सुरक्षित संचालन क्षेत्र: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 46: Line 46:
* [https://web.archive.org/web/20120415072919/http://www.cirrus.com/en/pubs/training/apex_tech_sem/SafeOperatingArea.pdf Apex technical document on operating power opamps within एसओए]
* [https://web.archive.org/web/20120415072919/http://www.cirrus.com/en/pubs/training/apex_tech_sem/SafeOperatingArea.pdf Apex technical document on operating power opamps within एसओए]


{{DEFAULTSORT:Safe Operating Area}}[[Category: बिजली के इलेक्ट्रॉनिक्स]] [[Category: इलेक्ट्रॉनिक यन्त्रशास्त्र]]
{{DEFAULTSORT:Safe Operating Area}}


 
[[Category:Created On 11/06/2023|Safe Operating Area]]
 
[[Category:Lua-based templates|Safe Operating Area]]
[[Category: Machine Translated Page]]
[[Category:Machine Translated Page|Safe Operating Area]]
[[Category:Created On 11/06/2023]]
[[Category:Pages with script errors|Safe Operating Area]]
[[Category:Templates Vigyan Ready|Safe Operating Area]]
[[Category:Templates that add a tracking category|Safe Operating Area]]
[[Category:Templates that generate short descriptions|Safe Operating Area]]
[[Category:Templates using TemplateData|Safe Operating Area]]
[[Category:इलेक्ट्रॉनिक यन्त्रशास्त्र|Safe Operating Area]]
[[Category:बिजली के इलेक्ट्रॉनिक्स|Safe Operating Area]]

Latest revision as of 20:05, 19 June 2023

विद्युत् अर्धचालक उपकरणों (जैसे बीजेटी, मोसफेट, थाइरिस्टर या आईजीबीटी) के लिए, सुरक्षित संचालन क्षेत्र (एसओए) को वोल्टेज और धारा (विद्युत् ) की स्थिति के रूप में परिभाषित किया जाता है जिस पर उपकरण को स्व-क्षति के बिना संचालित करने की उम्मीद की जा सकती है।[1]

एसओए को सामान्यतः VCE के साथ ग्राफ के रूप में ट्रांजिस्टर डेटा शीट में प्रस्तुत किया जाता है (कलेक्टर-एमिटर वोल्टेज) सूच्याकार आकृति का भुज और ICE पर (कलेक्टर-एमिटर धारा ) तालमेल पर; सुरक्षित 'क्षेत्र' वक्र के अंतर्गत क्षेत्र को संदर्भित करता है। एसओए विनिर्देश उपकरण की विभिन्न सीमाओं - अधिकतम वोल्टेज धारा, पावर, जंक्शन तापमान, सेकेंडरी ब्रेकडाउन - को एक कर्व में जोड़ता है, जिससे सुरक्षा परिपथ के सरलीकृत डिज़ाइन की अनुमति मिलती है।

बाइपोलर विद्युत् ट्रांजिस्टर के सुरक्षित संचालन क्षेत्र का चित्रण। लाइन के नीचे कलेक्टर धारा और वोल्टेज के किसी भी संयोजन को ट्रांजिस्टर द्वारा सहन किया जा सकता है।

अधिकांशतः निरंतर रेटिंग के अतिरिक्त अलग एसओए कर्व भी छोटी अवधि की पल्स स्थितियों (1 ms पल्स, 10 ms पल्स, आदि) के लिए प्लॉट किए जाते हैं।

सुरक्षित परिचालन क्षेत्र वक्र विभिन्न परिस्थितियों में उपकरण की विद्युत् हैंडलिंग क्षमता का ग्राफिकल प्रतिनिधित्व है। एसओए वक्र वायर बॉन्ड धारा वहन क्षमता, ट्रांजिस्टर जंक्शन तापमान, आंतरिक शक्ति अपव्यय और द्वितीयक ब्रेकडाउन सीमाओं को ध्यान में रखता है।

सुरक्षित संचालन क्षेत्र की सीमाएं

जहाँ धारा और वोल्टेज दोनों को लघुगणकीय मापदंड पर प्लॉट किया जाता है, एसओए की सीमाएँ सीधी रेखाएँ होती हैं:

  1. IC = ICअधिकतम - वर्तमान सीमा
  2. VCE = VCE अधिकतम - वोल्टेज सीमा
  3. IC VCE =पीएमएक्स - अपव्यय सीमा, थर्मल ब्रेकडाउन
  4. IC VCEα = कॉन्स्ट — यह सेकेंडरी ब्रेकडाउन द्वारा दी गई सीमा है (केवल बाइपोलर जंक्शन ट्रांजिस्टर)

एसओए विनिर्देश एम्पलीफायर और विद्युत् आपूर्ति जैसे विद्युत् परिपथ पर काम करने वाले डिज़ाइन इंजीनियर के लिए उपयोगी होते हैं क्योंकि वे उपकरण के प्रदर्शन की सीमाओं का त्वरित मूल्यांकन उपयुक्त सुरक्षा परिपथ के डिज़ाइन या अधिक सक्षम उपकरण के चयन की अनुमति देते हैं। फ़ोल्डबैक (विद्युत् आपूर्ति डिज़ाइन) परिपथ के डिज़ाइन में एसओए वक्र भी महत्वपूर्ण हैं।

सेकेंडरी ब्रेकडाउन

एक उपकरण के लिए जो द्वितीयक ब्रेकडाउन प्रभाव का उपयोग करता है हिमस्खलन ट्रांजिस्टर देखें

'द्वितीयक ब्रेकडाउन' बाइपोलर विद्युत् ट्रांजिस्टर में एक विफलता मोड है। एक बड़े जंक्शन क्षेत्र के साथ एक विद्युत् ट्रांजिस्टर में धारा और वोल्टेज की कुछ नियमो के तहत बेस-एमिटर जंक्शन के एक छोटे से स्थान पर धारा केंद्रित होता है। यह स्थानीय तापन का कारण बनता है, जो संग्राहक और उत्सर्जक के बीच एक शॉर्ट में प्रगति करता है। यह अधिकांशतः ट्रांजिस्टर के विनाश की ओर ले जाता है। सेकेंडरी ब्रेकडाउन फॉरवर्ड और रिवर्स बेस ड्राइव दोनों के साथ हो सकता है।[2] कम कलेक्टर-एमिटर वोल्टेज को छोड़कर, द्वितीयक ब्रेकडाउन सीमा उपकरण के स्थिर-स्थित विद्युत् अपव्यय की तुलना में कलेक्टर वर्तमान को अधिक प्रतिबंधित करती है।[3] पुराने विद्युत् एमओएसएफईटी ने माध्यमिक ब्रेकडाउन का प्रदर्शन नहीं किया, उनके सुरक्षित संचालन क्षेत्र को केवल अधिकतम वर्तमान (बॉन्डिंग तारों की क्षमता), अधिकतम विद्युत् अपव्यय और अधिकतम वोल्टेज द्वारा सीमित किया गया। जैसा कि अगले भाग में विस्तार से बताया गया है, वर्तमान ही के उपकरणों में यह बदल गया है।[4] चूँकि विद्युत् एमओएसएफईटी में संरचना के अंदर परजीवी पीएन और बीजेटी तत्व होते हैं, जो द्वितीयक ब्रेकडाउन जैसी अधिक जटिल स्थानीयकृत विफलता मोड का कारण बन सकते हैं।

रैखिक मोड में मोसफेट थर्मल रनवे

अपने प्रारंभिक इतिहास में, मोसफेट द्वितीयक ब्रेकडाउन की अनुपस्थिति के लिए जाने जाते हैं। यह लाभ इस तथ्य के कारण था कि बढ़ते तापमान के साथ ऑन-रेसिस्टेंस बढ़ता है, इसलिए मोसफेट का वह भाग जो गर्म चल रहा है (जैसे डाई-अटैचमेंट, आदि में अनियमितताओं के कारण) कम वर्तमान घनत्व ले जाएगा, यहां तक ​​​​कि प्रवृत्त किसी भी तापमान भिन्नता को दूर करें और गर्म स्थानों को रोकें वर्तमान ही में स्विचिंग ऑपरेशन के लिए अनुकूलित बहुत उच्च ट्रांसकंडक्टेंस वाले एमओएसएफईटी उपलब्ध हो गए हैं। जब रैखिक मोड में संचालित किया जाता है विशेष रूप से उच्च नाली-स्रोत वोल्टेज और कम नाली धाराओं पर गेट-स्रोत वोल्टेज थ्रेसहोल्ड वोल्टेज के बहुत समीप होता है। दुर्भाग्य से तापमान बढ़ने पर थ्रेशोल्ड वोल्टेज कम हो जाता है जिससे अगर चिप में कोई सामान्य तापमान भिन्नता हो, तो गर्म क्षेत्र ठंडे क्षेत्रों की तुलना में अधिक धारा ले जाएगा, जब वीजीएस Vth के बहुत समीप है। यह थर्मल पलायन और एमओएसएफईटी के विनाश का कारण बन सकता है, तथापि यह अपने वीडीएस, आईडी और पीडी रेटिंग के अंदर काम कर रहा हो।[5][6] कुछ (सामान्यतः मूल्यवान ) मोसफेट को रैखिक क्षेत्र में संचालन के लिए निर्दिष्ट किया जाता है और इसमें डीसी एसओए आरेख सम्मिलित होते हैं उदा। आईएक्सवाईएस IXTK8N150L।[7]

रिवर्स बायस सुरक्षित ऑपरेटिंग क्षेत्र

अल्पसंख्यक वाहक संचयन समय और समाई जैसे प्रभावों के कारण ट्रांजिस्टर को बंद करने के लिए कुछ समय की आवश्यकता होती है। बंद करते समय वे इस आधार पर क्षतिग्रस्त हो सकते हैं कि लोड कैसे प्रतिक्रिया करता है (विशेषकर खराब स्नबर इंडक्टिव लोड के साथ) रिवर्स बायस सेफ ऑपरेटिंग क्षेत्र (या आरबीएसओए) उपकरण को ऑफ स्टेट में बदलने से पहले संक्षिप्त समय के समय एसओए है - कम समय के समय जब बेस धारा बायस विपरीत हो जाता है। जब तक कलेक्टर वोल्टेज और कलेक्टर धारा पूरे टर्नऑफ़ के समय आरबी एसओए के अंदर रहता है तब तक ट्रांजिस्टर अक्षतिग्रस्त रहेगा। सामान्यतः आरबीएसओए को विभिन्न प्रकार की टर्न-ऑफ स्थितियों के लिए निर्दिष्ट किया जाएगा जैसे एमिटर को बेस को छोटा करना किंतु तेजी से टर्न-ऑफ प्रोटोकॉल जहां बेस-एमिटर वोल्टेज पूर्वाग्रह को विपरीत हो दिया जाता है।

आरबीएसओए सामान्य एसओए की तुलना में अलग निर्भरता दिखाता है। उदाहरण के लिए आईजीबीटी में आरबीएसओए के उच्च-वर्तमान उच्च-वोल्टेज कोने को काट दिया जाता है जब संग्राहक वोल्टेज बहुत तेज़ी से बढ़ता है।[8] चूंकि आरबीएसओए एक बहुत ही संक्षिप्त टर्न-ऑफ प्रक्रिया से जुड़ा है, यह निरंतर विद्युत् अपव्यय सीमा से बाधित नहीं है।

सामान्य सुरक्षित संचालन क्षेत्र (जब उपकरण चालू अवस्था में हो) को आगे बायस सुरक्षित परिचालन क्षेत्र (या एफबीएसओए) के रूप में संदर्भित किया जा सकता है जब इसे आरबी एसओए के साथ भ्रमित करना संभव हो।

सुरक्षा

द्विध्रुवी जंक्शन ट्रांजिस्टर के साथ उपयोग किए जाने वाले एसओए सुरक्षा का सबसे सामान्य रूप कलेक्टर-एमिटर धारा को कम-मूल्य श्रृंखला अवरोधक के साथ अनुभव करता है। इस प्रतिरोध में वोल्टेज को एक छोटे सहायक ट्रांजिस्टर पर प्रयुक्त किया जाता है जो उत्तरोत्तर विद्युत उपकरण से 'बेस करंट' चुराता है क्योंकि यह अतिरिक्त कलेक्टर धारा पास करता है।

सुरक्षा की एक अन्य शैली ट्रांजिस्टर के बाहर के तापमान को जंक्शन तापमान के अनुमान के रूप में मापना है और उपकरण को ड्राइव कम करना या तापमान बहुत अधिक होने पर इसे बंद करना है। यदि समानांतर में कई ट्रांजिस्टर का उपयोग किया जाता है तो सभी समानांतर उपकरणों की सुरक्षा के लिए केस तापमान के लिए केवल कुछ की निगरानी की जानी चाहिए।

यह दृष्टिकोण प्रभावी है किंतु बुलेट प्रमाण नहीं है। व्यवहार में एक सुरक्षा परिपथ को डिजाइन करना बहुत कठिन है जो सभी परिस्थितियों में काम करेगा और यह डिजाइन इंजीनियर पर छोड़ दिया जाता है कि वह सुरक्षा की जटिलता और निवेश के विरुद्ध संभावित गलती की स्थिति का वजन करता है ।

यह भी देखें

  • व्युत्पन्न

संदर्भ

  1. Tim Williams ,The circuit designer's companion 2nd ed.,Butterworth-Heinemann, 2004 ISBN 0-7506-6370-7, pp.129-130
  2. L.W. Turner,(ed), Electronics Engineer's Reference Book, 4th ed. Newnes-Butterworth, London 1976 ISBN 0408001682, pages 8-45 and 8-46
  3. SANYO Semiconductor Co., Ltd., Area of Safe Operation
  4. Paul Horowitz and Winfield Hill, The Art of Electronics 2nd Ed. Cambridge University Press, Cambridge, 1989 ISBN 0-521-37095-7 page 321
  5. International Rectifier Application Note AN-1155
  6. NXP AN11158
  7. Discussion of MOSFET SOA (in German)
  8. M. H. Rashid , Power electronics handbook, Academic Press, 2001, ISBN 0-12-581650-2, pp 108-109