शॉक्ले-रेमो प्रमेय: Difference between revisions

From Vigyanwiki
(Created page with "शॉक्ले-रेमो प्रमेय एक इलेक्ट्रोड के आसपास के क्षेत्र में चलने वा...")
 
No edit summary
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
शॉक्ले-रेमो प्रमेय एक [[इलेक्ट्रोड]] के आसपास के क्षेत्र में चलने वाले [[ बिजली का आवेश ]] द्वारा प्रेरित [[विद्युत प्रवाह]] की गणना करने की एक विधि है। पहले केवल रेमो प्रमेय नाम दिया गया था,
शॉक्ले-रेमो प्रमेय [[इलेक्ट्रोड]] के आसपास के क्षेत्र में चलने वाले [[ बिजली का आवेश | विद्युत् का आवेश]] द्वारा प्रेरित [[विद्युत प्रवाह]] की गणना करने की विधि है। पहले केवल रेमो प्रमेय नाम दिया गया था,
संशोधित नाम डीएस मैकग्रेगर एट अल द्वारा पेश किया गया था। 1998 में
 
<ref>{{Cite journal | last= McGregor | first= D.S. | author2= He, Z. | author3= Seifert, H.A.  
संशोधित नाम डीएस मैकग्रेगर एट अल द्वारा 1998 में प्रस्तुत किया गया था।<ref>{{Cite journal | last= McGregor | first= D.S. | author2= He, Z. | author3= Seifert, H.A.  
| author4= Wehe, D.K. | author5= Rojeski, R.A.  
| author4= Wehe, D.K. | author5= Rojeski, R.A.  
| title = CdZnTe semiconductor parallel strip Frisch grid radiation detectors
| title = CdZnTe semiconductor parallel strip Frisch grid radiation detectors
Line 7: Line 7:
|bibcode = 1998ITNS...45..443M
|bibcode = 1998ITNS...45..443M
}}</ref>
}}</ref>
रेडिएशन डिटेक्टर में मोबाइल चार्ज के प्रभाव को समझने के लिए शॉक्ले और रेमो दोनों के योगदान को पहचानने के लिए। प्रमेय [[विलियम शॉक्ले]] के 1938 के पेपर में दिखाई दिया, जिसका शीर्षक करंट्स टू कंडक्टर्स इंडिकेटेड बाई ए मूविंग पॉइंट चार्ज था।<ref>{{cite journal|doi=10.1063/1.1710367|title=मूविंग पॉइंट चार्ज द्वारा प्रेरित कंडक्टरों की धाराएँ|year=1938|last1=Shockley|first1=W.|journal=Journal of Applied Physics|volume=9|issue=10|pages=635–636|bibcode = 1938JAP.....9..635S }}</ref> और साइमन रेमो के 1939 के पेपर में इलेक्ट्रॉन मोशन द्वारा करंट्स इंड्यूस्ड शीर्षक से।<ref>{{cite journal|doi=10.1109/JRPROC.1939.228757|title=इलेक्ट्रॉन गति द्वारा प्रेरित धाराएँ|year=1939|last1=Ramo|first1=S.|journal=Proceedings of the IRE|volume=27|issue=9|pages=584–585|s2cid=51657875}}</ref>
यह इस अवधारणा पर आधारित है कि इलेक्ट्रोड में प्रेरित धारा इलेक्ट्रोड पर समाप्त होने वाली [[ विद्युतीय फ्लक्स ]] लाइनों के तात्कालिक परिवर्तन के कारण होती है, न कि इलेक्ट्रोड प्रति सेकंड (शुद्ध चार्ज फ्लो रेट) द्वारा प्राप्त चार्ज की मात्रा के कारण।
विकिरण डिटेक्टर में मोबाइल आवेश के प्रभाव को समझने के लिए शॉक्ले और रेमो दोनों के योगदान को पहचानने के लिए। प्रमेय [[विलियम शॉक्ले]] के 1938 के पेपर में दिखाई दिया, जिसका शीर्षक कंडक्टरों को करंट  गतिमान बिंदु द्वारा इंगित किया गया चार्ज था।<ref>{{cite journal|doi=10.1063/1.1710367|title=मूविंग पॉइंट चार्ज द्वारा प्रेरित कंडक्टरों की धाराएँ|year=1938|last1=Shockley|first1=W.|journal=Journal of Applied Physics|volume=9|issue=10|pages=635–636|bibcode = 1938JAP.....9..635S }}</ref> और साइमन रेमो के 1939 के पेपर में इलेक्ट्रॉन मोशन द्वारा करंट्स इंड्यूस्ड शीर्षक से लिया गया था।<ref>{{cite journal|doi=10.1109/JRPROC.1939.228757|title=इलेक्ट्रॉन गति द्वारा प्रेरित धाराएँ|year=1939|last1=Ramo|first1=S.|journal=Proceedings of the IRE|volume=27|issue=9|pages=584–585|s2cid=51657875}}</ref>
 
 
 
 
 
यह इस अवधारणा पर आधारित है कि इलेक्ट्रोड में प्रेरित धारा इलेक्ट्रोड पर समाप्त होने वाली [[ विद्युतीय फ्लक्स | विद्युतीय फ्लक्स]] लाइनों के तात्कालिक परिवर्तन के कारण होती है, न कि इलेक्ट्रोड प्रति सेकंड (शुद्ध चार्ज फ्लो रेट) द्वारा प्राप्त चार्ज की मात्रा के कारण।


शॉक्ले-रेमो प्रमेय बताता है कि तात्कालिक धारा <math>i</math> आवेश की गति के कारण दिए गए इलेक्ट्रोड पर प्रेरित निम्न द्वारा दिया जाता है:
शॉक्ले-रेमो प्रमेय बताता है कि तात्कालिक धारा <math>i</math> आवेश की गति के कारण दिए गए इलेक्ट्रोड पर प्रेरित निम्न द्वारा दिया जाता है:


:<math> i = E_v q v </math>
:<math> i = E_v q v </math>
कहाँ
जहाँ


:<math>q</math> [[कण]] का आवेश है;
:<math>q</math> [[कण]] का आवेश है;
Line 19: Line 25:
:<math>v</math> इसका तात्कालिक [[वेग]] है; और
:<math>v</math> इसका तात्कालिक [[वेग]] है; और


:<math>E_v</math> की दिशा में [[विद्युत क्षेत्र]] का घटक है <math>v</math> आवेश की तात्क्षणिक स्थिति में, निम्नलिखित शर्तों के तहत: आवेश हटा दिया जाता है, इलेक्ट्रोड को इकाई क्षमता तक बढ़ा दिया जाता है, और अन्य सभी कंडक्टर ग्राउंडेड हो जाते हैं।
:<math>E_v</math> की दिशा में [[विद्युत क्षेत्र]] का घटक है <math>v</math> आवेश की तात्क्षणिक स्थिति में, निम्नलिखित शर्तों के अंतर्गत: आवेश हटा दिया जाता है, इलेक्ट्रोड को इकाई क्षमता तक बढ़ा दिया जाता है, और अन्य सभी कंडक्टर ग्राउंडेड हो जाते हैं।
 
प्रमेय को [[सेमीकंडक्टर डिटेक्टर]] सहित विभिन्न प्रकार के अनुप्रयोगों और क्षेत्रों में प्रयुक्त किया गया है<ref>{{cite journal|url=https://cztlab.engin.umich.edu/wp-content/uploads/sites/187/2015/03/ShockleyRamo.pdf|title=Review of the Shockley–Ramo theorem and its application in semiconductor gamma-ray detectors|doi=10.1016/S0168-9002(01)00223-6|bibcode=2001NIMPA.463..250H|year=2001|last1=He|first1=Z|journal=Nuclear Instruments and Methods in Physics Research Section A|volume=463|issue=1–2|pages=250–267}}</ref> [[प्रोटीन]] में आवेश मूवमेंट की गणना<ref>{{cite journal|doi=10.1007/s10825-006-0130-6|title=शॉकले-रेमो प्रमेय आयन चैनल और प्रोटीन के परिवर्तन को मापता है|year=2007|last1=Eisenberg|first1=Bob|last2=Nonner|first2=Wolfgang|journal=Journal of Computational Electronics|volume=6|issue=1–3|pages=363–365|s2cid=52236338}}</ref> या [[मास स्पेक्ट्रोमेट्री]] के लिए निर्वात में गतिमान आयनों का पता लगाना<ref>{{Cite journal |last=Jarrold |first=Martin F. |date=2022-04-27 |title=आणविक जीव विज्ञान और जैव प्रौद्योगिकी में चार्ज डिटेक्शन मास स्पेक्ट्रोमेट्री के अनुप्रयोग|url=https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00377 |journal=Chemical Reviews |language=en |volume=122 |issue=8 |pages=7415–7441 |doi=10.1021/acs.chemrev.1c00377 |issn=0009-2665}}</ref> या [[आयन आरोपण|आयन आरोपण होता है]]।<ref>{{Cite journal |last=Räcke |first=Paul |last2=Spemann |first2=Daniel |last3=Gerlach |first3=Jürgen W. |last4=Rauschenbach |first4=Bernd |last5=Meijer |first5=Jan |date=2018-06-28 |title=छवि आवेशों का उपयोग करके आयनों के छोटे गुच्छों का पता लगाना|url=https://www.nature.com/articles/s41598-018-28167-6 |journal=Scientific Reports |language=en |volume=8 |issue=1 |pages=9781 |doi=10.1038/s41598-018-28167-6 |issn=2045-2322}}</ref>


प्रमेय को [[सेमीकंडक्टर डिटेक्टर]] सहित विभिन्न प्रकार के अनुप्रयोगों और क्षेत्रों में लागू किया गया है,<ref>{{cite journal|url=https://cztlab.engin.umich.edu/wp-content/uploads/sites/187/2015/03/ShockleyRamo.pdf|title=Review of the Shockley–Ramo theorem and its application in semiconductor gamma-ray detectors|doi=10.1016/S0168-9002(01)00223-6|bibcode=2001NIMPA.463..250H|year=2001|last1=He|first1=Z|journal=Nuclear Instruments and Methods in Physics Research Section A|volume=463|issue=1–2|pages=250–267}}</ref> [[प्रोटीन]] में चार्ज मूवमेंट की गणना।<ref>{{cite journal|doi=10.1007/s10825-006-0130-6|title=शॉकले-रेमो प्रमेय आयन चैनल और प्रोटीन के परिवर्तन को मापता है|year=2007|last1=Eisenberg|first1=Bob|last2=Nonner|first2=Wolfgang|journal=Journal of Computational Electronics|volume=6|issue=1–3|pages=363–365|s2cid=52236338}}</ref>, या [[मास स्पेक्ट्रोमेट्री]] के लिए निर्वात में गतिमान आयनों का पता लगाना<ref>{{Cite journal |last=Jarrold |first=Martin F. |date=2022-04-27 |title=आणविक जीव विज्ञान और जैव प्रौद्योगिकी में चार्ज डिटेक्शन मास स्पेक्ट्रोमेट्री के अनुप्रयोग|url=https://pubs.acs.org/doi/10.1021/acs.chemrev.1c00377 |journal=Chemical Reviews |language=en |volume=122 |issue=8 |pages=7415–7441 |doi=10.1021/acs.chemrev.1c00377 |issn=0009-2665}}</ref> या [[आयन आरोपण]]।<ref>{{Cite journal |last=Räcke |first=Paul |last2=Spemann |first2=Daniel |last3=Gerlach |first3=Jürgen W. |last4=Rauschenbach |first4=Bernd |last5=Meijer |first5=Jan |date=2018-06-28 |title=छवि आवेशों का उपयोग करके आयनों के छोटे गुच्छों का पता लगाना|url=https://www.nature.com/articles/s41598-018-28167-6 |journal=Scientific Reports |language=en |volume=8 |issue=1 |pages=9781 |doi=10.1038/s41598-018-28167-6 |issn=2045-2322}}</ref>




Line 32: Line 39:
* [http://www-physics.lbl.gov/~spieler/physics_198_notes_1999/ Introduction to Radiation Detectors and Electronics] – Lecture Notes by Helmuth Spieler which briefly discuss Ramo's Theorem.
* [http://www-physics.lbl.gov/~spieler/physics_198_notes_1999/ Introduction to Radiation Detectors and Electronics] – Lecture Notes by Helmuth Spieler which briefly discuss Ramo's Theorem.


{{DEFAULTSORT:Shockley-Ramo theorem}}[[Category: भौतिकी प्रमेय]] [[Category: विद्युत चुंबकत्व]]
{{DEFAULTSORT:Shockley-Ramo theorem}}
 
 


[[Category: Machine Translated Page]]
[[Category:CS1 English-language sources (en)]]
[[Category:Created On 11/06/2023]]
[[Category:Created On 11/06/2023|Shockley-Ramo theorem]]
[[Category:Machine Translated Page|Shockley-Ramo theorem]]
[[Category:Pages with script errors|Shockley-Ramo theorem]]
[[Category:Templates Vigyan Ready]]
[[Category:भौतिकी प्रमेय|Shockley-Ramo theorem]]
[[Category:विद्युत चुंबकत्व|Shockley-Ramo theorem]]

Latest revision as of 17:01, 19 June 2023

शॉक्ले-रेमो प्रमेय इलेक्ट्रोड के आसपास के क्षेत्र में चलने वाले विद्युत् का आवेश द्वारा प्रेरित विद्युत प्रवाह की गणना करने की विधि है। पहले केवल रेमो प्रमेय नाम दिया गया था,

संशोधित नाम डीएस मैकग्रेगर एट अल द्वारा 1998 में प्रस्तुत किया गया था।[1]

विकिरण डिटेक्टर में मोबाइल आवेश के प्रभाव को समझने के लिए शॉक्ले और रेमो दोनों के योगदान को पहचानने के लिए। प्रमेय विलियम शॉक्ले के 1938 के पेपर में दिखाई दिया, जिसका शीर्षक कंडक्टरों को करंट गतिमान बिंदु द्वारा इंगित किया गया चार्ज था।[2] और साइमन रेमो के 1939 के पेपर में इलेक्ट्रॉन मोशन द्वारा करंट्स इंड्यूस्ड शीर्षक से लिया गया था।[3]



यह इस अवधारणा पर आधारित है कि इलेक्ट्रोड में प्रेरित धारा इलेक्ट्रोड पर समाप्त होने वाली विद्युतीय फ्लक्स लाइनों के तात्कालिक परिवर्तन के कारण होती है, न कि इलेक्ट्रोड प्रति सेकंड (शुद्ध चार्ज फ्लो रेट) द्वारा प्राप्त चार्ज की मात्रा के कारण।

शॉक्ले-रेमो प्रमेय बताता है कि तात्कालिक धारा आवेश की गति के कारण दिए गए इलेक्ट्रोड पर प्रेरित निम्न द्वारा दिया जाता है:

जहाँ

कण का आवेश है;
इसका तात्कालिक वेग है; और
की दिशा में विद्युत क्षेत्र का घटक है आवेश की तात्क्षणिक स्थिति में, निम्नलिखित शर्तों के अंतर्गत: आवेश हटा दिया जाता है, इलेक्ट्रोड को इकाई क्षमता तक बढ़ा दिया जाता है, और अन्य सभी कंडक्टर ग्राउंडेड हो जाते हैं।

प्रमेय को सेमीकंडक्टर डिटेक्टर सहित विभिन्न प्रकार के अनुप्रयोगों और क्षेत्रों में प्रयुक्त किया गया है[4] प्रोटीन में आवेश मूवमेंट की गणना[5] या मास स्पेक्ट्रोमेट्री के लिए निर्वात में गतिमान आयनों का पता लगाना[6] या आयन आरोपण होता है[7]


संदर्भ

  1. McGregor, D.S.; He, Z.; Seifert, H.A.; Wehe, D.K.; Rojeski, R.A. (1998). "CdZnTe semiconductor parallel strip Frisch grid radiation detectors". IEEE Trans. Nuclear Sci. 45 (3): 443–449. Bibcode:1998ITNS...45..443M. doi:10.1109/23.682424.
  2. Shockley, W. (1938). "मूविंग पॉइंट चार्ज द्वारा प्रेरित कंडक्टरों की धाराएँ". Journal of Applied Physics. 9 (10): 635–636. Bibcode:1938JAP.....9..635S. doi:10.1063/1.1710367.
  3. Ramo, S. (1939). "इलेक्ट्रॉन गति द्वारा प्रेरित धाराएँ". Proceedings of the IRE. 27 (9): 584–585. doi:10.1109/JRPROC.1939.228757. S2CID 51657875.
  4. He, Z (2001). "Review of the Shockley–Ramo theorem and its application in semiconductor gamma-ray detectors" (PDF). Nuclear Instruments and Methods in Physics Research Section A. 463 (1–2): 250–267. Bibcode:2001NIMPA.463..250H. doi:10.1016/S0168-9002(01)00223-6.
  5. Eisenberg, Bob; Nonner, Wolfgang (2007). "शॉकले-रेमो प्रमेय आयन चैनल और प्रोटीन के परिवर्तन को मापता है". Journal of Computational Electronics. 6 (1–3): 363–365. doi:10.1007/s10825-006-0130-6. S2CID 52236338.
  6. Jarrold, Martin F. (2022-04-27). "आणविक जीव विज्ञान और जैव प्रौद्योगिकी में चार्ज डिटेक्शन मास स्पेक्ट्रोमेट्री के अनुप्रयोग". Chemical Reviews (in English). 122 (8): 7415–7441. doi:10.1021/acs.chemrev.1c00377. ISSN 0009-2665.
  7. Räcke, Paul; Spemann, Daniel; Gerlach, Jürgen W.; Rauschenbach, Bernd; Meijer, Jan (2018-06-28). "छवि आवेशों का उपयोग करके आयनों के छोटे गुच्छों का पता लगाना". Scientific Reports (in English). 8 (1): 9781. doi:10.1038/s41598-018-28167-6. ISSN 2045-2322.


बाहरी संबंध