्र आवृत्ति हो। संदर्भ के बढ़ते किनारे (चैनल ए) और परीक्षण के अनुसार डिवाइस के बढ़ते किनारे के मध्य के समय को मापने के लिए समय-अंतराल काउंटर का उपयोग किया जा रहा है।
एलन भिन्नता के सभी माप प्रभावी रूप से दो अलग-अलग घड़ियों की तुलना करेंगे। संदर्भ घड़ी और परीक्षण के तहत उपकरण (DUT) पर विचार करें, और दोनों में 10 मेगाहर्ट्ज की सामान्य नाममात्र आवृत्ति हो। संदर्भ के बढ़ते किनारे (चैनल ए) और परीक्षण के तहत डिवाइस के बढ़ते किनारे के बीच के समय को मापने के लिए समय-अंतराल काउंटर का उपयोग किया जा रहा है।


समान रूप से स्थान माप प्रदान करने के लिए, संदर्भ घड़ी को माप दर बनाने के लिए विभाजित किया जाएगा, समय-अंतराल काउंटर (एआरएम इनपुट) को ट्रिगर किया जाएगा। यह दर 1 Hz हो सकती है (किसी संदर्भ घड़ी के [[पल्स प्रति सेकंड]] आउटपुट का उपयोग करके), किन्तु 10 Hz और 100 Hz जैसी अन्य दरों का भी उपयोग किया जा सकता है। जिस गति से समय-अंतराल काउंटर माप को पूरा कर सकता है, परिणाम का उत्पादन कर सकता है और अगली भुजा के लिए खुद को तैयार कर सकता है वह ट्रिगर आवृत्ति को सीमित करेगा।
समान रूप से स्थान माप प्रदान करने के लिए, संदर्भ घड़ी को माप दर बनाने के लिए विभाजित किया जाएगा, समय-अंतराल काउंटर (एआरएम इनपुट) को ट्रिगर किया जाएगा। यह दर 1 Hz हो सकती है (किसी संदर्भ घड़ी के [[पल्स प्रति सेकंड]] आउटपुट का उपयोग करके), लेकिन 10 Hz और 100 Hz जैसी अन्य दरों का भी उपयोग किया जा सकता है। जिस गति से समय-अंतराल काउंटर माप को पूरा कर सकता है, परिणाम का उत्पादन कर सकता है और अगली भुजा के लिए खुद को तैयार कर सकता है वह ट्रिगर आवृत्ति को सीमित करेगा।


कंप्यूटर तब देखे जा रहे समय के अंतर की श्रृंखला को रिकॉर्ड करने के लिए उपयोगी होता है।
कंप्यूटर तब देखे जा रहे समय के अंतर की श्रृंखला को रिकॉर्ड करने के लिए उपयोगी होता है।
Line 525: Line 524:
रिकॉर्ड की गई समय-श्रृंखला को लिपटे हुए चरण को खोलने के लिए पोस्ट-प्रोसेसिंग की आवश्यकता होती है, जैसे कि निरंतर चरण त्रुटि प्रदान की जा रही है। यदि आवश्यक हो, तो लॉगिंग और माप की गलतियों को भी ठीक किया जाना चाहिए। ड्रिफ्ट आकलन और ड्रिफ्ट हटाने का कार्य किया जाना चाहिए, ड्रिफ्ट मैकेनिज्म को स्रोतों के लिए पहचानने और समझने की आवश्यकता है। मापन में बहाव की सीमाएँ गंभीर हो सकती हैं, इसलिए ऑसिलेटर्स को लंबे समय तक चालू रखने के लिए स्थिर होने देना आवश्यक है।
रिकॉर्ड की गई समय-श्रृंखला को लिपटे हुए चरण को खोलने के लिए पोस्ट-प्रोसेसिंग की आवश्यकता होती है, जैसे कि निरंतर चरण त्रुटि प्रदान की जा रही है। यदि आवश्यक हो, तो लॉगिंग और माप की गलतियों को भी ठीक किया जाना चाहिए। ड्रिफ्ट आकलन और ड्रिफ्ट हटाने का कार्य किया जाना चाहिए, ड्रिफ्ट मैकेनिज्म को स्रोतों के लिए पहचानने और समझने की आवश्यकता है। मापन में बहाव की सीमाएँ गंभीर हो सकती हैं, इसलिए ऑसिलेटर्स को लंबे समय तक चालू रखने के लिए स्थिर होने देना आवश्यक है।


एलन विचरण की गणना तब दिए गए अनुमानकों का उपयोग करके की जा सकती है, और व्यावहारिक उद्देश्यों के लिए अतिव्यापी अनुमानक का उपयोग गैर-अतिव्यापी अनुमानक पर डेटा के उत्तम उपयोग के कारण किया जाना चाहिए। अन्य अनुमानक जैसे टोटल या थियो वैरियंस एस्टिमेटर्स का भी उपयोग किया जा सकता है यदि पूर्वाग्रह सुधार लागू किया जाता है जैसे कि वे एलन प्रसरण-संगत परिणाम प्रदान करते हैं।
एलन विचरण की गणना तब दिए गए अनुमानकों का उपयोग करके की जा सकती है, और व्यावहारिक उद्देश्यों के लिए अतिव्यापी अनुमानक का उपयोग गैर-अतिव्यापी अनुमानक पर डेटा के बेहतर उपयोग के कारण किया जाना चाहिए। अन्य अनुमानक जैसे टोटल या थियो वैरियंस एस्टिमेटर्स का भी उपयोग किया जा सकता है यदि पूर्वाग्रह सुधार लागू किया जाता है जैसे कि वे एलन प्रसरण-संगत परिणाम प्रदान करते हैं।


मौलिक प्लॉट बनाने के लिए, एलन विचलन (एलन विचरण का वर्गमूल) अवलोकन अंतराल τ के विरुद्ध लॉग-लॉग प्रारूप में प्लॉट किया जाता है।
शास्त्रीय प्लॉट बनाने के लिए, एलन विचलन (एलन विचरण का वर्गमूल) अवलोकन अंतराल τ के खिलाफ लॉग-लॉग प्रारूप में प्लॉट किया जाता है।


=== उपकरण और सॉफ्टवेयर ===
=== उपकरण और सॉफ्टवेयर ===
समय-अंतराल काउंटर सामान्यतः व्यावसायिक रूप से उपलब्ध ऑफ-द-शेल्फ काउंटर है। सीमित कारकों में सिंगल-शॉट रिज़ॉल्यूशन, ट्रिगर जिटर, माप की गति और संदर्भ घड़ी की स्थिरता सम्मिलित है। कंप्यूटर संग्रह और पोस्ट-प्रोसेसिंग उपस्थित वाणिज्यिक या सार्वजनिक-डोमेन सॉफ़्टवेयर का उपयोग करके किया जा सकता है। अत्यधिक उन्नत समाधान उपस्तिथ हैं, जो बॉक्स में माप और संगणना प्रदान करेंगे।
समय-अंतराल काउंटर आमतौर पर व्यावसायिक रूप से उपलब्ध ऑफ-द-शेल्फ काउंटर है। सीमित कारकों में सिंगल-शॉट रिज़ॉल्यूशन, ट्रिगर जिटर, माप की गति और संदर्भ घड़ी की स्थिरता शामिल है। कंप्यूटर संग्रह और पोस्ट-प्रोसेसिंग मौजूदा वाणिज्यिक या सार्वजनिक-डोमेन सॉफ़्टवेयर का उपयोग करके किया जा सकता है। अत्यधिक उन्नत समाधान मौजूद हैं, जो बॉक्स में माप और संगणना प्रदान करेंगे।


== अनुसंधान इतिहास ==
== अनुसंधान इतिहास ==
आवृत्ति स्थिरता के क्षेत्र का लंबे समय तक अध्ययन किया गया है। चूँकि, 1960 के दशक के समय यह पाया गया कि सुसंगत परिभाषाओं का अभाव था। नवंबर 1964 में अल्पकालिक स्थिरता पर नासा-आईईईई संगोष्ठी<ref name="NASA1964">NASA: [https://wayback.archive-it.org/all/20100206151245/http://hdl.handle.net/2060/19660001092] ''Short-Term Frequency Stability'', NASA-IEEE symposium on Short Term Frequency Stability Goddard Space Flight Center 23–24 November 1964, NASA Special Publication 80.</ref> आवृत्ति स्टेबिलिटी पर आईईईई प्रोसीडिंग्स के फरवरी 1966 के विशेष अंक के परिणामस्वरूप।
आवृत्ति स्थिरता के क्षेत्र का लंबे समय तक अध्ययन किया गया है। हालाँकि, 1960 के दशक के दौरान यह पाया गया कि सुसंगत परिभाषाओं का अभाव था। नवंबर 1964 में अल्पकालिक स्थिरता पर नासा-आईईईई संगोष्ठी<ref name="NASA1964">NASA: [https://wayback.archive-it.org/all/20100206151245/http://hdl.handle.net/2060/19660001092] ''Short-Term Frequency Stability'', NASA-IEEE symposium on Short Term Frequency Stability Goddard Space Flight Center 23–24 November 1964, NASA Special Publication 80.</ref> फ्रीक्वेंसी स्टेबिलिटी पर IEEE प्रोसीडिंग्स के फरवरी 1966 के विशेष अंक के परिणामस्वरूप।


नासा-आईईईई संगोष्ठी अनेक भिन्न-भिन्न योगदानकर्ताओं के कागजात के साथ अनेक क्षेत्रों और लघु और दीर्घकालिक स्थिरता के उपयोग को साथ लाया। लेख और पैनल चर्चा आवृत्ति झिलमिलाहट ध्वनि के अस्तित्व और अल्पकालिक और दीर्घकालिक स्थिरता दोनों के लिए सामान्य परिभाषा प्राप्त करने की इच्छा पर सहमत हैं।
नासा-आईईईई संगोष्ठी कई अलग-अलग योगदानकर्ताओं के कागजात के साथ कई क्षेत्रों और लघु और दीर्घकालिक स्थिरता के उपयोग को साथ लाया। लेख और पैनल चर्चा आवृत्ति झिलमिलाहट शोर के अस्तित्व और अल्पकालिक और दीर्घकालिक स्थिरता दोनों के लिए सामान्य परिभाषा प्राप्त करने की इच्छा पर सहमत हैं।


डेविड एलन सहित महत्वपूर्ण कागजात,<ref name=Allan1966/> जेम्स ए बार्न्स,<ref name=Barnes1966>Barnes, J. A.: [http://tf.boulder.nist.gov/general/pdf/6.pdf ''Atomic Timekeeping and the Statistics of Precision Signal Generators''], IEEE Proceedings on Frequency Stability, Vol 54 No 2, pages 207–220, 1966.</ref> एल.एस. कटलर और सी.एल. सियरल<ref name=Cutler1966/>और डी. बी. लेसन,<ref name=Leeson1966/> आवृत्ति स्टेबिलिटी पर आईईईई प्रोसीडिंग्स में दिखाई दिया और क्षेत्र को आकार देने में मदद की।
डेविड एलन सहित महत्वपूर्ण कागजात,<ref name=Allan1966/>जेम्स ए बार्न्स,<ref name=Barnes1966>Barnes, J. A.: [http://tf.boulder.nist.gov/general/pdf/6.pdf ''Atomic Timekeeping and the Statistics of Precision Signal Generators''], IEEE Proceedings on Frequency Stability, Vol 54 No 2, pages 207–220, 1966.</ref> एल.एस. कटलर और सी.एल. सियरल<ref name=Cutler1966/>और डी. बी. लेसन,<ref name=Leeson1966/>फ्रीक्वेंसी स्टेबिलिटी पर IEEE प्रोसीडिंग्स में दिखाई दिया और क्षेत्र को आकार देने में मदद की।


डेविड एलन का लेख प्रारंभिक पूर्वाग्रह फलन के साथ माप के मध्य मृत-समय के विवाद से निपटने, आवृत्ति के मौलिक एम-नमूना भिन्नता का विश्लेषण करता है।<ref name=Allan1966/>यद्यपि एलन का प्रारंभिक पूर्वाग्रह कार्य कोई मृत-समय नहीं मानता है, उसके सूत्रों में मृत-समय की गणना सम्मिलित है। उनका लेख एम आवृत्ति नमूने (लेख में एन कहा जाता है) और भिन्नता अनुमानक के स्थिति का विश्लेषण करता है। यह अब मानक α–µ मानचित्रण प्रदान करता है, स्पष्ट रूप से जेम्स बार्न्स के कार्य पर निर्माण करता है<ref name=Barnes1966/> इसी विवाद में।
डेविड एलन का लेख प्रारंभिक पूर्वाग्रह समारोह के साथ माप के बीच मृत-समय के मुद्दे से निपटने, आवृत्ति के शास्त्रीय एम-नमूना भिन्नता का विश्लेषण करता है।<ref name=Allan1966/>यद्यपि एलन का प्रारंभिक पूर्वाग्रह कार्य कोई मृत-समय नहीं मानता है, उसके सूत्रों में मृत-समय की गणना शामिल है। उनका लेख एम आवृत्ति नमूने (लेख में एन कहा जाता है) और भिन्नता अनुमानक के मामले का विश्लेषण करता है। यह अब मानक α–µ मानचित्रण प्रदान करता है, स्पष्ट रूप से जेम्स बार्न्स के कार्य पर निर्माण करता है<ref name=Barnes1966/>इसी मुद्दे में।


2-नमूना भिन्नता मामला एम-नमूना भिन्नता का विशेष मामला है, जो औसत आवृत्ति व्युत्पन्न का उत्पादन करता है। एलन स्पष्ट रूप से आधार स्थिति के रूप में 2-नमूना भिन्नता का उपयोग करता है, जिससे कि अनैतिक रूप से चुने गए एम के लिए, मूल्यों को 2-नमूना भिन्नता के माध्यम से एम-नमूना भिन्नता में स्थानांतरित किया जा सकता है। 2-नमूना भिन्नता के लिए कोई वरीयता स्पष्ट रूप से नहीं बताई गई थी, यदि उपकरण प्रदान किए गए हों। चूंकि, इस आलेख ने अन्य एम-नमूना भिन्नताओं की तुलना करने के विधि के रूप में 2-नमूना भिन्नता का उपयोग करने की नींव रखी।
2-नमूना भिन्नता मामला एम-नमूना भिन्नता का विशेष मामला है, जो औसत आवृत्ति व्युत्पन्न का उत्पादन करता है। एलन स्पष्ट रूप से आधार मामले के रूप में 2-नमूना भिन्नता का उपयोग करता है, क्योंकि मनमाने ढंग से चुने गए एम के लिए, मूल्यों को 2-नमूना भिन्नता के माध्यम से एम-नमूना भिन्नता में स्थानांतरित किया जा सकता है। 2-नमूना भिन्नता के लिए कोई वरीयता स्पष्ट रूप से नहीं बताई गई थी, भले ही उपकरण प्रदान किए गए हों। हालांकि, इस आलेख ने अन्य एम-नमूना भिन्नताओं की तुलना करने के तरीके के रूप में 2-नमूना भिन्नता का उपयोग करने की नींव रखी।


जेम्स बार्न्स ने पूर्वाग्रह कार्यों पर कार्य को महत्वपूर्ण रूप से विस्तारित किया,<ref name=NBSTN375/> आधुनिक बी प्रस्तुत करना<sub>1</sub> और बी<sub>2</sub> पक्षपात कार्य। विचित्र रूप से पर्याप्त, यह एम-नमूना भिन्नता को एलन भिन्नता के रूप में संदर्भित करता है, जबकि एलन के लेख परमाणु आवृत्ति मानकों के सांख्यिकी का जिक्र करते हुए।<ref name=Allan1966/> इन आधुनिक पूर्वाग्रह कार्यों के साथ, विभिन्न एम, टी और τ मूल्यों के एम-नमूना भिन्नता उपायों के मध्य पूर्ण रूपांतरण, 2-नमूना भिन्नता के माध्यम से रूपांतरण द्वारा किया जा सकता है।
जेम्स बार्न्स ने पूर्वाग्रह कार्यों पर कार्य को महत्वपूर्ण रूप से विस्तारित किया,<ref name=NBSTN375/>आधुनिक बी पेश करना<sub>1</sub> और बी<sub>2</sub> पक्षपात कार्य। विचित्र रूप से पर्याप्त, यह एम-नमूना भिन्नता को एलन भिन्नता के रूप में संदर्भित करता है, जबकि एलन के लेख परमाणु आवृत्ति मानकों के सांख्यिकी का जिक्र करते हुए।<ref name=Allan1966/>इन आधुनिक पूर्वाग्रह कार्यों के साथ, विभिन्न एम, टी और τ मूल्यों के एम-नमूना भिन्नता उपायों के बीच पूर्ण रूपांतरण, 2-नमूना भिन्नता के माध्यम से रूपांतरण द्वारा किया जा सकता है।


जेम्स बार्न्स और डेविड एलन ने बी के साथ पूर्वाग्रह कार्यों को आगे बढ़ाया<sub>3</sub> फलन<ref name=NISTTN1318/> श्रृंखलाबद्ध नमूने अनुमानक पूर्वाग्रह को संभालने के लिए। मध्य में डेड-टाइम के साथ श्रृंखलाबद्ध नमूना प्रेक्षणों के नए उपयोग को संभालने के लिए यह आवश्यक था।
जेम्स बार्न्स और डेविड एलन ने बी के साथ पूर्वाग्रह कार्यों को आगे बढ़ाया<sub>3</sub> समारोह<ref name=NISTTN1318/>श्रृंखलाबद्ध नमूने अनुमानक पूर्वाग्रह को संभालने के लिए। बीच में डेड-टाइम के साथ श्रृंखलाबद्ध नमूना प्रेक्षणों के नए उपयोग को संभालने के लिए यह आवश्यक था।


1970 में, आवृत्ति और समय पर आईईईई तकनीकी समिति, उपकरण और मापन पर आईईईई समूह के अंदर, NBS तकनीकी सूचना 394 के रूप में प्रकाशित क्षेत्र का सारांश प्रदान किया।<ref name=NBSTN394/>यह पेपर पहले अधिक शैक्षिक और व्यावहारिक पेपरों की पंक्ति में था, जिससे साथी इंजीनियरों को क्षेत्र को समझने में मदद मिली। इस पत्र ने टी = τ के साथ 2-नमूना भिन्नता की सिफारिश की, इसे 'एलन भिन्नता' (अब उद्धरण चिह्नों के बिना) के रूप में संदर्भित किया। इस प्रकार के पैरामीट्रिजेशन की पसंद कुछ ध्वनि रूपों की अच्छी हैंडलिंग और तुलनीय माप प्राप्त करने की अनुमति देती है; यह अनिवार्य रूप से पूर्वाग्रह कार्यों बी की सहायता से कम से कम सामान्य विभाजक है<sub>1</sub> और बी<sub>2</sub>.
1970 में, आवृत्ति और समय पर IEEE तकनीकी समिति, उपकरण और मापन पर IEEE समूह के भीतर, NBS तकनीकी सूचना 394 के रूप में प्रकाशित क्षेत्र का सारांश प्रदान किया।<ref name=NBSTN394/>यह पेपर पहले अधिक शैक्षिक और व्यावहारिक पेपरों की पंक्ति में था, जिससे साथी इंजीनियरों को क्षेत्र को समझने में मदद मिली। इस पत्र ने टी = τ के साथ 2-नमूना भिन्नता की सिफारिश की, इसे 'एलन भिन्नता' (अब उद्धरण चिह्नों के बिना) के रूप में संदर्भित किया। इस तरह के पैरामीट्रिजेशन की पसंद कुछ शोर रूपों की अच्छी हैंडलिंग और तुलनीय माप प्राप्त करने की अनुमति देती है; यह अनिवार्य रूप से पूर्वाग्रह कार्यों बी की सहायता से कम से कम सामान्य विभाजक है<sub>1</sub> और बी<sub>2</sub>.


जे. जे. स्नाइडर ने आवृत्ति काउंटरों के लिए नमूना आँकड़ों का उपयोग करते हुए आवृत्ति या भिन्नता अनुमान के लिए उत्तम विधि प्रस्तावित की।<ref name=Snyder1981/> उपलब्ध डेटासेट से स्वतंत्रता की अधिक प्रभावी डिग्री प्राप्त करने के लिए, अतिव्यापी अवलोकन अवधि का उपयोग करने की चाल है। यह प्रदान करता है {{sqrt|''n''}} सुधार, और ओवरलैपिंग एलन भिन्नता अनुमानक में सम्मिलित किया गया था।<ref name=Howe1981/> चर-τ सॉफ्टवेयर प्रोसेसिंग को भी सम्मिलित किया गया था।<ref name=Howe1981/> इस विकास ने मौलिक एलन भिन्नता अनुमानकों में सुधार किया, वैसे ही संशोधित एलन भिन्नता पर काम के लिए प्रत्यक्ष प्रेरणा प्रदान की।
जे. जे. स्नाइडर ने आवृत्ति काउंटरों के लिए नमूना आँकड़ों का उपयोग करते हुए आवृत्ति या भिन्नता अनुमान के लिए बेहतर विधि प्रस्तावित की।<ref name=Snyder1981/>उपलब्ध डेटासेट से स्वतंत्रता की अधिक प्रभावी डिग्री प्राप्त करने के लिए, अतिव्यापी अवलोकन अवधि का उपयोग करने की चाल है। यह प्रदान करता है {{sqrt|''n''}} सुधार, और ओवरलैपिंग एलन भिन्नता अनुमानक में शामिल किया गया था।<ref name=Howe1981/>वेरिएबल-τ सॉफ्टवेयर प्रोसेसिंग को भी शामिल किया गया था।<ref name=Howe1981/>इस विकास ने शास्त्रीय एलन भिन्नता अनुमानकों में सुधार किया, वैसे ही संशोधित एलन भिन्नता पर काम के लिए प्रत्यक्ष प्रेरणा प्रदान की।


होवे, एलन और बार्न्स ने विश्वास अंतराल, स्वतंत्रता की डिग्री और स्थापित अनुमानकों का विश्लेषण प्रस्तुत किया।<ref name=Howe1981/>
होवे, एलन और बार्न्स ने विश्वास अंतराल, स्वतंत्रता की डिग्री और स्थापित अनुमानकों का विश्लेषण प्रस्तुत किया।<ref name=Howe1981/>
== शैक्षिक और व्यावहारिक संसाधन ==
== शैक्षिक और व्यावहारिक संसाधन ==
समय और आवृत्ति का क्षेत्र और एलन विचरण, [[एलन विचलन]] और दोस्तों का उपयोग ऐसा क्षेत्र है जिसमें अनेक पहलू सम्मिलित हैं, जिसके लिए अवधारणाओं की समझ और व्यावहारिक माप और पोस्ट-प्रोसेसिंग दोनों के लिए देखभाल और समझ की आवश्यकता होती है। इस प्रकार, लगभग 40 वर्षों से उपलब्ध शैक्षिक सामग्री का क्षेत्र उपलब्ध है। चूंकि ये अपने समय के अनुसंधान में विकास को प्रतिबिंबित करते हैं, वे समय के साथ भिन्न-भिन्न पहलुओं को पढ़ाने पर ध्यान केंद्रित करते हैं, इस स्थिति में उपलब्ध संसाधनों का सर्वेक्षण सही संसाधन खोजने का उपयुक्त विधि हो सकता है।
समय और आवृत्ति का क्षेत्र और एलन विचरण, [[एलन विचलन]] और दोस्तों का उपयोग ऐसा क्षेत्र है जिसमें कई पहलू शामिल हैं, जिसके लिए अवधारणाओं की समझ और व्यावहारिक माप और पोस्ट-प्रोसेसिंग दोनों के लिए देखभाल और समझ की आवश्यकता होती है। इस प्रकार, लगभग 40 वर्षों से उपलब्ध शैक्षिक सामग्री का क्षेत्र उपलब्ध है। चूंकि ये अपने समय के अनुसंधान में विकास को प्रतिबिंबित करते हैं, वे समय के साथ अलग-अलग पहलुओं को पढ़ाने पर ध्यान केंद्रित करते हैं, इस मामले में उपलब्ध संसाधनों का सर्वेक्षण सही संसाधन खोजने का उपयुक्त तरीका हो सकता है।


पहला सार्थक सारांश एनबीएस टेक्निकल नोट 394 कैरेक्टराइजेशन ऑफ आवृत्ति स्टेबिलिटी है।<ref name=NBSTN394/> यह इंस्ट्रुमेंटेशन और मापन पर आईईईई समूह की आवृत्ति और समय पर तकनीकी समिति का उत्पाद है। यह क्षेत्र का पहला अवलोकन देता है, समस्याओं को बताता है, बुनियादी सहायक परिभाषाओं को परिभाषित करता है और एलन विचरण, पूर्वाग्रह कार्य बी में प्रवेश करता है।<sub>1</sub> और बी<sub>2</sub>, टाइम-डोमेन उपायों का रूपांतरण। यह उपयोगी है, जिससे कि यह पाँच बुनियादी ध्वनि प्रकारों के लिए एलन विचरण को सारणीबद्ध करने वाले पहले संदर्भों में से है।
पहला सार्थक सारांश एनबीएस टेक्निकल नोट 394 कैरेक्टराइजेशन ऑफ फ्रीक्वेंसी स्टेबिलिटी है।<ref name=NBSTN394/>यह इंस्ट्रुमेंटेशन और मापन पर IEEE समूह की आवृत्ति और समय पर तकनीकी समिति का उत्पाद है। यह क्षेत्र का पहला अवलोकन देता है, समस्याओं को बताता है, बुनियादी सहायक परिभाषाओं को परिभाषित करता है और एलन विचरण, पूर्वाग्रह कार्य बी में प्रवेश करता है।<sub>1</sub> और बी<sub>2</sub>, टाइम-डोमेन उपायों का रूपांतरण। यह उपयोगी है, क्योंकि यह पाँच बुनियादी शोर प्रकारों के लिए एलन विचरण को सारणीबद्ध करने वाले पहले संदर्भों में से है।


मौलिक संदर्भ एनबीएस मोनोग्राफ 140 है<ref name=NBSMG140>Blair, B. E.: [https://nvlpubs.nist.gov/nistpubs/Legacy/MONO/nbsmonograph140.pdf ''Time and Frequency: Theory and Fundamentals''], NBS Monograph 140, May 1974.</ref> 1974 से, जिसके अध्याय 8 में समय और आवृत्ति डेटा विश्लेषण के आँकड़े हैं।<ref name="NBSMG140-8">David W. Allan, John H. Shoaf and Donald Halford: [http://tf.boulder.nist.gov/general/pdf/59.pdf ''Statistics of Time and Frequency Data Analysis''], NBS Monograph 140, pages 151–204, 1974.</ref> यह एनबीएस टेक्निकल नोट 394 का विस्तारित संस्करण है और माप तकनीकों और मूल्यों के व्यावहारिक प्रसंस्करण में अनिवार्य रूप से जोड़ता है।
शास्त्रीय संदर्भ एनबीएस मोनोग्राफ 140 है<ref name=NBSMG140>Blair, B. E.: [https://nvlpubs.nist.gov/nistpubs/Legacy/MONO/nbsmonograph140.pdf ''Time and Frequency: Theory and Fundamentals''], NBS Monograph 140, May 1974.</ref> 1974 से, जिसके अध्याय 8 में समय और आवृत्ति डेटा विश्लेषण के आँकड़े हैं।<ref name="NBSMG140-8">David W. Allan, John H. Shoaf and Donald Halford: [http://tf.boulder.nist.gov/general/pdf/59.pdf ''Statistics of Time and Frequency Data Analysis''], NBS Monograph 140, pages 151–204, 1974.</ref> यह एनबीएस टेक्निकल नोट 394 का विस्तारित संस्करण है और माप तकनीकों और मूल्यों के व्यावहारिक प्रसंस्करण में अनिवार्य रूप से जोड़ता है।


महत्वपूर्ण जोड़ संकेत स्रोतों और माप विधियों के गुण होंगे।<ref name=Howe1981/> यह डेटा के प्रभावी उपयोग, विश्वास अंतराल, स्वतंत्रता की प्रभावी डिग्री को कवर करता है, इसी प्रकार अतिव्यापी एलन विचरण अनुमानक को प्रस्तुत करता है। यह उन विषयों के लिए अत्यधिक अनुशंसित पठन है।
महत्वपूर्ण जोड़ संकेत स्रोतों और माप विधियों के गुण होंगे।<ref name=Howe1981/>यह डेटा के प्रभावी उपयोग, विश्वास अंतराल, स्वतंत्रता की प्रभावी डिग्री को कवर करता है, इसी तरह अतिव्यापी एलन विचरण अनुमानक को पेश करता है। यह उन विषयों के लिए अत्यधिक अनुशंसित पठन है।


आईईईई मानक 1139 मौलिक आवृत्ति और समय मेट्रोलोजी के लिए भौतिक मात्रा की मानक परिभाषाएं<ref name=IEEE1139/> मानक से परे व्यापक संदर्भ और शैक्षिक संसाधन है।
आईईईई मानक 1139 मौलिक आवृत्ति और समय मेट्रोलोजी के लिए भौतिक मात्रा की मानक परिभाषाएं<ref name=IEEE1139/>मानक से परे व्यापक संदर्भ और शैक्षिक संसाधन है।


दूरसंचार की दिशा में लक्षित आधुनिक पुस्तक स्टेफानो ब्रेग्नी सिंक्रोनाइज़ेशन ऑफ़ डिजिटल टेलीकम्युनिकेशन नेटवर्क्स है।<ref name=Bregni2002/> यह न केवल क्षेत्र को सारांशित करता है, बल्कि उस बिंदु तक क्षेत्र में उसके अधिकांश शोधों को भी सारांशित करता है। इसका उद्देश्य मौलिक उपायों और दूरसंचार-विशिष्ट उपायों जैसे एमटीआईई दोनों को सम्मिलित करना है। दूरसंचार मानकों से संबंधित मापों को देखते समय यह आसान साथी है।
दूरसंचार की दिशा में लक्षित आधुनिक पुस्तक स्टेफानो ब्रेग्नी सिंक्रोनाइज़ेशन ऑफ़ डिजिटल टेलीकम्युनिकेशन नेटवर्क्स है।<ref name=Bregni2002/>यह न केवल क्षेत्र को सारांशित करता है, बल्कि उस बिंदु तक क्षेत्र में उसके अधिकांश शोधों को भी सारांशित करता है। इसका उद्देश्य शास्त्रीय उपायों और दूरसंचार-विशिष्ट उपायों जैसे एमटीआईई दोनों को शामिल करना है। दूरसंचार मानकों से संबंधित मापों को देखते समय यह आसान साथी है।


WJ रिले की आवृत्ति स्थिरता विश्लेषण की NIST विशेष प्रकाशन 1065 हैंडबुक<ref name=NISTSP1065/> क्षेत्र का पीछा करने के इच्छुक किसी भी व्यक्ति के लिए अनुशंसित पढ़ना है। यह सन्दर्भों से समृद्ध है और उपायों, पूर्वाग्रहों और संबंधित कार्यों की विस्तृत श्रृंखला को भी सम्मिलित करता है जो आधुनिक विश्लेषक के पास उपलब्ध होनी चाहिए। आगे यह आधुनिक उपकरण के लिए आवश्यक समग्र प्रसंस्करण का वर्णन करता है।
WJ रिले की आवृत्ति स्थिरता विश्लेषण की NIST विशेष प्रकाशन 1065 हैंडबुक<ref name=NISTSP1065/>क्षेत्र का पीछा करने के इच्छुक किसी भी व्यक्ति के लिए अनुशंसित पढ़ना है। यह सन्दर्भों से समृद्ध है और उपायों, पूर्वाग्रहों और संबंधित कार्यों की विस्तृत श्रृंखला को भी शामिल करता है जो आधुनिक विश्लेषक के पास उपलब्ध होनी चाहिए। आगे यह आधुनिक उपकरण के लिए आवश्यक समग्र प्रसंस्करण का वर्णन करता है।


== उपयोग करता है ==
== उपयोग करता है ==
एलन विचरण का उपयोग विभिन्न प्रकार के त्रुटिहीन ऑसिलेटर्स में आवृत्ति स्थिरता के माप के रूप में किया जाता है, जैसे कि क्रिस्टल ऑसिलेटर्स, एटॉमिक क्लॉक और आवृत्ति-स्टेबलाइज़्ड [[लेज़र]] सेकंड या उससे अधिक की अवधि में। अल्पकालिक स्थिरता (सेकंड के अनुसार) सामान्यतः चरण ध्वनि के रूप में व्यक्त की जाती है। एलन विचरण का उपयोग [[जाइरोस्कोप]] की पूर्वाग्रह स्थिरता को चिह्नित करने के लिए भी किया जाता है, जिसमें [[फाइबर ऑप्टिक जाइरोस्कोप]], गोलार्ध रेज़ोनेटर गायरोस्कोप और [[माइक्रोइलेक्ट्रॉनिक सिस्टम]] गायरोस्कोप और एक्सेलेरोमीटर सम्मिलित हैं।<ref>http://www.afahc.ro/ro/afases/2014/mecanica/marinov_petrov_allan.pdf {{Bare URL PDF|date=May 2022}}</ref><ref>{{Cite journal|last1=Bose|first1=S.|last2=Gupta|first2=A. K.|last3=Handel|first3=P.|date=September 2017|title=शू-माउंटेड मल्टी-आईएमयू जड़त्वीय पोजिशनिंग सिस्टम के शोर और शक्ति प्रदर्शन पर|journal=2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN)|pages=1–8|doi=10.1109/IPIN.2017.8115944|isbn=978-1-5090-6299-7|s2cid=19055090}}</ref>
एलन विचरण का उपयोग विभिन्न प्रकार के सटीक ऑसिलेटर्स में आवृत्ति स्थिरता के माप के रूप में किया जाता है, जैसे कि क्रिस्टल ऑसिलेटर्स, एटॉमिक क्लॉक और फ़्रीक्वेंसी-स्टेबलाइज़्ड [[लेज़र]] सेकंड या उससे अधिक की अवधि में। अल्पकालिक स्थिरता (सेकंड के तहत) आमतौर पर चरण शोर के रूप में व्यक्त की जाती है। एलन विचरण का उपयोग [[जाइरोस्कोप]] की पूर्वाग्रह स्थिरता को चिह्नित करने के लिए भी किया जाता है, जिसमें [[फाइबर ऑप्टिक जाइरोस्कोप]], गोलार्ध रेज़ोनेटर गायरोस्कोप और [[माइक्रोइलेक्ट्रॉनिक सिस्टम]] गायरोस्कोप और एक्सेलेरोमीटर शामिल हैं।<ref>http://www.afahc.ro/ro/afases/2014/mecanica/marinov_petrov_allan.pdf {{Bare URL PDF|date=May 2022}}</ref><ref>{{Cite journal|last1=Bose|first1=S.|last2=Gupta|first2=A. K.|last3=Handel|first3=P.|date=September 2017|title=शू-माउंटेड मल्टी-आईएमयू जड़त्वीय पोजिशनिंग सिस्टम के शोर और शक्ति प्रदर्शन पर|journal=2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN)|pages=1–8|doi=10.1109/IPIN.2017.8115944|isbn=978-1-5090-6299-7|s2cid=19055090}}</ref>
== 50वीं वर्षगांठ ==
== 50वीं वर्षगांठ ==
2016 में, आईईईई-UFFC एलन वेरिएंस (1966-2016) की 50वीं वर्षगांठ मनाने के लिए विशेष अंक प्रकाशित करने जा रहा है।<ref>{{cite web|url=http://www.ieee-uffc.org/publications/tr/special-issue-variance-50th.asp |title=IEEE UFFC &#124; Publications &#124; Transactions on UFFC &#124; Proposal for an IEEE Transactions on UFFC Special Issue |access-date=28 August 2014 |url-status=dead |archive-url=https://web.archive.org/web/20140903100218/http://www.ieee-uffc.org/publications/tr/special-issue-variance-50th.asp |archive-date=3 September 2014 }}</ref> उस अंक के अतिथि संपादक राष्ट्रीय मानक और प्रौद्योगिकी संस्थान, जुडाह लेविन में डेविड के पूर्व सहयोगी होंगे, जो हाल ही में आई. आई. रबी पुरस्कार के प्राप्तकर्ता हैं।
2016 में, IEEE-UFFC एलन वेरिएंस (1966-2016) की 50वीं वर्षगांठ मनाने के लिए विशेष अंक प्रकाशित करने जा रहा है।<ref>{{cite web|url=http://www.ieee-uffc.org/publications/tr/special-issue-variance-50th.asp |title=IEEE UFFC &#124; Publications &#124; Transactions on UFFC &#124; Proposal for an IEEE Transactions on UFFC Special Issue |access-date=28 August 2014 |url-status=dead |archive-url=https://web.archive.org/web/20140903100218/http://www.ieee-uffc.org/publications/tr/special-issue-variance-50th.asp |archive-date=3 September 2014 }}</ref> उस अंक के अतिथि संपादक राष्ट्रीय मानक और प्रौद्योगिकी संस्थान, जुडाह लेविन में डेविड के पूर्व सहयोगी होंगे, जो हाल ही में आई. आई. रबी पुरस्कार के प्राप्तकर्ता हैं।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 13:07, 16 June 2023

अधिक सटीक संदर्भ घड़ी के साथ तुलना करके घड़ी का सबसे आसानी से परीक्षण किया जाता है। समय के अंतराल के दौरान τ, जैसा कि संदर्भ घड़ी द्वारा मापा जाता है, परीक्षण के तहत घड़ी τy से आगे बढ़ती है, जहां y उस अंतराल पर औसत (सापेक्ष) घड़ी आवृत्ति है। यदि हम दिखाए गए अनुसार लगातार दो अंतरालों को मापते हैं, तो हम का मान प्राप्त कर सकते हैं (yy′)2—छोटा मान अधिक स्थिर और सटीक घड़ी का संकेत देता है। यदि हम इस प्रक्रिया को कई बार दोहराते हैं, तो का औसत मान (yy′)2 अवलोकन समय τ के लिए एलन प्रसरण (या एलन विचलन वर्ग) के दोगुने के बराबर है।

एलन प्रसरण (AVAR), जिसे दो-नमूना प्रसरण के रूप में भी जाना जाता है, घड़ियों, थरथरानवाला और एम्पलीफायरों में आवृत्ति स्थिरता का उपाय है। इसका नाम डेविड डब्ल्यू एलन के नाम पर रखा गया है और इसे गणितीय रूप में व्यक्त किया गया है .

एलन विचलन (एडीईवी), जिसे सिग्मा-ताऊ के नाम से भी जाना जाता है, एलन भिन्नता का वर्गमूल है, .

एम-नमूना भिन्नता एम नमूने का उपयोग करके आवृत्ति स्थिरता का उपाय है, माप और अवलोकन समय के बीच समय टी . एम-नमूना विचरण के रूप में व्यक्त किया गया है

एलन विचरण का उद्देश्य शोर प्रक्रियाओं के कारण स्थिरता का अनुमान लगाना है, न कि व्यवस्थित त्रुटियों या खामियों जैसे कि आवृत्ति बहाव या तापमान प्रभाव। एलन विचरण और एलन विचलन आवृत्ति स्थिरता का वर्णन करते हैं। नीचे दिए गए खंड #मूल्य की व्याख्या भी देखें।

एलन प्रसरण के विभिन्न अनुकूलन या परिवर्तन भी हैं, विशेष रूप से संशोधित एलन प्रसरण MAVAR या MVAR, कुल प्रसरण, और हैडमार्ड विचरणसमय विचलन (टीडीईवी) या समय भिन्नता (टीवीएआर) जैसे समय-स्थिरता संस्करण भी मौजूद हैं। एलन विचरण और इसके वेरिएंट समयनिर्धारक के दायरे से बाहर उपयोगी साबित हुए हैं और जब भी शोर प्रक्रिया बिना शर्त स्थिर नहीं होती है, तो उपयोग करने के लिए बेहतर सांख्यिकीय उपकरणों का सेट होता है, इस प्रकार व्युत्पन्न मौजूद होता है।

सामान्य एम-नमूना भिन्नता महत्वपूर्ण बनी हुई है, क्योंकि यह मापन में मृत समय की अनुमति देता है, और पूर्वाग्रह कार्य एलन भिन्नता मूल्यों में रूपांतरण की अनुमति देते हैं। फिर भी, अधिकांश अनुप्रयोगों के लिए 2-नमूना, या एलन विचरण का विशेष मामला सबसे बड़ी रुचि है।

घड़ी के एलन विचलन का उदाहरण प्लॉट। बहुत कम अवलोकन समय τ पर, शोर के कारण एलन विचलन अधिक होता है। अधिक τ पर, यह घट जाती है क्योंकि शोर औसत हो जाता है। अभी भी लंबे τ पर, एलन विचलन फिर से बढ़ने लगता है, यह सुझाव देता है कि तापमान परिवर्तन, घटकों की उम्र बढ़ने, या ऐसे अन्य कारकों के कारण घड़ी की आवृत्ति धीरे-धीरे बढ़ रही है। त्रुटि पट्टियाँ τ के साथ बढ़ती हैं क्योंकि बड़े τ के लिए बहुत सारे डेटा बिंदु प्राप्त करने में समय लगता है।

पृष्ठभूमि

क्रिस्टल थरथरानवाला और परमाणु घड़ियों की स्थिरता की जांच करते समय, यह पाया गया कि उनके पास केवल सफेद शोर से युक्त चरण शोर नहीं था, बल्कि झिलमिलाहट शोर भी था। ये शोर रूप मानक विचलन जैसे पारंपरिक सांख्यिकीय उपकरणों के लिए चुनौती बन जाते हैं, क्योंकि अनुमानक अभिसरण नहीं करेगा। इस प्रकार शोर को अलग-अलग कहा जाता है। स्थिरता के विश्लेषण के शुरुआती प्रयासों में सैद्धांतिक विश्लेषण और व्यावहारिक माप दोनों शामिल थे।[1][2] इस प्रकार के शोर होने का महत्वपूर्ण पक्ष परिणाम यह था कि चूंकि माप के विभिन्न तरीके एक-दूसरे से सहमत नहीं थे, इसलिए माप की पुनरावृत्ति का मुख्य पहलू प्राप्त नहीं किया जा सका। यह स्रोतों की तुलना करने और आपूर्तिकर्ताओं से आवश्यकता के लिए सार्थक विनिर्देश बनाने की संभावना को सीमित करता है। अनिवार्य रूप से सभी प्रकार के वैज्ञानिक और व्यावसायिक उपयोग तब समर्पित मापों तक सीमित थे, जो उम्मीद है कि उस एप्लिकेशन की आवश्यकता पर कब्जा कर लेंगे।

इन समस्याओं का समाधान करने के लिए, डेविड एलन ने एम-नमूना भिन्नता और (अप्रत्यक्ष रूप से) दो-नमूना भिन्नता पेश की।[3]जबकि दो-नमूना विचरण ने सभी प्रकार के शोर को पूरी तरह से अलग करने की अनुमति नहीं दी, इसने दो या दो से अधिक ऑसिलेटर्स के बीच चरण या आवृत्ति माप की समय-श्रृंखला के लिए कई शोर-रूपों को सार्थक रूप से अलग करने का साधन प्रदान किया। एलन ने सामान्य 2-नमूना भिन्नता के माध्यम से किसी भी एम-नमूना भिन्नता को किसी भी एन-नमूना भिन्नता के बीच परिवर्तित करने के लिए विधि प्रदान की, इस प्रकार सभी एम-नमूना भिन्नता तुलनीय हो गई। रूपांतरण तंत्र ने यह भी साबित किया कि एम-नमूना विचरण बड़े एम के लिए अभिसरण नहीं करता है, इस प्रकार उन्हें कम उपयोगी बना देता है। आईईईई ने बाद में 2-नमूना भिन्नता को पसंदीदा उपाय के रूप में पहचाना।[4] प्रारंभिक चिंता समय से संबंधित थी- और आवृत्ति-माप उपकरण जिनके माप के बीच मृत समय था। माप की ऐसी श्रृंखला ने संकेत का निरंतर अवलोकन नहीं किया और इस प्रकार माप में व्यवस्थित पूर्वाग्रह पेश किया। इन पूर्वाग्रहों का अनुमान लगाने में बहुत सावधानी बरती गई। जीरो-डेड-टाइम काउंटरों की शुरूआत ने आवश्यकता को दूर कर दिया, लेकिन पूर्वाग्रह-विश्लेषण उपकरण उपयोगी साबित हुए हैं।

चिंता का अन्य प्रारंभिक पहलू इस बात से संबंधित था कि माप उपकरण की बैंडविड्थ (सिग्नल प्रोसेसिंग) माप को कैसे प्रभावित करेगी, जैसे कि इसे नोट करने की आवश्यकता है। यह बाद में पाया गया कि एल्गोरिदमिक रूप से अवलोकन को बदलकर , केवल कम मूल्य प्रभावित होंगे, जबकि उच्च मूल्य अप्रभावित रहेंगे। का परिवर्तन इसे पूर्णांक एकाधिक होने देकर किया जाता है माप समय आधार का :

डीबी लेसन द्वारा क्रिस्टल ऑसिलेटर्स के भौतिकी का विश्लेषण किया गया था,[2]और परिणाम को अब लीसन के समीकरण के रूप में जाना जाता है। थरथरानवाला में फीडबैक फीडबैक एम्पलीफायर का सफेद शोर और झिलमिलाहट शोर बना देगा और क्रिस्टल पावर-लॉ शोर बन जाएगा सफेद आवृत्ति शोर और झिलमिलाहट आवृत्ति शोर क्रमशः। इन शोर रूपों का प्रभाव है कि समय-त्रुटि के नमूने संसाधित करते समय मानक भिन्नता अनुमानक अभिसरण नहीं करता है। जब ऑसिलेटर स्थिरता पर काम शुरू हुआ, तो फीडबैक ऑसिलेटर्स की यह यांत्रिकी अज्ञात थी, लेकिन लेसन द्वारा उसी समय प्रस्तुत किया गया था जब सांख्यिकीय उपकरणों का सेट डेविड डब्ल्यू एलन द्वारा उपलब्ध कराया गया था। लीसन प्रभाव पर अधिक विस्तृत प्रस्तुति के लिए, आधुनिक चरण-शोर साहित्य देखें।[5]

मूल्य की व्याख्या

एलन विचरण को नमूना अवधि के दौरान नमूने की गई आवृत्ति विचलन के लगातार रीडिंग के बीच अंतर के वर्गों के समय के औसत के आधे के रूप में परिभाषित किया गया है। एलन विचरण नमूनों के बीच उपयोग की जाने वाली समयावधि पर निर्भर करता है, इसलिए, यह नमूना अवधि का कार्य है, जिसे आमतौर पर τ के रूप में दर्शाया जाता है, इसी तरह वितरण को मापा जाता है, और इसे संख्या के अतिरिक्त ग्राफ के रूप में प्रदर्शित किया जाता है। कम एलन विचरण मापा अवधि के दौरान अच्छी स्थिरता वाली घड़ी की विशेषता है।

एलन विचलन व्यापक रूप से भूखंडों के लिए उपयोग किया जाता है (पारंपरिक रूप से लॉग-लॉग प्लॉट | लॉग-लॉग प्रारूप में) और संख्याओं की प्रस्तुति। यह पसंद किया जाता है, क्योंकि यह सापेक्ष आयाम स्थिरता देता है, जिससे त्रुटियों के अन्य स्रोतों के साथ तुलना में आसानी होती है।

1.3 का एलन विचलन×10−9 अवलोकन के समय 1 s (अर्थात τ = 1 s) की व्याख्या की जानी चाहिए क्योंकि 1.3 के सापेक्ष मूल माध्य वर्ग (RMS) मान के साथ 1 सेकंड के अलावा दो प्रेक्षणों के बीच आवृत्ति में अस्थिरता है×10−9. 10 मेगाहर्ट्ज घड़ी के लिए, यह 13 मेगाहर्ट्ज आरएमएस मूवमेंट के बराबर होगा। यदि ऑसिलेटर की चरण स्थिरता की आवश्यकता होती है, तो समय विचलन वेरिएंट से परामर्श किया जाना चाहिए और उसका उपयोग किया जाना चाहिए।

कोई एलन भिन्नता और अन्य समय-क्षेत्र भिन्नताओं को समय (चरण) और आवृत्ति स्थिरता के आवृत्ति-डोमेन उपायों में परिवर्तित कर सकता है।[6]

परिभाषाएँ

=== एम-नमूना विचरण === वें>-नमूना प्रसरण परिभाषित किया गया है[3] (यहाँ आधुनिक अंकन रूप में) के रूप में

कहाँ घड़ी की रीडिंग (सेकंड में) समय पर मापी जाती है , या #औसत भिन्नात्मक आवृत्ति समय श्रृंखला के साथ

कहाँ विचरण में प्रयुक्त आवृत्ति नमूनों की संख्या है, प्रत्येक आवृत्ति नमूने के बीच का समय है, और प्रत्येक आवृत्ति अनुमान की समय अवधि है।

अहम पहलू यह है -सैंपल वेरिएंस मॉडल में टाइम देकर डेड-टाइम शामिल किया जा सकता है से भिन्न हो .

इस सूत्र को देखने का वैकल्पिक (और समतुल्य) तरीका जो विशिष्ट नमूना प्रसरण सूत्र से संबंध को अधिक स्पष्ट बनाता है, गुणा करके प्राप्त किया जाता है द्वारा और कर्ली ब्रेसिज़ के अंदर 2 शब्दों को विभाजित करके :

अब गुणांक को बेसेल के सुधार के रूप में व्याख्या किया जा सकता है जो कि रूप में घुंघराले ब्रेसिज़ के अंदर दिखाई देता है .

एलन विचरण

एलन संस्करण के रूप में परिभाषित किया गया है

कहाँ उम्मीद ऑपरेटर को दर्शाता है। इसे सुविधाजनक रूप में व्यक्त किया जा सकता है

कहाँ अवलोकन अवधि है, अवलोकन समय पर nवां #भिन्नात्मक आवृत्ति औसत है .

नमूने उनके बीच बिना किसी डेड-टाइम के लिए जाते हैं, जो अनुमति देकर हासिल किया जाता है

एलन विचलन

मानक विचलन और विचरण की तरह, एलन विचलन को एलन विचरण के वर्गमूल के रूप में परिभाषित किया गया है:

सहायक परिभाषाएँ

ऑसिलेटर मॉडल

विश्लेषण किया जा रहा थरथरानवाला के मूल मॉडल का पालन करने के लिए माना जाता है

माना जाता है कि थरथरानवाला की नाममात्र आवृत्ति है , चक्र प्रति सेकंड (SI इकाई: हेटर्स ़) में दिया गया है। नाममात्र कोणीय आवृत्ति (रेडियन प्रति सेकंड में) द्वारा दिया जाता है

कुल चरण को पूरी तरह से चक्रीय घटक में अलग किया जा सकता है , उतार-चढ़ाव वाले घटक के साथ :

समय त्रुटि

समय-त्रुटि फ़ंक्शन x(t) अपेक्षित नाममात्र समय और वास्तविक सामान्य समय के बीच का अंतर है:

मापे गए मानों के लिए समय-त्रुटि श्रृंखला TE(t) को संदर्भ समय फ़ंक्शन T से परिभाषित किया गया हैref(टी) के रूप में

फ्रीक्वेंसी फंक्शन

आवृत्ति समारोह समय के साथ आवृत्ति है, के रूप में परिभाषित किया गया है

आंशिक आवृत्ति

भिन्नात्मक आवृत्ति y(t) आवृत्ति के बीच सामान्यीकृत अंतर है और नाममात्र आवृत्ति :

औसत आंशिक आवृत्ति

औसत आंशिक आवृत्ति के रूप में परिभाषित किया गया है

जहां अवलोकन समय τ पर औसत लिया जाता है, y(t) समय t पर भिन्नात्मक-आवृत्ति त्रुटि है, और τ अवलोकन समय है।

चूँकि y(t) x(t) का अवकलज है, हम बिना व्यापकता खोए इसे फिर से लिख सकते हैं

अनुमानक

यह परिभाषा सांख्यिकीय अपेक्षित मूल्य पर आधारित है, जो अनंत समय में एकीकृत होती है। वास्तविक दुनिया की स्थिति ऐसी समय-श्रृंखला की अनुमति नहीं देती है, जिस स्थिति में इसके स्थान पर सांख्यिकीय अनुमानक का उपयोग करने की आवश्यकता होती है। कई अलग-अलग अनुमानकों को प्रस्तुत किया जाएगा और चर्चा की जाएगी।

कन्वेंशन

  • The number of frequency samples in a fractional-frequency series is denoted by M.
  • The number of time error samples in a time-error series is denoted by N.

    The relation between the number of fractional-frequency samples and time-error series is fixed in the relationship

  • For time-error sample series, xi denotes the i-th sample of the continuous time function x(t) as given by

    where T is the time between measurements. For Allan variance, the time being used has T set to the observation time τ.

    The time-error sample series let N denote the number of samples (x0...xN−1) in the series. The traditional convention uses index 1 through N.
  • For average fractional-frequency sample series, denotes the ith sample of the average continuous fractional-frequency function y(t) as given by
    which gives
    For the Allan variance assumption of T being τ it becomes
    The average fractional-frequency sample series lets M denote the number of samples () in the series. The traditional convention uses index 1 through M. As a shorthand, average fractional frequency is often written without the average bar over it. However, this is formally incorrect, as the fractional frequency and average fractional frequency are two different functions. A measurement instrument able to produce frequency estimates with no dead-time will actually deliver a frequency-average time series, which only needs to be converted into average fractional frequency and may then be used directly.
  • The time between measurements is denoted by T, which is the sum of observation time τ and dead-time.

निश्चित τ अनुमानक

परिभाषा का सीधे अनुवाद करना पहला सरल अनुमानक होगा

या समय श्रृंखला के लिए:

हालाँकि, ये सूत्र केवल τ = τ के लिए गणना प्रदान करते हैं0 मामला। τ के भिन्न मान की गणना करने के लिए, नई समय-श्रृंखला प्रदान करने की आवश्यकता है।

गैर-अतिव्यापी चर τ अनुमानक

समय-श्रृंखला लेना और पिछले n − 1 नमूने को छोड़ना, τ के साथ नई (छोटी) समय-श्रृंखला उत्पन्न होगी0 आसन्न नमूनों के बीच के समय के रूप में, जिसके लिए एलन विचरण की गणना साधारण अनुमानकों के साथ की जा सकती है। इन्हें नए वेरिएबल n को पेश करने के लिए संशोधित किया जा सकता है, ताकि कोई नई समय-श्रृंखला उत्पन्न न हो, बल्कि n के विभिन्न मूल्यों के लिए मूल समय श्रृंखला का पुन: उपयोग किया जा सके। अनुमानक बन जाते हैं

साथ ,

और समय श्रृंखला के लिए:

साथ .

इन अनुमानकों में महत्वपूर्ण कमी है कि वे नमूना डेटा की महत्वपूर्ण मात्रा छोड़ देंगे, क्योंकि उपलब्ध नमूनों में से केवल 1/n का उपयोग किया जा रहा है।

अतिव्यापी चर τ अनुमानक

जे जे स्नाइडर द्वारा प्रस्तुत तकनीक[7] बेहतर उपकरण प्रदान किया, क्योंकि माप मूल श्रृंखला से बाहर एन ओवरलैप्ड श्रृंखला में ओवरलैप किए गए थे। ओवरलैपिंग एलन प्रसरण अनुमानक हॉवे, एलन और बार्न्स द्वारा पेश किया गया था।[8]यह प्रसंस्करण से पहले एन नमूने के ब्लॉक में औसत समय या सामान्यीकृत आवृत्ति नमूने के बराबर दिखाया जा सकता है। परिणामी भविष्यवक्ता बन जाता है

या समय श्रृंखला के लिए:

अतिव्यापी अनुमानकों का गैर-अतिव्यापी अनुमानकों की तुलना में कहीं बेहतर प्रदर्शन होता है, क्योंकि n बढ़ता है और समय-श्रृंखला मध्यम लंबाई की होती है। अतिव्यापी अनुमानकों को IEEE में पसंदीदा एलन प्रसरण अनुमानकों के रूप में स्वीकार किया गया है,[4]यह टी[9] इसलिए[10] तुलनीय माप के लिए मानक जैसे दूरसंचार योग्यता के लिए आवश्यक।

संशोधित एलन विचरण

पारंपरिक एलन प्रसरण अनुमानकों का उपयोग करके झिलमिलाहट चरण मॉड्यूलेशन से सफेद चरण मॉड्यूलेशन को अलग करने में असमर्थता को संबोधित करने के लिए, एल्गोरिथम फ़िल्टरिंग बैंडविड्थ को n से कम कर देता है। यह फ़िल्टरिंग परिभाषा और अनुमानकों के लिए संशोधन प्रदान करता है और अब इसे संशोधित एलन भिन्नता नामक भिन्नता के अलग वर्ग के रूप में पहचाना जाता है। संशोधित एलन भिन्नता माप आवृत्ति स्थिरता माप है, जैसा कि एलन भिन्नता है।

समय स्थिरता अनुमानक

समय स्थिरता (σx) सांख्यिकीय माप, जिसे अक्सर समय विचलन (TDEV) कहा जाता है, की गणना संशोधित एलन विचलन (MDEV) से की जा सकती है। टीडीईवी मूल एलन विचलन के अतिरिक्त एमडीईवी पर आधारित है, क्योंकि एमडीईवी सफेद और झिलमिलाहट चरण मॉड्यूलेशन (पीएम) के बीच भेदभाव कर सकता है। निम्नलिखित संशोधित एलन भिन्नता के आधार पर समय भिन्नता अनुमान है:

और इसी तरह समय विचलन के लिए संशोधित एलन विचलन के लिए:

TDEV को सामान्यीकृत किया जाता है ताकि यह समय स्थिर τ = τ के लिए सफेद PM के शास्त्रीय विचलन के बराबर हो0. सांख्यिकीय उपायों के बीच सामान्यीकरण पैमाने के कारक को समझने के लिए, निम्नलिखित प्रासंगिक सांख्यिकीय नियम है: स्वतंत्र यादृच्छिक चर X और Y के लिए, विचरण (σzयोग या अंतर (z = x − y) का 2) उनके प्रसरण (σ) का योग वर्ग हैz2 = पीx2 + पृy2). योग या अंतर का विचरण (y = x2τ - एक्सτ) यादृच्छिक चर के दो स्वतंत्र नमूने यादृच्छिक चर (σy2 = 2σx2). MDEV स्वतंत्र चरण माप (x) का दूसरा अंतर है जिसका विचरण (σx2). चूंकि गणना दोहरा अंतर है, जिसके लिए तीन स्वतंत्र चरण माप (x2τ -2xτ + x), संशोधित एलन विचरण (एमवीएआर) चरण माप के प्रसरण का तीन गुना है।

अन्य अनुमानक

आगे की घटनाओं ने समान स्थिरता माप, आवृत्ति के विचरण / विचलन के लिए बेहतर अनुमान विधियों का उत्पादन किया है, लेकिन इन्हें अलग-अलग नामों से जाना जाता है जैसे कि हैडमार्ड विचरण, संशोधित हैडमार्ड विचरण, कुल विचरण, संशोधित कुल विचरण और थियो विचरण। ये बेहतर आत्मविश्वास सीमा या रैखिक आवृत्ति बहाव को संभालने की क्षमता के लिए आँकड़ों के बेहतर उपयोग में खुद को अलग करते हैं।

विश्वास अंतराल और स्वतंत्रता के समकक्ष डिग्री

सांख्यिकीय अनुमानक प्रयुक्त नमूना श्रृंखला पर अनुमानित मूल्य की गणना करेंगे। अनुमान सही मूल्य से विचलित हो सकते हैं और मूल्यों की श्रेणी जिसमें कुछ संभावना के लिए सही मूल्य शामिल होगा, विश्वास अंतराल के रूप में जाना जाता है। विश्वास अंतराल नमूना श्रृंखला में टिप्पणियों की संख्या, प्रमुख शोर प्रकार और उपयोग किए जा रहे अनुमानक पर निर्भर करता है। चौड़ाई सांख्यिकीय निश्चितता पर भी निर्भर करती है जिसके लिए कॉन्फिडेंस इंटरवल मान सीमित सीमा बनाता है, इस प्रकार सांख्यिकीय निश्चितता है कि सही मूल्य मूल्यों की उस सीमा के भीतर है। चर-τ अनुमानकों के लिए, τ0 एकाधिक n भी चर है।

कॉन्फिडेंस इंटरवल

स्केल्ड ची-स्क्वायर वितरण का उपयोग करके ची-स्क्वायर वितरण का उपयोग करके विश्वास अंतराल स्थापित किया जा सकता है:[4][8]

कहाँ एस2 हमारे अनुमान, σ का नमूना प्रसरण है2 वास्तविक विचरण मान है, df अनुमानक के लिए स्वतंत्रता की कोटि है, और χ2 निश्चित प्रायिकता के लिए स्वतंत्रता की कोटि है। 90% प्रायिकता के लिए, प्रायिकता वक्र पर 5% से 95% की सीमा को कवर करते हुए, असमानता का उपयोग करके ऊपरी और निचली सीमाएँ पाई जा सकती हैं

जो सही विचरण के लिए पुनर्व्यवस्था के बाद बन जाता है

स्वतंत्रता की प्रभावी डिग्री

स्वतंत्रता की डिग्री (सांख्यिकी) अनुमान में योगदान करने में सक्षम मुक्त चर की संख्या का प्रतिनिधित्व करती है। अनुमानक और शोर के प्रकार के आधार पर, स्वतंत्रता की प्रभावी डिग्री भिन्न होती है। एन और एन के आधार पर अनुमानक सूत्र अनुभवजन्य रूप से पाए गए हैं:[8]:{| class="wikitable"

|+ Allan variance degrees of freedom

|-

!Noise type !degrees of freedom

|-

|white phase modulation (WPM)

|

|-

|flicker phase modulation (FPM)

|

|-

|white frequency modulation (WFM)

|

|-

|flicker frequency modulation (FFM)

|

|-

|random-walk frequency modulation (RWFM)

|

|}

बिजली-कानून शोर

एलन विचरण विभिन्न बिजली-कानून शोर प्रकारों का अलग-अलग व्यवहार करेगा, जिससे उन्हें आसानी से पहचाना जा सकेगा और उनकी ताकत का अनुमान लगाया जा सकेगा। परंपरा के रूप में, मापन प्रणाली की चौड़ाई (उच्च कोना आवृत्ति) को f निरूपित किया जाता हैH.

Allan variance power-law response
Power-law noise type Phase noise slope Frequency noise slope Power coefficient Phase noise
Allan variance
Allan deviation
white phase modulation (WPM)
flicker phase modulation (FPM)
white frequency modulation (WFM)
flicker frequency modulation (FFM)
random walk frequency modulation (RWFM)

जैसा में पाया गया[11][12] और आधुनिक रूपों में।[13][14] एलन विचरण WPM और FPM के बीच अंतर करने में असमर्थ है, लेकिन अन्य पावर-लॉ शोर प्रकारों को हल करने में सक्षम है। WPM और FPM में अंतर करने के लिए, संशोधित एलन प्रसरण को नियोजित करने की आवश्यकता है।

उपरोक्त सूत्र मानते हैं

और इस प्रकार अवलोकन समय की बैंडविड्थ उपकरण बैंडविड्थ से बहुत कम है। जब यह स्थिति पूरी नहीं होती है, तो शोर के सभी रूप उपकरण की बैंडविड्थ पर निर्भर करते हैं।

α-μ मैपिंग

प्रपत्र के चरण मॉडुलन का विस्तृत मानचित्रण

कहाँ

या प्रपत्र की आवृत्ति मॉडुलन

फार्म के एलन संस्करण में

α और μ के बीच मैपिंग प्रदान करके काफी सरल किया जा सकता है। α और K के बीच मानचित्रणα सुविधा के लिए भी प्रस्तुत है:[4]

Allan variance αμ mapping
α β μ Kα
−2 −4 1
−1 −3 0
0 −2 −1
1 −1 −2
2 0 −2

चरण शोर से सामान्य रूपांतरण

वर्णक्रमीय चरण शोर के साथ संकेत इकाइयों रेड के साथ2/Hz को एलन प्रसरण में किसके द्वारा परिवर्तित किया जा सकता है[14]

रैखिक प्रतिक्रिया

जबकि एलन विचरण का उपयोग शोर के रूपों को अलग करने के लिए किया जाता है, यह समय के लिए कुछ लेकिन सभी रैखिक प्रतिक्रियाओं पर निर्भर नहीं करेगा। वे तालिका में दिए गए हैं:

Allan variance linear response
Linear effect time response frequency response Allan variance Allan deviation
phase offset
frequency offset
linear drift

इस प्रकार, रैखिक बहाव आउटपुट परिणाम में योगदान देगा। वास्तविक प्रणाली को मापते समय, रैखिक बहाव या अन्य बहाव तंत्र को अनुमानित करने और एलन भिन्नता की गणना करने से पहले समय-श्रृंखला से निकालने की आवश्यकता हो सकती है।[13]

समय और आवृत्ति फ़िल्टर गुण

एलन विचरण और दोस्तों के गुणों का विश्लेषण करने में, सामान्यीकृत आवृत्ति पर फ़िल्टर गुणों पर विचार करना उपयोगी साबित हुआ है। के लिए एलन प्रसरण की परिभाषा से प्रारंभ करें

कहाँ

की समय श्रृंखला को बदलना फूरियर-रूपांतरित संस्करण के साथ एलन विचरण को आवृत्ति डोमेन में व्यक्त किया जा सकता है

इस प्रकार एलन विचरण के लिए स्थानांतरण कार्य है

पूर्वाग्रह कार्य

एम-नमूना भिन्नता, और परिभाषित विशेष मामला एलन भिन्नता, नमूने एम की विभिन्न संख्या और टी और τ के बीच अलग संबंध के आधार पर व्यवस्थित पूर्वाग्रह का अनुभव करेगा। इन पूर्वाग्रहों को दूर करने के लिए, पूर्वाग्रह-कार्य B1 और बी2 परिभाषित किया गया है[15] और विभिन्न एम और टी मूल्यों के बीच रूपांतरण की अनुमति देता है।

ये पूर्वाग्रह कार्य M नमूनों को Mτ से जोड़ने के परिणामस्वरूप होने वाले पूर्वाग्रह को संभालने के लिए पर्याप्त नहीं हैं0 एमटी पर अवलोकन समय0 माप के अंत के अतिरिक्त एम माप ब्लॉकों के बीच वितरित मृत-समय के साथ। इसने बी की आवश्यकता का प्रतिपादन किया3 पक्षपात।[16]

पूर्वाग्रह कार्यों का मूल्यांकन विशेष μ मान के लिए किया जाता है, इसलिए शोर पहचान का उपयोग करके पाए जाने वाले प्रमुख शोर रूप के लिए α-μ मानचित्रण करने की आवश्यकता होती है। वैकल्पिक रूप से,[3][15]पूर्वाग्रह कार्यों का उपयोग करके माप से प्रमुख शोर प्रपत्र का μ मान अनुमान लगाया जा सकता है।

बी1 पूर्वाग्रह समारोह

बी1 पूर्वाग्रह समारोह एम-नमूना भिन्नता को 2-नमूना भिन्नता (एलन भिन्नता) से संबंधित करता है, माप टी के बीच का समय और प्रत्येक माप के लिए समय τ स्थिर रखता है। यह परिभाषित है[15]जैसा

कहाँ

पूर्वाग्रह समारोह विश्लेषण के बाद बन जाता है

बी2 पूर्वाग्रह समारोह

बी2 पूर्वाग्रह समारोह नमूना समय टी के लिए 2-नमूना भिन्नता को 2-नमूना भिन्नता (एलन भिन्नता) के साथ संबंधित करता है, नमूने एन = 2 की संख्या और अवलोकन समय τ स्थिर रखते हुए। यह परिभाषित है[15]जैसा

कहाँ

पूर्वाग्रह समारोह विश्लेषण के बाद बन जाता है

बी3 पूर्वाग्रह समारोह

बी3 पूर्वाग्रह समारोह नमूना समय एमटी के लिए 2-नमूना भिन्नता से संबंधित है0 और अवलोकन समय Mτ0 2-नमूना भिन्नता (एलन भिन्नता) के साथ और परिभाषित किया गया है[16] जैसा

कहाँ

बी3 बायस फ़ंक्शन गैर-अतिव्यापी और अतिव्यापी चर τ अनुमानक मानों को अवलोकन समय τ के मृत-समय माप के आधार पर समायोजित करने के लिए उपयोगी है0 और टिप्पणियों के बीच का समय टी0 सामान्य मृत-समय अनुमानों के लिए।

पूर्वाग्रह समारोह विश्लेषण के बाद बन जाता है (एन = 2 मामले के लिए)

कहाँ


τ पूर्वाग्रह समारोह

जबकि औपचारिक रूप से तैयार नहीं किया गया है, यह α-µ मैपिंग के परिणामस्वरूप अप्रत्यक्ष रूप से अनुमान लगाया गया है। अलग-अलग τ के लिए दो एलन भिन्नता माप की तुलना करते समय, ही μ गुणांक के रूप में ही प्रभावशाली शोर मानते हुए, पूर्वाग्रह को परिभाषित किया जा सकता है

पूर्वाग्रह समारोह विश्लेषण के बाद बन जाता है

मूल्यों के बीच रूपांतरण

माप के सेट से दूसरे सेट में परिवर्तित करने के लिए B1, बी2 और τ पूर्वाग्रह कार्यों को इकट्ठा किया जा सकता है। सबसे पहले बी1 फ़ंक्शन कनवर्ट करता है (एन1, टी1,टी1) मूल्य में (2, टी1,टी1), जिसमें से बी2 फ़ंक्शन (2, τ1,टी1) मान, इस प्रकार τ पर एलन प्रसरण1. एलन प्रसरण माप को τ से τ बायस फ़ंक्शन का उपयोग करके परिवर्तित किया जा सकता है1 टी के लिए2, जिससे तब (2, टी2,टी2) बी का उपयोग करना2 और फिर अंत में बी का उपयोग करना1 में (एन2, टी2,टी2) विचरण। पूर्ण रूपान्तरण हो जाता है

कहाँ

इसी प्रकार, एम वर्गों का उपयोग करते हुए समेकित मापन के लिए, तार्किक विस्तार बन जाता है

मापन मुद्दे

एलन प्रसरण या एलन विचलन की गणना करने के लिए माप करते समय, कई मुद्दों के कारण माप खराब हो सकते हैं। एलन विचरण के लिए विशिष्ट प्रभाव यहां शामिल हैं, जहां परिणाम पक्षपाती होंगे।

माप बैंडविड्थ सीमा

शैनन-हार्टले प्रमेय के भीतर वर्णित मापन प्रणाली में Nyquist दर पर या उससे कम बैंडविड्थ होने की उम्मीद है। जैसा कि पावर-लॉ शोर फ़ार्मुलों में देखा जा सकता है, सफेद और झिलमिलाहट शोर मॉड्यूलेशन दोनों ऊपरी कोने की आवृत्ति पर निर्भर करते हैं (इन प्रणालियों को केवल लो-पास फ़िल्टर्ड माना जाता है)। फ़्रीक्वेंसी फ़िल्टर गुण को ध्यान में रखते हुए, यह स्पष्ट रूप से देखा जा सकता है कि कम आवृत्ति वाले शोर का परिणाम पर अधिक प्रभाव पड़ता है। अपेक्षाकृत सपाट चरण-मॉड्यूलेशन शोर प्रकारों (जैसे WPM और FPM) के लिए, फ़िल्टरिंग की प्रासंगिकता है, जबकि अधिक ढलान वाले शोर प्रकारों के लिए ऊपरी आवृत्ति सीमा कम महत्व की हो जाती है, यह मानते हुए कि माप प्रणाली बैंडविड्थ व्यापक सापेक्ष है जैसा दिया गया है

जब यह धारणा पूरी नहीं होती है, प्रभावी बैंडविड्थ माप के साथ नोट किया जाना चाहिए। रुचि रखने वालों को NBS TN394 से संपर्क करना चाहिए।[11]

यदि, हालांकि, कोई नमूना समय के पूर्णांक गुणकों का उपयोग करके अनुमानक की बैंडविड्थ को समायोजित करता है , तब सिस्टम बैंडविड्थ प्रभाव को नगण्य स्तर तक कम किया जा सकता है। दूरसंचार की जरूरतों के लिए, माप की तुलनीयता सुनिश्चित करने और विक्रेताओं को अलग-अलग कार्यान्वयन करने के लिए कुछ स्वतंत्रता की अनुमति देने के लिए इस तरह के तरीकों की आवश्यकता होती है। आईटीयू-टी आरईसी। जी.813[17] TDEV माप के लिए।

यह सिफारिश की जा सकती है कि पहले गुणकों को नजरअंदाज किया जाना चाहिए, जैसे कि पता चला शोर का अधिकांश हिस्सा माप प्रणाली बैंडविड्थ के पासबैंड के भीतर है।

हार्डवेयर बैंडविड्थ को सॉफ्टवेयर के माध्यम से कम करने के लिए एलन भिन्नता पर आगे के विकास किए गए थे। सॉफ्टवेयर बैंडविड्थ के इस विकास ने शेष शोर को संबोधित करने की अनुमति दी, और विधि को अब संशोधित एलन विचरण के रूप में संदर्भित किया गया है। इस बैंडविड्थ कमी तकनीक को संशोधित एलन विचरण के वर्धित संस्करण के साथ भ्रमित नहीं होना चाहिए, जो स्मूथिंग फ़िल्टर बैंडविड्थ को भी बदलता है।

माप में मृत समय

समय और आवृत्ति के कई माप उपकरणों में आर्मिंग टाइम, टाइम-बेस टाइम, प्रोसेसिंग टाइम के चरण होते हैं और फिर आर्मिंग को फिर से ट्रिगर कर सकते हैं। आर्मिंग का समय उस समय से होता है जब आर्मिंग ट्रिगर होता है जब स्टार्ट चैनल पर स्टार्ट इवेंट होता है। समय-आधार तब सुनिश्चित करता है कि स्टॉप चैनल पर किसी ईवेंट को स्टॉप इवेंट के रूप में स्वीकार करने से पहले कम से कम समय लगता है। ईवेंट की संख्या और प्रारंभ ईवेंट और स्टॉप ईवेंट के बीच बीता हुआ समय रिकॉर्ड किया जाता है और प्रसंस्करण समय के दौरान प्रस्तुत किया जाता है। जब प्रसंस्करण होता है (निवास समय के रूप में भी जाना जाता है), उपकरण आमतौर पर और माप करने में असमर्थ होता है। प्रसंस्करण होने के बाद, निरंतर मोड में उपकरण आर्म सर्किट को फिर से ट्रिगर करता है। स्टॉप इवेंट और अगले स्टार्ट इवेंट के बीच का समय डेड टाइम हो जाता है, जिसके दौरान सिग्नल नहीं देखा जा रहा है। इस तरह के मृत समय व्यवस्थित माप पूर्वाग्रहों का परिचय देते हैं, जिन्हें उचित परिणाम प्राप्त करने के लिए क्षतिपूर्ति करने की आवश्यकता होती है। ऐसी माप प्रणालियों के लिए समय टी आसन्न प्रारंभ घटनाओं (और इस प्रकार माप) के बीच के समय को दर्शाता है, जबकि समय-आधार लंबाई को निरूपित करें, अर्थात किसी भी माप की शुरुआत और समाप्ति घटना के बीच की नाममात्र लंबाई।

माप पर डेड-टाइम प्रभावों का उत्पादित परिणाम पर इतना प्रभाव पड़ता है कि इसके गुणों को ठीक से निर्धारित करने के लिए क्षेत्र का बहुत अध्ययन किया गया है। जीरो-डेड-टाइम काउंटरों की शुरूआत ने इस विश्लेषण की आवश्यकता को समाप्त कर दिया। शून्य-डेड-टाइम काउंटर में संपत्ति है कि माप की स्टॉप इवेंट का उपयोग निम्न ईवेंट की शुरुआत की घटना के रूप में भी किया जा रहा है। इस तरह के काउंटर इवेंट और टाइम टाइमस्टैम्प जोड़े की श्रृंखला बनाते हैं, प्रत्येक चैनल के लिए समय-आधार द्वारा स्थान दिया जाता है। इस तरह के माप समय-श्रृंखला विश्लेषण के क्रम रूपों में भी उपयोगी साबित हुए हैं।

डेड टाइम के साथ किए जा रहे मापन को बायस फंक्शन बी का उपयोग करके ठीक किया जा सकता है1, बी2 और बी3. इस प्रकार, मृत समय जैसे कि एलन भिन्नता तक पहुंच को प्रतिबंधित नहीं कर रहा है, लेकिन यह इसे और अधिक समस्याग्रस्त बना देता है। मृत समय ज्ञात होना चाहिए, जैसे कि नमूने टी के बीच का समय स्थापित किया जा सकता है।

माप की लंबाई और नमूनों का प्रभावी उपयोग

  1. कॉन्फिडेंस इंटरवल पर प्रभाव का अध्ययन करना कि नमूना श्रृंखला की लंबाई एन है, और वेरिएबल τ पैरामीटर एन कॉन्फिडेंस इंटरवल का प्रभाव बहुत बड़ा हो सकता है, क्योंकि एन के कुछ संयोजन के लिए स्वतंत्रता की #प्रभावी डिग्री छोटी हो सकती है और n प्रमुख शोर रूप के लिए (उस τ के लिए)।

इसका प्रभाव यह हो सकता है कि अनुमानित मूल्य वास्तविक मूल्य से बहुत कम या बहुत अधिक हो सकता है, जिससे परिणाम के गलत निष्कर्ष निकल सकते हैं।

यह अनुशंसा की जाती है कि कॉन्फिडेंस इंटरवल को डेटा के साथ प्लॉट किया जाए, ताकि प्लॉट के पाठक मूल्यों की सांख्यिकीय अनिश्चितता से अवगत हो सकें।

यह अनुशंसा की जाती है कि नमूना अनुक्रम की लंबाई, यानी नमूनों की संख्या N को उच्च रखा जाए ताकि यह सुनिश्चित किया जा सके कि विश्वास अंतराल ब्याज की τ सीमा से छोटा है।

यह अनुशंसा की जाती है कि τ श्रेणी को τ द्वारा स्वीप किया जाए0 गुणक एन ऊपरी अंत सापेक्ष एन में सीमित है, जैसे कि साजिश के पढ़ने को अत्यधिक अस्थिर अनुमानक मूल्यों से भ्रमित नहीं किया जा रहा है।

यह अनुशंसा की जाती है कि स्वतंत्रता मूल्यों की बेहतर डिग्री प्रदान करने वाले अनुमानकों का उपयोग एलन भिन्नता अनुमानकों के प्रतिस्थापन में या उन्हें पूरक के रूप में किया जाए जहां वे एलन भिन्नता अनुमानकों से बेहतर प्रदर्शन करते हैं। इनमें कुल प्रसरण और थियो प्रसरण अनुमानकों पर विचार किया जाना चाहिए।

प्रमुख शोर प्रकार

बड़ी संख्या में रूपांतरण स्थिरांक, पूर्वाग्रह सुधार और विश्वास अंतराल प्रमुख शोर प्रकार पर निर्भर करते हैं। उचित व्याख्या के लिए शोर पहचान के माध्यम से ब्याज के विशेष τ के लिए प्रमुख शोर प्रकार की पहचान की जानी चाहिए। प्रमुख शोर प्रकार की पहचान करने में विफल रहने से पक्षपाती मूल्य उत्पन्न होंगे। इनमें से कुछ पूर्वाग्रह परिमाण के कई क्रम के हो सकते हैं, इसलिए यह बड़े महत्व का हो सकता है।

रेखीय बहाव

सिग्नल पर व्यवस्थित प्रभाव केवल आंशिक रूप से रद्द कर दिया गया है। चरण और आवृत्ति ऑफसेट रद्द कर दिया गया है, लेकिन रैखिक बहाव या बहुपद चरण घटता के अन्य उच्च-डिग्री रूपों को रद्द नहीं किया जाएगा और इस प्रकार माप सीमा बनती है। कर्व फिटिंग और व्यवस्थित ऑफसेट को हटाने को नियोजित किया जा सकता है। अक्सर रैखिक बहाव को हटाना पर्याप्त हो सकता है। हैडमार्ड विचरण जैसे रेखीय-बहाव अनुमानकों का उपयोग भी नियोजित किया जा सकता है। पल-आधारित अनुमानक का उपयोग करके रैखिक बहाव हटाने को नियोजित किया जा सकता है।

माप उपकरण अनुमानक पूर्वाग्रह

पारंपरिक उपकरणों ने केवल एकल घटनाओं या घटना जोड़े का माप प्रदान किया। जे. जे. स्नाइडर द्वारा अतिव्यापी मापन के उन्नत सांख्यिकीय उपकरण का परिचय[7]पारंपरिक अंकों/समय-आधार संतुलन को तोड़ते हुए आवृत्ति रीडआउट में बहुत बेहतर रिज़ॉल्यूशन की अनुमति दी। जबकि इस तरह के तरीके अपने इच्छित उद्देश्य के लिए उपयोगी होते हैं, एलन विचरण गणनाओं के लिए ऐसे चिकने मापों का उपयोग करने से उच्च रिज़ॉल्यूशन का झूठा आभास होता है,[18][19][20] लेकिन लंबे τ के लिए प्रभाव धीरे-धीरे हटा दिया जाता है, और माप के निचले-τ क्षेत्र में पक्षपाती मान होते हैं। यह पूर्वाग्रह जितना होना चाहिए उससे कम मूल्य प्रदान कर रहा है, इसलिए यह अति-आशावादी पूर्वाग्रह है (यह मानते हुए कि कम संख्या वही है जो कोई चाहता है) पूर्वाग्रह, माप की उपयोगिता को सुधारने के अतिरिक्त इसे कम करता है। इस तरह के स्मार्ट एल्गोरिदम को आमतौर पर टाइम-स्टैम्प मोड का उपयोग करके अक्षम या अन्यथा बाधित किया जा सकता है, जो उपलब्ध होने पर बहुत पसंद किया जाता है।

व्यावहारिक माप

जबकि एलन विचरण के मापन के लिए कई दृष्टिकोण तैयार किए जा सकते हैं, सरल उदाहरण यह बता सकता है कि माप कैसे किया जा सकता है।

नाप

एलन भिन्नता के सभी माप प्रभावी रूप से दो अलग-अलग घड़ियों की तुलना करेंगे। संदर्भ घड़ी और परीक्षण के तहत उपकरण (DUT) पर विचार करें, और दोनों में 10 मेगाहर्ट्ज की सामान्य नाममात्र आवृत्ति हो। संदर्भ के बढ़ते किनारे (चैनल ए) और परीक्षण के तहत डिवाइस के बढ़ते किनारे के बीच के समय को मापने के लिए समय-अंतराल काउंटर का उपयोग किया जा रहा है।

समान रूप से स्थान माप प्रदान करने के लिए, संदर्भ घड़ी को माप दर बनाने के लिए विभाजित किया जाएगा, समय-अंतराल काउंटर (एआरएम इनपुट) को ट्रिगर किया जाएगा। यह दर 1 Hz हो सकती है (किसी संदर्भ घड़ी के पल्स प्रति सेकंड आउटपुट का उपयोग करके), लेकिन 10 Hz और 100 Hz जैसी अन्य दरों का भी उपयोग किया जा सकता है। जिस गति से समय-अंतराल काउंटर माप को पूरा कर सकता है, परिणाम का उत्पादन कर सकता है और अगली भुजा के लिए खुद को तैयार कर सकता है वह ट्रिगर आवृत्ति को सीमित करेगा।

कंप्यूटर तब देखे जा रहे समय के अंतर की श्रृंखला को रिकॉर्ड करने के लिए उपयोगी होता है।

पोस्ट-प्रोसेसिंग

रिकॉर्ड की गई समय-श्रृंखला को लिपटे हुए चरण को खोलने के लिए पोस्ट-प्रोसेसिंग की आवश्यकता होती है, जैसे कि निरंतर चरण त्रुटि प्रदान की जा रही है। यदि आवश्यक हो, तो लॉगिंग और माप की गलतियों को भी ठीक किया जाना चाहिए। ड्रिफ्ट आकलन और ड्रिफ्ट हटाने का कार्य किया जाना चाहिए, ड्रिफ्ट मैकेनिज्म को स्रोतों के लिए पहचानने और समझने की आवश्यकता है। मापन में बहाव की सीमाएँ गंभीर हो सकती हैं, इसलिए ऑसिलेटर्स को लंबे समय तक चालू रखने के लिए स्थिर होने देना आवश्यक है।

एलन विचरण की गणना तब दिए गए अनुमानकों का उपयोग करके की जा सकती है, और व्यावहारिक उद्देश्यों के लिए अतिव्यापी अनुमानक का उपयोग गैर-अतिव्यापी अनुमानक पर डेटा के बेहतर उपयोग के कारण किया जाना चाहिए। अन्य अनुमानक जैसे टोटल या थियो वैरियंस एस्टिमेटर्स का भी उपयोग किया जा सकता है यदि पूर्वाग्रह सुधार लागू किया जाता है जैसे कि वे एलन प्रसरण-संगत परिणाम प्रदान करते हैं।

शास्त्रीय प्लॉट बनाने के लिए, एलन विचलन (एलन विचरण का वर्गमूल) अवलोकन अंतराल τ के खिलाफ लॉग-लॉग प्रारूप में प्लॉट किया जाता है।

उपकरण और सॉफ्टवेयर

समय-अंतराल काउंटर आमतौर पर व्यावसायिक रूप से उपलब्ध ऑफ-द-शेल्फ काउंटर है। सीमित कारकों में सिंगल-शॉट रिज़ॉल्यूशन, ट्रिगर जिटर, माप की गति और संदर्भ घड़ी की स्थिरता शामिल है। कंप्यूटर संग्रह और पोस्ट-प्रोसेसिंग मौजूदा वाणिज्यिक या सार्वजनिक-डोमेन सॉफ़्टवेयर का उपयोग करके किया जा सकता है। अत्यधिक उन्नत समाधान मौजूद हैं, जो बॉक्स में माप और संगणना प्रदान करेंगे।

अनुसंधान इतिहास

आवृत्ति स्थिरता के क्षेत्र का लंबे समय तक अध्ययन किया गया है। हालाँकि, 1960 के दशक के दौरान यह पाया गया कि सुसंगत परिभाषाओं का अभाव था। नवंबर 1964 में अल्पकालिक स्थिरता पर नासा-आईईईई संगोष्ठी[21] फ्रीक्वेंसी स्टेबिलिटी पर IEEE प्रोसीडिंग्स के फरवरी 1966 के विशेष अंक के परिणामस्वरूप।

नासा-आईईईई संगोष्ठी कई अलग-अलग योगदानकर्ताओं के कागजात के साथ कई क्षेत्रों और लघु और दीर्घकालिक स्थिरता के उपयोग को साथ लाया। लेख और पैनल चर्चा आवृत्ति झिलमिलाहट शोर के अस्तित्व और अल्पकालिक और दीर्घकालिक स्थिरता दोनों के लिए सामान्य परिभाषा प्राप्त करने की इच्छा पर सहमत हैं।

डेविड एलन सहित महत्वपूर्ण कागजात,[3]जेम्स ए बार्न्स,[22] एल.एस. कटलर और सी.एल. सियरल[1]और डी. बी. लेसन,[2]फ्रीक्वेंसी स्टेबिलिटी पर IEEE प्रोसीडिंग्स में दिखाई दिया और क्षेत्र को आकार देने में मदद की।

डेविड एलन का लेख प्रारंभिक पूर्वाग्रह समारोह के साथ माप के बीच मृत-समय के मुद्दे से निपटने, आवृत्ति के शास्त्रीय एम-नमूना भिन्नता का विश्लेषण करता है।[3]यद्यपि एलन का प्रारंभिक पूर्वाग्रह कार्य कोई मृत-समय नहीं मानता है, उसके सूत्रों में मृत-समय की गणना शामिल है। उनका लेख एम आवृत्ति नमूने (लेख में एन कहा जाता है) और भिन्नता अनुमानक के मामले का विश्लेषण करता है। यह अब मानक α–µ मानचित्रण प्रदान करता है, स्पष्ट रूप से जेम्स बार्न्स के कार्य पर निर्माण करता है[22]इसी मुद्दे में।

2-नमूना भिन्नता मामला एम-नमूना भिन्नता का विशेष मामला है, जो औसत आवृत्ति व्युत्पन्न का उत्पादन करता है। एलन स्पष्ट रूप से आधार मामले के रूप में 2-नमूना भिन्नता का उपयोग करता है, क्योंकि मनमाने ढंग से चुने गए एम के लिए, मूल्यों को 2-नमूना भिन्नता के माध्यम से एम-नमूना भिन्नता में स्थानांतरित किया जा सकता है। 2-नमूना भिन्नता के लिए कोई वरीयता स्पष्ट रूप से नहीं बताई गई थी, भले ही उपकरण प्रदान किए गए हों। हालांकि, इस आलेख ने अन्य एम-नमूना भिन्नताओं की तुलना करने के तरीके के रूप में 2-नमूना भिन्नता का उपयोग करने की नींव रखी।

जेम्स बार्न्स ने पूर्वाग्रह कार्यों पर कार्य को महत्वपूर्ण रूप से विस्तारित किया,[15]आधुनिक बी पेश करना1 और बी2 पक्षपात कार्य। विचित्र रूप से पर्याप्त, यह एम-नमूना भिन्नता को एलन भिन्नता के रूप में संदर्भित करता है, जबकि एलन के लेख परमाणु आवृत्ति मानकों के सांख्यिकी का जिक्र करते हुए।[3]इन आधुनिक पूर्वाग्रह कार्यों के साथ, विभिन्न एम, टी और τ मूल्यों के एम-नमूना भिन्नता उपायों के बीच पूर्ण रूपांतरण, 2-नमूना भिन्नता के माध्यम से रूपांतरण द्वारा किया जा सकता है।

जेम्स बार्न्स और डेविड एलन ने बी के साथ पूर्वाग्रह कार्यों को आगे बढ़ाया3 समारोह[16]श्रृंखलाबद्ध नमूने अनुमानक पूर्वाग्रह को संभालने के लिए। बीच में डेड-टाइम के साथ श्रृंखलाबद्ध नमूना प्रेक्षणों के नए उपयोग को संभालने के लिए यह आवश्यक था।

1970 में, आवृत्ति और समय पर IEEE तकनीकी समिति, उपकरण और मापन पर IEEE समूह के भीतर, NBS तकनीकी सूचना 394 के रूप में प्रकाशित क्षेत्र का सारांश प्रदान किया।[11]यह पेपर पहले अधिक शैक्षिक और व्यावहारिक पेपरों की पंक्ति में था, जिससे साथी इंजीनियरों को क्षेत्र को समझने में मदद मिली। इस पत्र ने टी = τ के साथ 2-नमूना भिन्नता की सिफारिश की, इसे 'एलन भिन्नता' (अब उद्धरण चिह्नों के बिना) के रूप में संदर्भित किया। इस तरह के पैरामीट्रिजेशन की पसंद कुछ शोर रूपों की अच्छी हैंडलिंग और तुलनीय माप प्राप्त करने की अनुमति देती है; यह अनिवार्य रूप से पूर्वाग्रह कार्यों बी की सहायता से कम से कम सामान्य विभाजक है1 और बी2.

जे. जे. स्नाइडर ने आवृत्ति काउंटरों के लिए नमूना आँकड़ों का उपयोग करते हुए आवृत्ति या भिन्नता अनुमान के लिए बेहतर विधि प्रस्तावित की।[7]उपलब्ध डेटासेट से स्वतंत्रता की अधिक प्रभावी डिग्री प्राप्त करने के लिए, अतिव्यापी अवलोकन अवधि का उपयोग करने की चाल है। यह प्रदान करता है n सुधार, और ओवरलैपिंग एलन भिन्नता अनुमानक में शामिल किया गया था।[8]वेरिएबल-τ सॉफ्टवेयर प्रोसेसिंग को भी शामिल किया गया था।[8]इस विकास ने शास्त्रीय एलन भिन्नता अनुमानकों में सुधार किया, वैसे ही संशोधित एलन भिन्नता पर काम के लिए प्रत्यक्ष प्रेरणा प्रदान की।

होवे, एलन और बार्न्स ने विश्वास अंतराल, स्वतंत्रता की डिग्री और स्थापित अनुमानकों का विश्लेषण प्रस्तुत किया।[8]

शैक्षिक और व्यावहारिक संसाधन

समय और आवृत्ति का क्षेत्र और एलन विचरण, एलन विचलन और दोस्तों का उपयोग ऐसा क्षेत्र है जिसमें कई पहलू शामिल हैं, जिसके लिए अवधारणाओं की समझ और व्यावहारिक माप और पोस्ट-प्रोसेसिंग दोनों के लिए देखभाल और समझ की आवश्यकता होती है। इस प्रकार, लगभग 40 वर्षों से उपलब्ध शैक्षिक सामग्री का क्षेत्र उपलब्ध है। चूंकि ये अपने समय के अनुसंधान में विकास को प्रतिबिंबित करते हैं, वे समय के साथ अलग-अलग पहलुओं को पढ़ाने पर ध्यान केंद्रित करते हैं, इस मामले में उपलब्ध संसाधनों का सर्वेक्षण सही संसाधन खोजने का उपयुक्त तरीका हो सकता है।

पहला सार्थक सारांश एनबीएस टेक्निकल नोट 394 कैरेक्टराइजेशन ऑफ फ्रीक्वेंसी स्टेबिलिटी है।[11]यह इंस्ट्रुमेंटेशन और मापन पर IEEE समूह की आवृत्ति और समय पर तकनीकी समिति का उत्पाद है। यह क्षेत्र का पहला अवलोकन देता है, समस्याओं को बताता है, बुनियादी सहायक परिभाषाओं को परिभाषित करता है और एलन विचरण, पूर्वाग्रह कार्य बी में प्रवेश करता है।1 और बी2, टाइम-डोमेन उपायों का रूपांतरण। यह उपयोगी है, क्योंकि यह पाँच बुनियादी शोर प्रकारों के लिए एलन विचरण को सारणीबद्ध करने वाले पहले संदर्भों में से है।

शास्त्रीय संदर्भ एनबीएस मोनोग्राफ 140 है[23] 1974 से, जिसके अध्याय 8 में समय और आवृत्ति डेटा विश्लेषण के आँकड़े हैं।[24] यह एनबीएस टेक्निकल नोट 394 का विस्तारित संस्करण है और माप तकनीकों और मूल्यों के व्यावहारिक प्रसंस्करण में अनिवार्य रूप से जोड़ता है।

महत्वपूर्ण जोड़ संकेत स्रोतों और माप विधियों के गुण होंगे।[8]यह डेटा के प्रभावी उपयोग, विश्वास अंतराल, स्वतंत्रता की प्रभावी डिग्री को कवर करता है, इसी तरह अतिव्यापी एलन विचरण अनुमानक को पेश करता है। यह उन विषयों के लिए अत्यधिक अनुशंसित पठन है।

आईईईई मानक 1139 मौलिक आवृत्ति और समय मेट्रोलोजी के लिए भौतिक मात्रा की मानक परिभाषाएं[4]मानक से परे व्यापक संदर्भ और शैक्षिक संसाधन है।

दूरसंचार की दिशा में लक्षित आधुनिक पुस्तक स्टेफानो ब्रेग्नी सिंक्रोनाइज़ेशन ऑफ़ डिजिटल टेलीकम्युनिकेशन नेटवर्क्स है।[13]यह न केवल क्षेत्र को सारांशित करता है, बल्कि उस बिंदु तक क्षेत्र में उसके अधिकांश शोधों को भी सारांशित करता है। इसका उद्देश्य शास्त्रीय उपायों और दूरसंचार-विशिष्ट उपायों जैसे एमटीआईई दोनों को शामिल करना है। दूरसंचार मानकों से संबंधित मापों को देखते समय यह आसान साथी है।

WJ रिले की आवृत्ति स्थिरता विश्लेषण की NIST विशेष प्रकाशन 1065 हैंडबुक[14]क्षेत्र का पीछा करने के इच्छुक किसी भी व्यक्ति के लिए अनुशंसित पढ़ना है। यह सन्दर्भों से समृद्ध है और उपायों, पूर्वाग्रहों और संबंधित कार्यों की विस्तृत श्रृंखला को भी शामिल करता है जो आधुनिक विश्लेषक के पास उपलब्ध होनी चाहिए। आगे यह आधुनिक उपकरण के लिए आवश्यक समग्र प्रसंस्करण का वर्णन करता है।

उपयोग करता है

एलन विचरण का उपयोग विभिन्न प्रकार के सटीक ऑसिलेटर्स में आवृत्ति स्थिरता के माप के रूप में किया जाता है, जैसे कि क्रिस्टल ऑसिलेटर्स, एटॉमिक क्लॉक और फ़्रीक्वेंसी-स्टेबलाइज़्ड लेज़र सेकंड या उससे अधिक की अवधि में। अल्पकालिक स्थिरता (सेकंड के तहत) आमतौर पर चरण शोर के रूप में व्यक्त की जाती है। एलन विचरण का उपयोग जाइरोस्कोप की पूर्वाग्रह स्थिरता को चिह्नित करने के लिए भी किया जाता है, जिसमें फाइबर ऑप्टिक जाइरोस्कोप, गोलार्ध रेज़ोनेटर गायरोस्कोप और माइक्रोइलेक्ट्रॉनिक सिस्टम गायरोस्कोप और एक्सेलेरोमीटर शामिल हैं।[25][26]

50वीं वर्षगांठ

2016 में, IEEE-UFFC एलन वेरिएंस (1966-2016) की 50वीं वर्षगांठ मनाने के लिए विशेष अंक प्रकाशित करने जा रहा है।[27] उस अंक के अतिथि संपादक राष्ट्रीय मानक और प्रौद्योगिकी संस्थान, जुडाह लेविन में डेविड के पूर्व सहयोगी होंगे, जो हाल ही में आई. आई. रबी पुरस्कार के प्राप्तकर्ता हैं।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Cutler, L. S.; Searle, C. L. (February 1966), "Some Aspects of the Theory and Measurements of Frequency Fluctuations in Frequency Standards" (PDF), Proceedings of the IEEE, 54 (2): 136–154, doi:10.1109/proc.1966.4627, archived (PDF) from the original on 2022-10-09
  2. 2.0 2.1 2.2 Leeson, D. B (February 1966), "A simple Model of Feedback Oscillator Noise Spectrum", Proceedings of the IEEE, 54 (2): 329–330, doi:10.1109/proc.1966.4682, archived from the original on 1 February 2014, retrieved 20 September 2012
  3. 3.0 3.1 3.2 3.3 3.4 3.5 Allan, D. Statistics of Atomic Frequency Standards, pages 221–230. Proceedings of the IEEE, Vol. 54, No 2, February 1966.
  4. 4.0 4.1 4.2 4.3 4.4 "Definitions of physical quantities for fundamental frequency and time metrology – Random Instabilities". IEEE STD 1139-1999. 1999. doi:10.1109/IEEESTD.1999.90575. ISBN 978-0-7381-1753-9.
  5. Rubiola, Enrico (2008), Phase Noise and Frequency Stability in Oscillators, Cambridge university press, ISBN 978-0-521-88677-2
  6. http://www.allanstime.com/Publications/DWA/Conversion_from_Allan_variance_to_Spectral_Densities.pdf. Archived 6 February 2012 at the Wayback Machine
  7. 7.0 7.1 7.2 Snyder, J. J.: An ultra-high resolution frequency meter, pages 464–469, Frequency Control Symposium #35, 1981.
  8. 8.0 8.1 8.2 8.3 8.4 8.5 8.6 D. A. Howe, D. W. Allan, J. A. Barnes: Properties of signal sources and measurement methods, pages 464–469, Frequency Control Symposium #35, 1981.
  9. ITU-T Rec. G.810: Definitions and terminology for synchronization and networks, ITU-T Rec. G.810 (08/96).
  10. ETSI EN 300 462-1-1: Definitions and terminology for synchronisation networks, ETSI EN 300 462-1-1 V1.1.1 (1998–05).
  11. 11.0 11.1 11.2 11.3 J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. Sydnor, R. F. C. Vessot, G. M. R. Winkler: Characterization of Frequency Stability, NBS Technical Note 394, 1970.
  12. J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, Jr., W. L. Smith, R. L. Sydnor, R. F. C. Vessot, G. M. R. Winkler: Characterization of Frequency Stability, IEEE Transactions on Instruments and Measurements 20, pp. 105–120, 1971.
  13. 13.0 13.1 13.2 Bregni, Stefano: Synchronisation of digital telecommunication networks, Wiley 2002, ISBN 0-471-61550-1.
  14. 14.0 14.1 14.2 NIST SP 1065: Handbook of Frequency Stability Analysis .
  15. 15.0 15.1 15.2 15.3 15.4 Barnes, J. A.: Tables of Bias Functions, B1 and B2, for Variances Based On Finite Samples of Processes with Power Law Spectral Densities, NBS Technical Note 375, 1969.
  16. 16.0 16.1 16.2 J. A. Barnes, D. W. Allan: Variances Based on Data with Dead Time Between the Measurements, NIST Technical Note 1318, 1990.
  17. ITU-T Rec. G.813: Timing characteristics of SDH equipment slave clock (SEC), ITU-T Rec. G.813 (03/2003).
  18. Rubiola, Enrico (2005). "उच्च-रिज़ॉल्यूशन काउंटरों के साथ आवृत्ति और उसके नमूना विचरण की माप पर" (PDF). Review of Scientific Instruments. 76 (5): 054703–054703–6. arXiv:physics/0411227. Bibcode:2005RScI...76e4703R. doi:10.1063/1.1898203. S2CID 119062268. Archived from the original (PDF) on 20 July 2011.
  19. Rubiola, Enrico: On the measurement of frequency and of its sample variance with high-resolution counters Archived 20 July 2011 at the Wayback Machine, Proc. Joint IEEE International Frequency Control Symposium and Precise Time and Time Interval Systems and Applications Meeting pp. 46–49, Vancouver, Canada, 29–31 August 2005.
  20. Rubiola, Enrico: High-resolution frequency counters (extended version, 53 slides) Archived 20 July 2011 at the Wayback Machine, seminar given at the FEMTO-ST Institute, at the Université Henri Poincaré, and at the Jet Propulsion Laboratory, NASA-Caltech.
  21. NASA: [1] Short-Term Frequency Stability, NASA-IEEE symposium on Short Term Frequency Stability Goddard Space Flight Center 23–24 November 1964, NASA Special Publication 80.
  22. 22.0 22.1 Barnes, J. A.: Atomic Timekeeping and the Statistics of Precision Signal Generators, IEEE Proceedings on Frequency Stability, Vol 54 No 2, pages 207–220, 1966.
  23. Blair, B. E.: Time and Frequency: Theory and Fundamentals, NBS Monograph 140, May 1974.
  24. David W. Allan, John H. Shoaf and Donald Halford: Statistics of Time and Frequency Data Analysis, NBS Monograph 140, pages 151–204, 1974.
  25. http://www.afahc.ro/ro/afases/2014/mecanica/marinov_petrov_allan.pdf[bare URL PDF]
  26. Bose, S.; Gupta, A. K.; Handel, P. (September 2017). "शू-माउंटेड मल्टी-आईएमयू जड़त्वीय पोजिशनिंग सिस्टम के शोर और शक्ति प्रदर्शन पर". 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN): 1–8. doi:10.1109/IPIN.2017.8115944. ISBN 978-1-5090-6299-7. S2CID 19055090.
  27. "IEEE UFFC | Publications | Transactions on UFFC | Proposal for an IEEE Transactions on UFFC Special Issue". Archived from the original on 3 September 2014. Retrieved 28 August 2014.


बाहरी संबंध