थिन-फिल्म लिथियम-आयन बैटरी: Difference between revisions
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
== पृष्ठभूमि == | == पृष्ठभूमि == | ||
[[लिथियम आयन बैटरी|लिथियम-आयन बैटरी]] सेल के [[एनोड]] और [[कैथोड]] में प्रतिक्रियाशील रसायनों में रासायनिक ऊर्जा को संचित करती हैं। सामान्यतः, एनोड्स और कैथोड लिथियम (Li+) आयनों को तरल [[इलेक्ट्रोलाइट]] के माध्यम से विनिमय करते हैं जो पोरस [[पॉलिमर विभाजक|पॉलिमर विभाजकों]] से निकलता है जो एनोड और कैथोड के बीच सीधे संपर्क को रोकता है। इस प्रकार के संपर्क से आंतरिक [[ शार्ट सर्किट ]] और संभावित खतरनाक अनियंत्रित प्रतिक्रिया हो सकती है। [[विद्युत प्रवाह]] सामान्यतः सेल के ऋणात्मक और धनात्मक टर्मिनलों (क्रमशः) से एनोड और कैथोड पर प्रवाहकीय [[वर्तमान कलेक्टर]] द्वारा किया जाता है। | [[लिथियम आयन बैटरी|लिथियम-आयन बैटरी]] सेल के [[एनोड]] और [[कैथोड]] में प्रतिक्रियाशील रसायनों में रासायनिक ऊर्जा को संचित करती हैं। सामान्यतः, एनोड्स और कैथोड लिथियम (Li+) आयनों को तरल [[इलेक्ट्रोलाइट]] के माध्यम से विनिमय करते हैं जो पोरस [[पॉलिमर विभाजक|पॉलिमर विभाजकों]] से निकलता है जो एनोड और कैथोड के बीच सीधे संपर्क को रोकता है। इस प्रकार के संपर्क से आंतरिक [[ शार्ट सर्किट ]] और संभावित खतरनाक अनियंत्रित प्रतिक्रिया हो सकती है। [[विद्युत प्रवाह]] सामान्यतः सेल के ऋणात्मक और धनात्मक टर्मिनलों (क्रमशः) से एनोड और कैथोड पर प्रवाहकीय [[वर्तमान कलेक्टर|धारा कलेक्टर]] द्वारा किया जाता है। | ||
थिन-फिल्म लिथियम बैटरी में इलेक्ट्रोलाइट ठोस होता है और अन्य घटक [[सब्सट्रेट (इलेक्ट्रॉनिक्स)]] पर परतों में जमा होते हैं। कुछ डिजाइनों में, ठोस इलेक्ट्रोलाइट विभाजक के रूप में भी कार्य करता है। | थिन-फिल्म लिथियम बैटरी में इलेक्ट्रोलाइट ठोस होता है और अन्य घटक [[सब्सट्रेट (इलेक्ट्रॉनिक्स)]] पर परतों में जमा होते हैं। कुछ डिजाइनों में, ठोस इलेक्ट्रोलाइट विभाजक के रूप में भी कार्य करता है। | ||
Line 51: | Line 51: | ||
| align="center" | {{mvar|V<sub>OC</sub>}}: खुला परिपथ क्षमता | | align="center" | {{mvar|V<sub>OC</sub>}}: खुला परिपथ क्षमता | ||
|} | |} | ||
Line 58: | Line 59: | ||
=== कैथोड सामग्री के लिए निक्षेपण विधियां === | === कैथोड सामग्री के लिए निक्षेपण विधियां === | ||
धारा संग्राहक पर थिन फिल्म कैथोड सामग्री जमा करने के लिए विभिन्न विधियों का उपयोग किया जा रहा है। | |||
==== [[स्पंदित लेजर जमाव]] (पीएलडी) ==== | ==== [[स्पंदित लेजर जमाव]] (पीएलडी) ==== | ||
Line 74: | Line 75: | ||
=== इलेक्ट्रोलाइट === | === इलेक्ट्रोलाइट === | ||
पारंपरिक [[लिथियम आयन बैटरी]] और थिन, लचीली, लिथियम आयन बैटरी के बीच सबसे बड़ा अंतर इलेक्ट्रोलाइट सामग्री में होता है। लिथियम आयन बैटरी में प्रगति इलेक्ट्रोलाइट में सुधार पर निर्भर करती है क्योंकि यह इलेक्ट्रोड सामग्री में होती है, क्योंकि इलेक्ट्रोलाइट सुरक्षित बैटरी संचालन में प्रमुख भूमिका निभाता है। | पारंपरिक [[लिथियम आयन बैटरी]] और थिन, लचीली, लिथियम आयन बैटरी के बीच सबसे बड़ा अंतर इलेक्ट्रोलाइट सामग्री में होता है। लिथियम आयन बैटरी में प्रगति इलेक्ट्रोलाइट में सुधार पर निर्भर करती है क्योंकि यह इलेक्ट्रोड सामग्री में होती है, क्योंकि इलेक्ट्रोलाइट सुरक्षित बैटरी संचालन में प्रमुख भूमिका निभाता है। | ||
थिन फिल्म लिथियम आयन बैटरी की अवधारणा इलेक्ट्रोलाइट्स के रूप में उनके उपयोग के लिए बहुलक प्रौद्योगिकी द्वारा प्रस्तुत किए गए विनिर्माण लाभों से तेजी से प्रेरित थी। LiPON, लिथियम फॉस्फोरस ऑक्सीनिट्राइड, थिन फिल्म लचीली बैटरी में इलेक्ट्रोलाइट सामग्री के रूप में उपयोग की जाने वाली अनाकार ग्लासी सामग्री है। LiPON की परतें RF मेग्नेट्रॉन कण क्षेपण द्वारा परिवेशी तापमान पर कैथोड सामग्री पर जमा की जाती हैं। यह एनोड और कैथोड के बीच आयन चालन के लिए प्रयुक्त ठोस इलेक्ट्रोलाइट बनाता है।<ref name=LiPON>{{cite journal | title= ली-आयन थिन फिल्म बैटरियों के लिए LiPON इंटरलेयर के साथ एक नए प्रकार के सॉलिड-स्टेट इलेक्ट्रोलाइट के लक्षण|journal =[[Solid State Ionics (journal)|Solid State Ionics]] | year = 2010 | volume=181 |issue =19–20 | pages = 902–906 | doi=10.1016/j.ssi.2010.04.017|last1 =Jee |first1 =Seung Hyun |last2 =Lee |first2 =Man-Jong |last3 =Ahn |first3 =Ho Sang |last4 =Kim |first4 =Dong-Joo |last5 =Choi |first5 =Ji Won |last6 =Yoon |first6 =Seok Jin |last7 =Nam |first7 =Sang Cheol |last8 =Kim |first8 =Soo Ho |last9 =Yoon |first9 =Young Soo }}</ref><ref name=OakRidge>{{cite journal | title= पतली फिल्म रिचार्जेबल ली-आयन बैटरी| journal =[[Solid State Division of Oak Ridge National Lab]] | year = 1995}}</ref> LiBON, लिथियम बोरॉन ऑक्सीनिट्राइड, थिन फिल्म लचीली बैटरी में ठोस इलेक्ट्रोलाइट सामग्री के रूप में उपयोग की जाने वाली अन्य अनाकार ग्लासी सामग्री है।<ref name= Song>{{cite journal | last1=Song|first1=S.-W. |last2=Lee|first2=K.-C. |last3=Park|first3=H.-Y.| title= लिथियम बोरॉन ऑक्सीनिट्राइड के ठोस इलेक्ट्रोलाइट पर आधारित उच्च-प्रदर्शन लचीला सभी-ठोस-राज्य माइक्रोबैटरी| journal =[[Journal of Power Sources]] | year = 2016| volume=328 | pages = 311–317| doi=10.1016/j.jpowsour.2016.07.114|bibcode=2016JPS...328..311S }}</ref> ठोस बहुलक इलेक्ट्रोलाइट्स पारंपरिक तरल लिथियम आयन बैटरी की तुलना में कई | |||
थिन फिल्म लिथियम आयन बैटरी की अवधारणा इलेक्ट्रोलाइट्स के रूप में उनके उपयोग के लिए बहुलक प्रौद्योगिकी द्वारा प्रस्तुत किए गए विनिर्माण लाभों से तेजी से प्रेरित थी। LiPON, लिथियम फॉस्फोरस ऑक्सीनिट्राइड, थिन फिल्म लचीली बैटरी में इलेक्ट्रोलाइट सामग्री के रूप में उपयोग की जाने वाली अनाकार ग्लासी सामग्री है। LiPON की परतें RF मेग्नेट्रॉन कण क्षेपण द्वारा परिवेशी तापमान पर कैथोड सामग्री पर जमा की जाती हैं। यह एनोड और कैथोड के बीच आयन चालन के लिए प्रयुक्त ठोस इलेक्ट्रोलाइट बनाता है।<ref name="LiPON">{{cite journal | title= ली-आयन थिन फिल्म बैटरियों के लिए LiPON इंटरलेयर के साथ एक नए प्रकार के सॉलिड-स्टेट इलेक्ट्रोलाइट के लक्षण|journal =[[Solid State Ionics (journal)|Solid State Ionics]] | year = 2010 | volume=181 |issue =19–20 | pages = 902–906 | doi=10.1016/j.ssi.2010.04.017|last1 =Jee |first1 =Seung Hyun |last2 =Lee |first2 =Man-Jong |last3 =Ahn |first3 =Ho Sang |last4 =Kim |first4 =Dong-Joo |last5 =Choi |first5 =Ji Won |last6 =Yoon |first6 =Seok Jin |last7 =Nam |first7 =Sang Cheol |last8 =Kim |first8 =Soo Ho |last9 =Yoon |first9 =Young Soo }}</ref><ref name="OakRidge">{{cite journal | title= पतली फिल्म रिचार्जेबल ली-आयन बैटरी| journal =[[Solid State Division of Oak Ridge National Lab]] | year = 1995}}</ref> LiBON, लिथियम बोरॉन ऑक्सीनिट्राइड, थिन फिल्म लचीली बैटरी में ठोस इलेक्ट्रोलाइट सामग्री के रूप में उपयोग की जाने वाली अन्य अनाकार ग्लासी सामग्री है।<ref name="Song">{{cite journal | last1=Song|first1=S.-W. |last2=Lee|first2=K.-C. |last3=Park|first3=H.-Y.| title= लिथियम बोरॉन ऑक्सीनिट्राइड के ठोस इलेक्ट्रोलाइट पर आधारित उच्च-प्रदर्शन लचीला सभी-ठोस-राज्य माइक्रोबैटरी| journal =[[Journal of Power Sources]] | year = 2016| volume=328 | pages = 311–317| doi=10.1016/j.jpowsour.2016.07.114|bibcode=2016JPS...328..311S }}</ref> ठोस बहुलक इलेक्ट्रोलाइट्स पारंपरिक तरल लिथियम आयन बैटरी की तुलना में कई लाभ प्रदान करते हैं। इलेक्ट्रोलाइट, बाइंडर और सेपरेटर के अलग-अलग घटक होने के अतिरिक्त, ये ठोस इलेक्ट्रोलाइट तीनों के रूप में कार्य कर सकते हैं। यह एकत्र हुई बैटरी की समग्र ऊर्जा घनत्व को बढ़ाता है क्योंकि पूरे सेल के घटक अधिक कसकर पैक होते हैं। | |||
=== विभाजक सामग्री === | === विभाजक सामग्री === | ||
लिथियम आयन बैटरी में विभाजक सामग्री को एनोड और कैथोड सामग्री के भौतिक संपर्क को रोकने के | लिथियम आयन बैटरी में विभाजक सामग्री को एनोड और कैथोड सामग्री जैसे शॉर्ट सर्किटिंग के भौतिक संपर्क को रोकने के समय लिथियम आयनों के परिवहन को अवरुद्ध नहीं करना चाहिए। तरल सेल में, यह विभाजक पोरस कांच या बहुलक जाल होगा जो छिद्रों के माध्यम से तरल इलेक्ट्रोलाइट के माध्यम से आयन परिवहन की अनुमति देता है, लेकिन इलेक्ट्रोड को संपर्क करने और छोटा करने से रोकता है। चूंकि, थिन फिल्म बैटरी में इलेक्ट्रोलाइट ठोस होता है, जो समर्पित विभाजक की आवश्यकता के बिना आयन परिवहन और भौतिक पृथक्करण आवश्यकताओं दोनों को आसानी से संतुष्ट करता है। | ||
=== | === धारा कलेक्टर === | ||
थिन फिल्म बैटरी में | थिन फिल्म बैटरी में धारा संग्राहक लचीला होना चाहिए, उच्च सतह क्षेत्र होना चाहिए, और लागत प्रभावी होना चाहिए। उत्तम सतह क्षेत्र और लोडिंग भार के साथ चांदी के नैनोवायरों को इन बैटरी प्रणालियों में धारा संग्राहक के रूप में काम करने के लिए दिखाया गया है, लेकिन फिर भी वांछित के रूप में लागत प्रभावी नहीं हैं। लिथियम आयन बैटरियों में ग्रेफाइट प्रौद्योगिकी का विस्तार करते हुए, धारा संग्राहक और एनोड सामग्री दोनों के रूप में उपयोग के लिए समाधान संसाधित [[कार्बन नैनोट्यूब]] (सीएनटी) फिल्मों पर विचार किया जा रहा है। CNTs में लिथियम को आपस में जोड़ने और उच्च ऑपरेटिंग वोल्टेज को बनाए रखने की क्षमता होती है, जिसमें कम द्रव्यमान लोडिंग और लचीलापन होता है। | ||
== लाभ और चुनौतियां == | == लाभ और चुनौतियां == | ||
[[पतली फिल्म|थिन फिल्म]] लिथियम आयन बैटरी उच्च औसत आउटपुट वोल्टेज, हल्का वजन इस प्रकार उच्च ऊर्जा घनत्व (3x), और | [[पतली फिल्म|थिन फिल्म]] लिथियम आयन बैटरी उच्च औसत आउटपुट वोल्टेज, हल्का वजन इस प्रकार उच्च ऊर्जा घनत्व (3x), और लंबे समय तक चलने वाली जीवन (1200 चक्र गिरावट के बिना) के साथ उत्तम प्रदर्शन प्रदान करती है और विशिष्ट रिचार्जेबल लिथियम-आयन बैटरी की तुलना में तापमान (-20 और 60 डिग्री सेल्सियस के बीच) की एक विस्तृत श्रृंखला में काम कर सकती हैं। | ||
उच्च विशिष्ट ऊर्जा और उच्च शक्ति की मांग को पूरा करने के लिए | उच्च विशिष्ट ऊर्जा और उच्च शक्ति की मांग को पूरा करने के लिए लिथियम - ऑइन स्थानांतरण सेल सबसे आशाजनक प्रणाली हैं और निर्माण के लिए सस्ता होगा। | ||
थिन फिल्म लिथियम आयन बैटरी में, दोनों [[इलेक्ट्रोड]] प्रतिवर्ती लिथियम सम्मिलन में सक्षम होते हैं, इस प्रकार | थिन फिल्म लिथियम आयन बैटरी में, दोनों [[इलेक्ट्रोड]] प्रतिवर्ती लिथियम सम्मिलन में सक्षम होते हैं, इस प्रकार लिथियम - ऑइन स्थानांतरण सेल बनाते हैं। थिन फिल्म बैटरी के निर्माण के लिए यह आवश्यक है कि सभी बैटरी घटकों को एनोड के रूप में एक ठोस इलेक्ट्रोलाइट एक कैथोड के रूप में तैयार किया जाए और करंट उपयुक्त तकनीकों द्वारा बहु-स्तरित पतली फिल्मों में ले जाता है। | ||
थिन फिल्म आधारित प्रणाली में, इलेक्ट्रोलाइट सामान्य रूप से ठोस इलेक्ट्रोलाइट होता है, जो बैटरी के आकार के अनुरूप होने में सक्षम होता है। यह पारंपरिक लिथियम आयन बैटरी के विपरीत है, जिसमें सामान्य रूप से तरल इलेक्ट्रोलाइट सामग्री होती है। यदि वे विभाजक के साथ संगत नहीं हैं तो तरल इलेक्ट्रोलाइट्स का उपयोग करना चुनौतीपूर्ण हो सकता है। साथ ही सामान्य रूप से तरल इलेक्ट्रोलाइट्स बैटरी की समग्र मात्रा में वृद्धि के लिए कहते हैं, जो उच्च ऊर्जा घनत्व वाले | थिन फिल्म आधारित प्रणाली में, इलेक्ट्रोलाइट सामान्य रूप से ठोस इलेक्ट्रोलाइट होता है, जो बैटरी के आकार के अनुरूप होने में सक्षम होता है। यह पारंपरिक लिथियम आयन बैटरी के विपरीत है, जिसमें सामान्य रूप से तरल इलेक्ट्रोलाइट सामग्री होती है। यदि वे विभाजक के साथ संगत नहीं हैं तो तरल इलेक्ट्रोलाइट्स का उपयोग करना चुनौतीपूर्ण हो सकता है। साथ ही सामान्य रूप से तरल इलेक्ट्रोलाइट्स बैटरी की समग्र मात्रा में वृद्धि के लिए कहते हैं, जो उच्च ऊर्जा घनत्व वाले प्रणाली को डिजाइन करने के लिए आदर्श नहीं है। इसके अतिरिक्त, थिन फिल्म लचीली ली-आयन बैटरी में, इलेक्ट्रोलाइट, जो सामान्यतः बहुलक-आधारित होता है, इलेक्ट्रोलाइट, विभाजक और बाइंडर सामग्री के रूप में कार्य कर सकता है। यह लचीला प्रणाली रखने की क्षमता प्रदान करता है क्योंकि इलेक्ट्रोलाइट रिसाव के मुद्दे को दूर किया जाता है। अंत में, ठोस प्रणालियों को कसकर साथ पैक किया जा सकता है जो पारंपरिक तरल लिथियम आयन बैटरी की तुलना में ऊर्जा घनत्व में वृद्धि की पुष्टि करता है। | ||
लिथियम आयन बैटरी में विभाजक सामग्री में शॉर्ट सर्किटिंग को रोकने के लिए एनोड और कैथोड सामग्री के बीच भौतिक अलगाव बनाए रखते हुए आयनों को उनके पोरस झिल्ली के माध्यम से परिवहन करने की क्षमता होनी चाहिए। इसके | लिथियम आयन बैटरी में विभाजक सामग्री में शॉर्ट सर्किटिंग को रोकने के लिए एनोड और कैथोड सामग्री के बीच भौतिक अलगाव बनाए रखते हुए आयनों को उनके पोरस झिल्ली के माध्यम से परिवहन करने की क्षमता होनी चाहिए। इसके अतिरिक्त, विभाजक बैटरी के संचालन के समय गिरावट के लिए प्रतिरोधी होना चाहिए। थिन फिल्म ली-आयन बैटरी में विभाजक पतला और लचीला ठोस होना चाहिए। सामान्यतः आज, यह सामग्री बहुलक आधारित सामग्री है। चूंकि थिन फिल्म बैटरियां सभी ठोस सामग्रियों से बनी होती हैं, इसलिए इन प्रणालियों में तरल आधारित ली-आयन बैटरियों के अतिरिक्त ज़ेरॉक्स पेपर जैसे सरल विभाजक सामग्रियों का उपयोग करने की अनुमति मिलती है। | ||
== वैज्ञानिक विकास == | == वैज्ञानिक विकास == | ||
थिन | थिन ठोस अवस्था बैटरियों का विकास उत्पादन लागत को कम करने के लिए रोल-टू-रोल प्रोसेसिंग प्रकार की बैटरियों के उत्पादन की अनुमति देता है। ठोस-अवस्था बैटरी बैटरी समग्र उपकरण वजन में कमी के कारण बढ़ी हुई ऊर्जा घनत्व भी वहन कर सकती है, जबकि लचीली प्रकृति उपन्यास बैटरी डिज़ाइन और इलेक्ट्रॉनिक्स में आसान समावेश की अनुमति देती है। कैथोड सामग्री में अभी भी विकास की आवश्यकता है जो चक्रण के कारण क्षमता में कमी का विरोध करेगी। | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
|- | |- | ||
! | ! पूर्व प्रौद्योगिकी !! प्रतिस्थापन प्रौद्योगिकी !! परिणाम | ||
|- | |- | ||
| Solution based electrolyte || Solid state electrolyte || Increased safety and cycle life | | Solution based electrolyte || Solid state electrolyte || Increased safety and cycle life | ||
Line 116: | Line 118: | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
थिन फिल्म लिथियम आयन बैटरी में हुई प्रगति ने कई संभावित अनुप्रयोगों के लिए अनुमति दी है। इनमें से अधिकांश अनुप्रयोगों का उद्देश्य | थिन फिल्म लिथियम आयन बैटरी में हुई प्रगति ने कई संभावित अनुप्रयोगों के लिए अनुमति दी है। इनमें से अधिकांश अनुप्रयोगों का उद्देश्य धारा में उपलब्ध उपभोक्ता और चिकित्सा उत्पादों में सुधार करना है। थिन फिल्म लिथियम आयन बैटरी का उपयोग पतले पोर्टेबल इलेक्ट्रॉनिक्स बनाने के लिए किया जा सकता है, क्योंकि उपकरण को संचालित करने के लिए आवश्यक बैटरी की मोटाई को बहुत कम किया जा सकता है। इन बैटरियों में प्रत्यारोपण योग्य चिकित्सा उपकरणों का अभिन्न अंग होने की क्षमता है, जैसे कि [[डिफ़िब्रिलेटर्स]] और तंत्रिका उत्तेजक, "स्मार्ट" कार्ड,<ref name= Neudecker>{{cite journal | title= सॉलिड स्टेट थिन-फिल्म लिथियम बैटरी सिस्टम| journal =[[Solid State & Materials Science]] | year = 2008 | pages = 479–482}}</ref> रेडियो आवृत्ति पहचान, या आरएफआईडी, टैग<ref name= Hu />और वायरलेस सेंसर।<ref name= thinfilmmicro>{{cite journal | title= पतली फिल्म माइक्रो-बैटरी| journal =[[The Electrochemical Society Interface]] | year = 2008 | volume= 4 | pages = 44–48}}</ref> वे सौर सेलों या अन्य संचयन उपकरणों से एकत्रित ऊर्जा को संग्रहीत करने के विधियों के रूप में भी काम कर सकते हैं।<ref name= thinfilmmicro />इनमें से प्रत्येक एप्लिकेशन बैटरी के आकार और आकार में लचीलेपन के कारण संभव है। इन उपकरणों के आकार को अब बैटरी के लिए आवश्यक स्थान के आकार के आसपास नहीं घूमना पड़ता है। थिन फिल्म बैटरियों को आवरण के अंदर या किसी अन्य सुविधाजनक विधियों से जोड़ा जा सकता है। इस प्रकार की बैटरियों का उपयोग करने के कई अवसर हैं। | ||
===नवीकरणीय ऊर्जा भंडारण उपकरण=== | ===नवीकरणीय ऊर्जा भंडारण उपकरण=== | ||
Line 125: | Line 127: | ||
=== आरएफआईडी टैग === | === आरएफआईडी टैग === | ||
[[ रेडियो फ्रिक्वेंसी पहचान ]] (RFID) टैग का उपयोग कई अलग-अलग अनुप्रयोगों में किया जा सकता है। इन टैग्स का उपयोग पैकेजिंग, इन्वेंट्री नियंत्रण में किया जा सकता है, प्रामाणिकता को सत्यापित करने के लिए उपयोग किया जाता है और यहां तक कि किसी चीज़ तक पहुंच की अनुमति या इनकार भी किया जाता है। इन आईडी टैग में अन्य एकीकृत सेंसर भी हो सकते हैं जो भौतिक वातावरण की निगरानी करने की अनुमति देते हैं, जैसे यात्रा या शिपिंग के | [[ रेडियो फ्रिक्वेंसी पहचान ]] (RFID) टैग का उपयोग कई अलग-अलग अनुप्रयोगों में किया जा सकता है। इन टैग्स का उपयोग पैकेजिंग, इन्वेंट्री नियंत्रण में किया जा सकता है, प्रामाणिकता को सत्यापित करने के लिए उपयोग किया जाता है और यहां तक कि किसी चीज़ तक पहुंच की अनुमति या इनकार भी किया जाता है। इन आईडी टैग में अन्य एकीकृत सेंसर भी हो सकते हैं जो भौतिक वातावरण की निगरानी करने की अनुमति देते हैं, जैसे यात्रा या शिपिंग के समय तापमान या झटका। साथ ही टैग में दी गई जानकारी को पढ़ने के लिए जरूरी दूरी बैटरी की ताकत पर निर्भर करती है। जितनी दूर आप जानकारी को पढ़ने में सक्षम होना चाहते हैं, उतना ही मजबूत आउटपुट होगा और इस आउटपुट को पूरा करने के लिए बिजली की आपूर्ति जितनी अधिक होगी। जैसे-जैसे ये टैग अधिक से अधिक जटिल होते जाते हैं, बैटरी की आवश्यकताओं को बनाए रखने की आवश्यकता होगी। थिन फिल्म लिथियम आयन बैटरी ने दिखाया है कि आकार और आकार में बैटरी के लचीलेपन के कारण वे टैग के डिजाइन में फिट हो सकते हैं और टैग के लक्ष्यों को पूरा करने के लिए पर्याप्त शक्तिशाली हैं। इन बैटरियों की कम लागत वाली उत्पादन विधियाँ, जैसे रोल टू रोल लेमिनेशन, इस प्रकार की RFID तकनीक को डिस्पोजेबल अनुप्रयोगों में लागू करने की अनुमति दे सकती हैं।<ref name= Hu /> | ||
===प्रत्यारोपित चिकित्सा उपकरण=== | ===प्रत्यारोपित चिकित्सा उपकरण=== | ||
लिथियम कोबाल्ट ऑक्साइड की थिन फिल्म | LiCoO<sub>2</sub>संश्लेषित किया गया है जिसमें सबसे मजबूत [[एक्स-रे]] प्रतिबिंब या तो कमजोर है या गायब है, जो उच्च स्तर के पसंदीदा अभिविन्यास का संकेत देता है। इन [[बनावट (क्रिस्टलीय)]] कैथोड फिल्मों के साथ थिन फिल्म [[सॉलिड-स्टेट केमिस्ट्री|ठोस-अवस्था केमिस्ट्री]] बैटरियां उच्च | लिथियम कोबाल्ट ऑक्साइड की थिन फिल्म | LiCoO<sub>2</sub>संश्लेषित किया गया है जिसमें सबसे मजबूत [[एक्स-रे]] प्रतिबिंब या तो कमजोर है या गायब है, जो उच्च स्तर के पसंदीदा अभिविन्यास का संकेत देता है। इन [[बनावट (क्रिस्टलीय)]] कैथोड फिल्मों के साथ थिन फिल्म [[सॉलिड-स्टेट केमिस्ट्री|ठोस-अवस्था केमिस्ट्री]] बैटरियां उच्च धारा घनत्व पर व्यावहारिक क्षमता प्रदान कर सकती हैं। उदाहरण के लिए, सेलों में से के लिए अधिकतम क्षमता का 70% 4.2 V और 3 V के बीच (लगभग 0.2 mAh/cm<sup>2</sup>) को 2 [[ एम्पेयर ]]/सेमी के धारा पर डिलीवर किया गया था<sup>2</उप>। जब 0.1 mA/cm की दर से साइकिल चलाई जाती है<sup>2</sup>, क्षमता हानि 0.001%/चक्र या उससे कम थी। Li LiCoO की विश्वसनीयता और प्रदर्शन<sub>2</sub> थिन-फिल्म बैटरियां उन्हें प्रत्यारोपण योग्य उपकरणों जैसे तंत्रिका उत्तेजक, [[पेसमेकर]] और [[defibrillator]] में आवेदन के लिए आकर्षक बनाती हैं। | ||
प्रत्यारोपित चिकित्सा उपकरणों के लिए बैटरी की आवश्यकता होती है जो यथासंभव लंबे समय तक स्थिर, विश्वसनीय शक्ति स्रोत प्रदान कर सके। ये एप्लिकेशन ऐसी बैटरी की मांग करते हैं, जिसमें कम स्व-निर्वहन दर हो, जब यह उपयोग में न हो, और उच्च शक्ति दर, जब इसका उपयोग करने की आवश्यकता हो, विशेष रूप से इम्प्लांटेबल डीफिब्रिलेटर के मामले में। साथ ही, उत्पाद के उपयोगकर्ता ऐसी बैटरी चाहेंगे जो कई चक्रों से गुजर सके, इसलिए इन उपकरणों को बार-बार बदलने या सर्विस करने की आवश्यकता नहीं होगी। थिन फिल्म लिथियम आयन बैटरी में इन आवश्यकताओं को पूरा करने की क्षमता होती है। तरल से ठोस इलेक्ट्रोलाइट तक की प्रगति ने इन बैटरियों को लीक होने की चिंता के बिना लगभग कोई भी आकार लेने की अनुमति दी है, और यह दिखाया गया है कि कुछ प्रकार की थिन फिल्म रिचार्जेबल लिथियम बैटरी लगभग 50,000 चक्रों तक चल सकती हैं।<ref name= Yoon>{{cite journal | title= रिचार्जेबल पतली फिल्म लिथियम बैटरी का सामना करने वाली समस्या और चुनौतियाँ| journal =[[Materials Research Bulletin]] | year = 2008 | volume= 43 | issue =8–9 | pages = 1913–1942 | doi=10.1016/j.materresbull.2007.08.031| last1 =Patil | first1 =Arun | last2 =Patil | first2 =Vaishali | last3 =Wook Shin | first3 =Dong | last4 =Choi | first4 =Ji-Won | last5 =Paik | first5 =Dong-Soo | last6 =Yoon | first6 =Seok-Jin }}</ref> इन थिन फिल्म बैटरियों का अन्य लाभ यह है कि उन्हें व्यक्तिगत बैटरी [[वोल्टेज]] के योग के बराबर बड़ा वोल्टेज देने के लिए [[श्रृंखला और समानांतर सर्किट]] में व्यवस्थित किया जा सकता है। इस तथ्य का उपयोग | प्रत्यारोपित चिकित्सा उपकरणों के लिए बैटरी की आवश्यकता होती है जो यथासंभव लंबे समय तक स्थिर, विश्वसनीय शक्ति स्रोत प्रदान कर सके। ये एप्लिकेशन ऐसी बैटरी की मांग करते हैं, जिसमें कम स्व-निर्वहन दर हो, जब यह उपयोग में न हो, और उच्च शक्ति दर, जब इसका उपयोग करने की आवश्यकता हो, विशेष रूप से इम्प्लांटेबल डीफिब्रिलेटर के मामले में। साथ ही, उत्पाद के उपयोगकर्ता ऐसी बैटरी चाहेंगे जो कई चक्रों से गुजर सके, इसलिए इन उपकरणों को बार-बार बदलने या सर्विस करने की आवश्यकता नहीं होगी। थिन फिल्म लिथियम आयन बैटरी में इन आवश्यकताओं को पूरा करने की क्षमता होती है। तरल से ठोस इलेक्ट्रोलाइट तक की प्रगति ने इन बैटरियों को लीक होने की चिंता के बिना लगभग कोई भी आकार लेने की अनुमति दी है, और यह दिखाया गया है कि कुछ प्रकार की थिन फिल्म रिचार्जेबल लिथियम बैटरी लगभग 50,000 चक्रों तक चल सकती हैं।<ref name= Yoon>{{cite journal | title= रिचार्जेबल पतली फिल्म लिथियम बैटरी का सामना करने वाली समस्या और चुनौतियाँ| journal =[[Materials Research Bulletin]] | year = 2008 | volume= 43 | issue =8–9 | pages = 1913–1942 | doi=10.1016/j.materresbull.2007.08.031| last1 =Patil | first1 =Arun | last2 =Patil | first2 =Vaishali | last3 =Wook Shin | first3 =Dong | last4 =Choi | first4 =Ji-Won | last5 =Paik | first5 =Dong-Soo | last6 =Yoon | first6 =Seok-Jin }}</ref> इन थिन फिल्म बैटरियों का अन्य लाभ यह है कि उन्हें व्यक्तिगत बैटरी [[वोल्टेज]] के योग के बराबर बड़ा वोल्टेज देने के लिए [[श्रृंखला और समानांतर सर्किट]] में व्यवस्थित किया जा सकता है। इस तथ्य का उपयोग उपकरण के डिजाइन में बैटरी के "पदचिह्न" या बैटरी के लिए आवश्यक स्थान के आकार को कम करने में किया जा सकता है। | ||
=== वायरलेस सेंसर === | === वायरलेस सेंसर === |
Revision as of 08:57, 14 June 2023
थिन फिल्म लिथियम-आयन बैटरी ठोस-अवस्था बैटरी का एक रूप है।[1] इसका विकास ठोस-राज्य बैटरी के लाभों को थिन-फिल्म निर्माण प्रक्रियाओं के लाभों के साथ संयोजित करने की संभावना से प्रेरित है।
ठोस इलेक्ट्रोलाइट का उपयोग करने से लाभ के शीर्ष पर थिन फिल्म निर्माण से विशिष्ट ऊर्जा, ऊर्जा घनत्व और शक्ति घनत्व में सुधार हो सकता है। यह केवल कुछ माइक्रोन मोटी लचीली सेलों की अनुमति देता है।[2] यह मापनीय रोल-टू-रोल प्रोसेसिंग से निर्माण लागत को भी कम कर सकता है और यहां तक कि सस्ती सामग्री के उपयोग की अनुमति भी दे सकता है।[3]
[[image:Basic battery charging.jpg|thumb|right|लिथियम आयन बैटरी
पृष्ठभूमि
लिथियम-आयन बैटरी सेल के एनोड और कैथोड में प्रतिक्रियाशील रसायनों में रासायनिक ऊर्जा को संचित करती हैं। सामान्यतः, एनोड्स और कैथोड लिथियम (Li+) आयनों को तरल इलेक्ट्रोलाइट के माध्यम से विनिमय करते हैं जो पोरस पॉलिमर विभाजकों से निकलता है जो एनोड और कैथोड के बीच सीधे संपर्क को रोकता है। इस प्रकार के संपर्क से आंतरिक शार्ट सर्किट और संभावित खतरनाक अनियंत्रित प्रतिक्रिया हो सकती है। विद्युत प्रवाह सामान्यतः सेल के ऋणात्मक और धनात्मक टर्मिनलों (क्रमशः) से एनोड और कैथोड पर प्रवाहकीय धारा कलेक्टर द्वारा किया जाता है।
थिन-फिल्म लिथियम बैटरी में इलेक्ट्रोलाइट ठोस होता है और अन्य घटक सब्सट्रेट (इलेक्ट्रॉनिक्स) पर परतों में जमा होते हैं। कुछ डिजाइनों में, ठोस इलेक्ट्रोलाइट विभाजक के रूप में भी कार्य करता है।
थिन फिल्म बैटरी के घटक
कैथोड सामग्री
थिन फिल्म लिथियम आयन बैटरी में कैथोड सामग्री पारंपरिक लिथियम आयन बैटरी के समान होती है। वे सामान्यतः धातु ऑक्साइड होते हैं जिन्हें विभिन्न विधियों से फिल्म के रूप में जमा किया जाता है।
धातु ऑक्साइड सामग्री के साथ-साथ उनकी सापेक्ष विशिष्ट क्षमता (Λ), खुला परिपथ वोल्टेज (Voc), और ऊर्जा घनत्व (DE) नीचे दिखाए गए हैं।
Λ(Ah/kg) | VOC(V) | DE(Wh/kg) | |
---|---|---|---|
LiCoO2 | 145 | 4 | 580 |
LiMn2O4 | 148 | 4 | 592 |
LiFePO4 | 170 | 3.4 | 578 |
DE = Λ VOC |
Λ: क्षमता (mAh/g) |
VOC: खुला परिपथ क्षमता |
कैथोड सामग्री के लिए निक्षेपण विधियां
धारा संग्राहक पर थिन फिल्म कैथोड सामग्री जमा करने के लिए विभिन्न विधियों का उपयोग किया जा रहा है।
स्पंदित लेजर जमाव (पीएलडी)
स्पंदित लेजर जमाव में, सामग्री को लेजर ऊर्जा और प्रवाह, सब्सट्रेट तापमान, पृष्ठभूमि दबाव और लक्ष्य-सब्सट्रेट दूरी जैसे मापदंडों को नियंत्रित करके रखा जाता है।
मेग्नेट्रॉन कणक्षेपण
कणक्षेपण में सब्सट्रेट को निक्षेपण के लिए ठंडा किया जाता है।
रासायनिक वाष्प जमाव (सीवीडी)
रासायनिक वाष्प जमाव में, वाष्पशील अग्रदूत सामग्री को सब्सट्रेट सामग्री पर जमा किया जाता है।
एसओएल-जेल प्रोसेसिंग
सोल-जेल प्रसंस्करण परमाणु स्तर पर अग्रदूत सामग्री के सजातीय मिश्रण की अनुमति देता है।
इलेक्ट्रोलाइट
पारंपरिक लिथियम आयन बैटरी और थिन, लचीली, लिथियम आयन बैटरी के बीच सबसे बड़ा अंतर इलेक्ट्रोलाइट सामग्री में होता है। लिथियम आयन बैटरी में प्रगति इलेक्ट्रोलाइट में सुधार पर निर्भर करती है क्योंकि यह इलेक्ट्रोड सामग्री में होती है, क्योंकि इलेक्ट्रोलाइट सुरक्षित बैटरी संचालन में प्रमुख भूमिका निभाता है।
थिन फिल्म लिथियम आयन बैटरी की अवधारणा इलेक्ट्रोलाइट्स के रूप में उनके उपयोग के लिए बहुलक प्रौद्योगिकी द्वारा प्रस्तुत किए गए विनिर्माण लाभों से तेजी से प्रेरित थी। LiPON, लिथियम फॉस्फोरस ऑक्सीनिट्राइड, थिन फिल्म लचीली बैटरी में इलेक्ट्रोलाइट सामग्री के रूप में उपयोग की जाने वाली अनाकार ग्लासी सामग्री है। LiPON की परतें RF मेग्नेट्रॉन कण क्षेपण द्वारा परिवेशी तापमान पर कैथोड सामग्री पर जमा की जाती हैं। यह एनोड और कैथोड के बीच आयन चालन के लिए प्रयुक्त ठोस इलेक्ट्रोलाइट बनाता है।[4][5] LiBON, लिथियम बोरॉन ऑक्सीनिट्राइड, थिन फिल्म लचीली बैटरी में ठोस इलेक्ट्रोलाइट सामग्री के रूप में उपयोग की जाने वाली अन्य अनाकार ग्लासी सामग्री है।[6] ठोस बहुलक इलेक्ट्रोलाइट्स पारंपरिक तरल लिथियम आयन बैटरी की तुलना में कई लाभ प्रदान करते हैं। इलेक्ट्रोलाइट, बाइंडर और सेपरेटर के अलग-अलग घटक होने के अतिरिक्त, ये ठोस इलेक्ट्रोलाइट तीनों के रूप में कार्य कर सकते हैं। यह एकत्र हुई बैटरी की समग्र ऊर्जा घनत्व को बढ़ाता है क्योंकि पूरे सेल के घटक अधिक कसकर पैक होते हैं।
विभाजक सामग्री
लिथियम आयन बैटरी में विभाजक सामग्री को एनोड और कैथोड सामग्री जैसे शॉर्ट सर्किटिंग के भौतिक संपर्क को रोकने के समय लिथियम आयनों के परिवहन को अवरुद्ध नहीं करना चाहिए। तरल सेल में, यह विभाजक पोरस कांच या बहुलक जाल होगा जो छिद्रों के माध्यम से तरल इलेक्ट्रोलाइट के माध्यम से आयन परिवहन की अनुमति देता है, लेकिन इलेक्ट्रोड को संपर्क करने और छोटा करने से रोकता है। चूंकि, थिन फिल्म बैटरी में इलेक्ट्रोलाइट ठोस होता है, जो समर्पित विभाजक की आवश्यकता के बिना आयन परिवहन और भौतिक पृथक्करण आवश्यकताओं दोनों को आसानी से संतुष्ट करता है।
धारा कलेक्टर
थिन फिल्म बैटरी में धारा संग्राहक लचीला होना चाहिए, उच्च सतह क्षेत्र होना चाहिए, और लागत प्रभावी होना चाहिए। उत्तम सतह क्षेत्र और लोडिंग भार के साथ चांदी के नैनोवायरों को इन बैटरी प्रणालियों में धारा संग्राहक के रूप में काम करने के लिए दिखाया गया है, लेकिन फिर भी वांछित के रूप में लागत प्रभावी नहीं हैं। लिथियम आयन बैटरियों में ग्रेफाइट प्रौद्योगिकी का विस्तार करते हुए, धारा संग्राहक और एनोड सामग्री दोनों के रूप में उपयोग के लिए समाधान संसाधित कार्बन नैनोट्यूब (सीएनटी) फिल्मों पर विचार किया जा रहा है। CNTs में लिथियम को आपस में जोड़ने और उच्च ऑपरेटिंग वोल्टेज को बनाए रखने की क्षमता होती है, जिसमें कम द्रव्यमान लोडिंग और लचीलापन होता है।
लाभ और चुनौतियां
थिन फिल्म लिथियम आयन बैटरी उच्च औसत आउटपुट वोल्टेज, हल्का वजन इस प्रकार उच्च ऊर्जा घनत्व (3x), और लंबे समय तक चलने वाली जीवन (1200 चक्र गिरावट के बिना) के साथ उत्तम प्रदर्शन प्रदान करती है और विशिष्ट रिचार्जेबल लिथियम-आयन बैटरी की तुलना में तापमान (-20 और 60 डिग्री सेल्सियस के बीच) की एक विस्तृत श्रृंखला में काम कर सकती हैं।
उच्च विशिष्ट ऊर्जा और उच्च शक्ति की मांग को पूरा करने के लिए लिथियम - ऑइन स्थानांतरण सेल सबसे आशाजनक प्रणाली हैं और निर्माण के लिए सस्ता होगा।
थिन फिल्म लिथियम आयन बैटरी में, दोनों इलेक्ट्रोड प्रतिवर्ती लिथियम सम्मिलन में सक्षम होते हैं, इस प्रकार लिथियम - ऑइन स्थानांतरण सेल बनाते हैं। थिन फिल्म बैटरी के निर्माण के लिए यह आवश्यक है कि सभी बैटरी घटकों को एनोड के रूप में एक ठोस इलेक्ट्रोलाइट एक कैथोड के रूप में तैयार किया जाए और करंट उपयुक्त तकनीकों द्वारा बहु-स्तरित पतली फिल्मों में ले जाता है।
थिन फिल्म आधारित प्रणाली में, इलेक्ट्रोलाइट सामान्य रूप से ठोस इलेक्ट्रोलाइट होता है, जो बैटरी के आकार के अनुरूप होने में सक्षम होता है। यह पारंपरिक लिथियम आयन बैटरी के विपरीत है, जिसमें सामान्य रूप से तरल इलेक्ट्रोलाइट सामग्री होती है। यदि वे विभाजक के साथ संगत नहीं हैं तो तरल इलेक्ट्रोलाइट्स का उपयोग करना चुनौतीपूर्ण हो सकता है। साथ ही सामान्य रूप से तरल इलेक्ट्रोलाइट्स बैटरी की समग्र मात्रा में वृद्धि के लिए कहते हैं, जो उच्च ऊर्जा घनत्व वाले प्रणाली को डिजाइन करने के लिए आदर्श नहीं है। इसके अतिरिक्त, थिन फिल्म लचीली ली-आयन बैटरी में, इलेक्ट्रोलाइट, जो सामान्यतः बहुलक-आधारित होता है, इलेक्ट्रोलाइट, विभाजक और बाइंडर सामग्री के रूप में कार्य कर सकता है। यह लचीला प्रणाली रखने की क्षमता प्रदान करता है क्योंकि इलेक्ट्रोलाइट रिसाव के मुद्दे को दूर किया जाता है। अंत में, ठोस प्रणालियों को कसकर साथ पैक किया जा सकता है जो पारंपरिक तरल लिथियम आयन बैटरी की तुलना में ऊर्जा घनत्व में वृद्धि की पुष्टि करता है।
लिथियम आयन बैटरी में विभाजक सामग्री में शॉर्ट सर्किटिंग को रोकने के लिए एनोड और कैथोड सामग्री के बीच भौतिक अलगाव बनाए रखते हुए आयनों को उनके पोरस झिल्ली के माध्यम से परिवहन करने की क्षमता होनी चाहिए। इसके अतिरिक्त, विभाजक बैटरी के संचालन के समय गिरावट के लिए प्रतिरोधी होना चाहिए। थिन फिल्म ली-आयन बैटरी में विभाजक पतला और लचीला ठोस होना चाहिए। सामान्यतः आज, यह सामग्री बहुलक आधारित सामग्री है। चूंकि थिन फिल्म बैटरियां सभी ठोस सामग्रियों से बनी होती हैं, इसलिए इन प्रणालियों में तरल आधारित ली-आयन बैटरियों के अतिरिक्त ज़ेरॉक्स पेपर जैसे सरल विभाजक सामग्रियों का उपयोग करने की अनुमति मिलती है।
वैज्ञानिक विकास
थिन ठोस अवस्था बैटरियों का विकास उत्पादन लागत को कम करने के लिए रोल-टू-रोल प्रोसेसिंग प्रकार की बैटरियों के उत्पादन की अनुमति देता है। ठोस-अवस्था बैटरी बैटरी समग्र उपकरण वजन में कमी के कारण बढ़ी हुई ऊर्जा घनत्व भी वहन कर सकती है, जबकि लचीली प्रकृति उपन्यास बैटरी डिज़ाइन और इलेक्ट्रॉनिक्स में आसान समावेश की अनुमति देती है। कैथोड सामग्री में अभी भी विकास की आवश्यकता है जो चक्रण के कारण क्षमता में कमी का विरोध करेगी।
पूर्व प्रौद्योगिकी | प्रतिस्थापन प्रौद्योगिकी | परिणाम |
---|---|---|
Solution based electrolyte | Solid state electrolyte | Increased safety and cycle life |
Polymer separators | Paper separator | Decreased cost increased rate of ion conduction |
Metallic current collectors | Carbon nanotube current collectors | Decreased device weight, increased energy density |
Graphite anode | Carbon nanotube anode | Decreased device complexity |
निर्माता
- मुराता निर्माण[7]
अनुप्रयोग
थिन फिल्म लिथियम आयन बैटरी में हुई प्रगति ने कई संभावित अनुप्रयोगों के लिए अनुमति दी है। इनमें से अधिकांश अनुप्रयोगों का उद्देश्य धारा में उपलब्ध उपभोक्ता और चिकित्सा उत्पादों में सुधार करना है। थिन फिल्म लिथियम आयन बैटरी का उपयोग पतले पोर्टेबल इलेक्ट्रॉनिक्स बनाने के लिए किया जा सकता है, क्योंकि उपकरण को संचालित करने के लिए आवश्यक बैटरी की मोटाई को बहुत कम किया जा सकता है। इन बैटरियों में प्रत्यारोपण योग्य चिकित्सा उपकरणों का अभिन्न अंग होने की क्षमता है, जैसे कि डिफ़िब्रिलेटर्स और तंत्रिका उत्तेजक, "स्मार्ट" कार्ड,[8] रेडियो आवृत्ति पहचान, या आरएफआईडी, टैग[3]और वायरलेस सेंसर।[9] वे सौर सेलों या अन्य संचयन उपकरणों से एकत्रित ऊर्जा को संग्रहीत करने के विधियों के रूप में भी काम कर सकते हैं।[9]इनमें से प्रत्येक एप्लिकेशन बैटरी के आकार और आकार में लचीलेपन के कारण संभव है। इन उपकरणों के आकार को अब बैटरी के लिए आवश्यक स्थान के आकार के आसपास नहीं घूमना पड़ता है। थिन फिल्म बैटरियों को आवरण के अंदर या किसी अन्य सुविधाजनक विधियों से जोड़ा जा सकता है। इस प्रकार की बैटरियों का उपयोग करने के कई अवसर हैं।
नवीकरणीय ऊर्जा भंडारण उपकरण
थिन फिल्म लिथियम आयन बैटरी अक्षय स्रोतों से एकत्रित ऊर्जा के लिए भंडारण उपकरण के रूप में काम कर सकती है, जैसे कि सौर सेल या पवन टरबाइन। इन बैटरियों को निम्न स्व-निर्वहन दर के लिए बनाया जा सकता है, जिसका अर्थ है कि इन बैटरियों को चार्ज करने के लिए उपयोग की जाने वाली ऊर्जा के बड़े नुकसान के बिना लंबे समय तक संग्रहीत किया जा सकता है। इन पूरी प्रकार से चार्ज की गई बैटरियों का उपयोग नीचे सूचीबद्ध कुछ या सभी अन्य संभावित अनुप्रयोगों को बिजली देने के लिए किया जा सकता है, या सामान्य उपयोग के लिए इलेक्ट्रिक ग्रिड को अधिक विश्वसनीय शक्ति प्रदान कर सकता है।
स्मार्ट कार्ड
स्मार्ट कार्ड का आकार क्रेडिट कार्ड के समान होता है, लेकिन उनमें माइक्रोचिप होती है जिसका उपयोग जानकारी तक पहुँचने, प्राधिकरण देने या किसी एप्लिकेशन को संसाधित करने के लिए किया जा सकता है। उच्च तापमान, उच्च दबाव लेमिनेशन प्रक्रियाओं को पूरा करने के लिए ये कार्ड 130 से 150 डिग्री सेल्सियस के तापमान के साथ कठोर उत्पादन स्थितियों से गुजर सकते हैं।[10] बैटरी के भीतर जैविक घटकों के क्षरण या गिरावट के कारण ये स्थितियाँ अन्य बैटरियों के विफल होने का कारण बन सकती हैं। थिन फिल्म लिथियम आयन बैटरियों को -40 से 150 डिग्री सेल्सियस के तापमान का सामना करने के लिए दिखाया गया है।[9]थिन फिल्म लिथियम आयन बैटरी का यह उपयोग अन्य चरम तापमान अनुप्रयोगों के लिए आशान्वित है।
आरएफआईडी टैग
रेडियो फ्रिक्वेंसी पहचान (RFID) टैग का उपयोग कई अलग-अलग अनुप्रयोगों में किया जा सकता है। इन टैग्स का उपयोग पैकेजिंग, इन्वेंट्री नियंत्रण में किया जा सकता है, प्रामाणिकता को सत्यापित करने के लिए उपयोग किया जाता है और यहां तक कि किसी चीज़ तक पहुंच की अनुमति या इनकार भी किया जाता है। इन आईडी टैग में अन्य एकीकृत सेंसर भी हो सकते हैं जो भौतिक वातावरण की निगरानी करने की अनुमति देते हैं, जैसे यात्रा या शिपिंग के समय तापमान या झटका। साथ ही टैग में दी गई जानकारी को पढ़ने के लिए जरूरी दूरी बैटरी की ताकत पर निर्भर करती है। जितनी दूर आप जानकारी को पढ़ने में सक्षम होना चाहते हैं, उतना ही मजबूत आउटपुट होगा और इस आउटपुट को पूरा करने के लिए बिजली की आपूर्ति जितनी अधिक होगी। जैसे-जैसे ये टैग अधिक से अधिक जटिल होते जाते हैं, बैटरी की आवश्यकताओं को बनाए रखने की आवश्यकता होगी। थिन फिल्म लिथियम आयन बैटरी ने दिखाया है कि आकार और आकार में बैटरी के लचीलेपन के कारण वे टैग के डिजाइन में फिट हो सकते हैं और टैग के लक्ष्यों को पूरा करने के लिए पर्याप्त शक्तिशाली हैं। इन बैटरियों की कम लागत वाली उत्पादन विधियाँ, जैसे रोल टू रोल लेमिनेशन, इस प्रकार की RFID तकनीक को डिस्पोजेबल अनुप्रयोगों में लागू करने की अनुमति दे सकती हैं।[3]
प्रत्यारोपित चिकित्सा उपकरण
लिथियम कोबाल्ट ऑक्साइड की थिन फिल्म | LiCoO2संश्लेषित किया गया है जिसमें सबसे मजबूत एक्स-रे प्रतिबिंब या तो कमजोर है या गायब है, जो उच्च स्तर के पसंदीदा अभिविन्यास का संकेत देता है। इन बनावट (क्रिस्टलीय) कैथोड फिल्मों के साथ थिन फिल्म ठोस-अवस्था केमिस्ट्री बैटरियां उच्च धारा घनत्व पर व्यावहारिक क्षमता प्रदान कर सकती हैं। उदाहरण के लिए, सेलों में से के लिए अधिकतम क्षमता का 70% 4.2 V और 3 V के बीच (लगभग 0.2 mAh/cm2) को 2 एम्पेयर /सेमी के धारा पर डिलीवर किया गया था2</उप>। जब 0.1 mA/cm की दर से साइकिल चलाई जाती है2, क्षमता हानि 0.001%/चक्र या उससे कम थी। Li LiCoO की विश्वसनीयता और प्रदर्शन2 थिन-फिल्म बैटरियां उन्हें प्रत्यारोपण योग्य उपकरणों जैसे तंत्रिका उत्तेजक, पेसमेकर और defibrillator में आवेदन के लिए आकर्षक बनाती हैं।
प्रत्यारोपित चिकित्सा उपकरणों के लिए बैटरी की आवश्यकता होती है जो यथासंभव लंबे समय तक स्थिर, विश्वसनीय शक्ति स्रोत प्रदान कर सके। ये एप्लिकेशन ऐसी बैटरी की मांग करते हैं, जिसमें कम स्व-निर्वहन दर हो, जब यह उपयोग में न हो, और उच्च शक्ति दर, जब इसका उपयोग करने की आवश्यकता हो, विशेष रूप से इम्प्लांटेबल डीफिब्रिलेटर के मामले में। साथ ही, उत्पाद के उपयोगकर्ता ऐसी बैटरी चाहेंगे जो कई चक्रों से गुजर सके, इसलिए इन उपकरणों को बार-बार बदलने या सर्विस करने की आवश्यकता नहीं होगी। थिन फिल्म लिथियम आयन बैटरी में इन आवश्यकताओं को पूरा करने की क्षमता होती है। तरल से ठोस इलेक्ट्रोलाइट तक की प्रगति ने इन बैटरियों को लीक होने की चिंता के बिना लगभग कोई भी आकार लेने की अनुमति दी है, और यह दिखाया गया है कि कुछ प्रकार की थिन फिल्म रिचार्जेबल लिथियम बैटरी लगभग 50,000 चक्रों तक चल सकती हैं।[11] इन थिन फिल्म बैटरियों का अन्य लाभ यह है कि उन्हें व्यक्तिगत बैटरी वोल्टेज के योग के बराबर बड़ा वोल्टेज देने के लिए श्रृंखला और समानांतर सर्किट में व्यवस्थित किया जा सकता है। इस तथ्य का उपयोग उपकरण के डिजाइन में बैटरी के "पदचिह्न" या बैटरी के लिए आवश्यक स्थान के आकार को कम करने में किया जा सकता है।
वायरलेस सेंसर
वायरलेस सेंसर को उनके आवेदन की अवधि के लिए उपयोग में रहने की आवश्यकता है, चाहे वह पैकेज शिपिंग में हो या किसी अवांछित यौगिक का पता लगाने में, या गोदाम में इन्वेंट्री को नियंत्रित करने में हो। यदि वायरलेस सेंसर कम या बैटरी पावर नहीं होने के कारण अपना डेटा प्रसारित नहीं कर सकता है, तो एप्लिकेशन के आधार पर परिणाम संभावित रूप से गंभीर हो सकते हैं। साथ ही, वायरलेस सेंसर को प्रत्येक एप्लिकेशन के अनुकूल होना चाहिए। इसलिए बैटरी डिज़ाइन किए गए सेंसर के भीतर फिट होने में सक्षम होनी चाहिए। इसका मतलब है कि इन उपकरणों के लिए वांछित बैटरी लंबे समय तक चलने वाली, आकार विशिष्ट, कम लागत वाली होनी चाहिए, यदि वे डिस्पोजेबल प्रौद्योगिकियों में उपयोग की जा रही हैं, और डेटा संग्रह और संचरण प्रक्रियाओं की आवश्यकताओं को पूरा करना चाहिए। बार फिर, थिन फिल्म लिथियम आयन बैटरी ने इन सभी आवश्यकताओं को पूरा करने की क्षमता दिखाई है।
यह भी देखें
संदर्भ
- ↑ Jones, Kevin S.; Rudawski, Nicholas G.; Oladeji, Isaiah; Pitts, Roland; Fox, Richard (March 2012). "ठोस-राज्य बैटरियों की स्थिति" (PDF). American Ceramic Society Bulletin. 91 (2). Archived from the original on June 2020.
...an alternative to the typical liquid-based LIBs has been actively pursued during the past 20 years. This alternative uses a solid-state electrolyte and, thus, is termed a solid-state or thin-film battery.
{{cite journal}}
: Check date values in:|archive-date=
(help) - ↑ Talin, Alec (November 10, 2016). "सभी सॉलिड स्टेट थ्री डायमेंशनल ली-आयन बैटरियों का निर्माण, परीक्षण और अनुकरण". ACS Applied Materials & Interfaces. 8 (47): 32385–32391. doi:10.1021/acsami.6b12244. PMC 5526591. PMID 27933836.
- ↑ 3.0 3.1 3.2 Hu, L; Wu, H; La Mantia, F; Yang, Y; Cui, Y (2010). "पतली, लचीली सेकेंडरी ली-आयन पेपर बैटरियां" (PDF). ACS Nano. 4 (10): 5843–5848. doi:10.1021/nn1018158. PMID 20836501.
- ↑ Jee, Seung Hyun; Lee, Man-Jong; Ahn, Ho Sang; Kim, Dong-Joo; Choi, Ji Won; Yoon, Seok Jin; Nam, Sang Cheol; Kim, Soo Ho; Yoon, Young Soo (2010). "ली-आयन थिन फिल्म बैटरियों के लिए LiPON इंटरलेयर के साथ एक नए प्रकार के सॉलिड-स्टेट इलेक्ट्रोलाइट के लक्षण". Solid State Ionics. 181 (19–20): 902–906. doi:10.1016/j.ssi.2010.04.017.
- ↑ "पतली फिल्म रिचार्जेबल ली-आयन बैटरी". Solid State Division of Oak Ridge National Lab. 1995.
- ↑ Song, S.-W.; Lee, K.-C.; Park, H.-Y. (2016). "लिथियम बोरॉन ऑक्सीनिट्राइड के ठोस इलेक्ट्रोलाइट पर आधारित उच्च-प्रदर्शन लचीला सभी-ठोस-राज्य माइक्रोबैटरी". Journal of Power Sources. 328: 311–317. Bibcode:2016JPS...328..311S. doi:10.1016/j.jpowsour.2016.07.114.
- ↑ "लैमिनेटेड टाइप लिथियम आयन सेकेंडरी बैटरी". Murata Manufacturing. Retrieved November 11, 2022.
- ↑ "सॉलिड स्टेट थिन-फिल्म लिथियम बैटरी सिस्टम". Solid State & Materials Science: 479–482. 2008.
- ↑ 9.0 9.1 9.2 "पतली फिल्म माइक्रो-बैटरी". The Electrochemical Society Interface. 4: 44–48. 2008.
- ↑ "स्मार्ट कार्ड". www.excellatron.com. Archived from the original on December 7, 2004. Retrieved 14 May 2023.
- ↑ Patil, Arun; Patil, Vaishali; Wook Shin, Dong; Choi, Ji-Won; Paik, Dong-Soo; Yoon, Seok-Jin (2008). "रिचार्जेबल पतली फिल्म लिथियम बैटरी का सामना करने वाली समस्या और चुनौतियाँ". Materials Research Bulletin. 43 (8–9): 1913–1942. doi:10.1016/j.materresbull.2007.08.031.