वानियर कार्य: Difference between revisions
m (Abhishek moved page वानियर समारोह to वानियर कार्य without leaving a redirect) |
No edit summary |
||
(4 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
[[Image:N2 Wannier.png|thumb|upright=0.85|पैलेडियम नाइट्राइड में ट्रिपल- और सिंगल-बॉन्डेड नाइट्रोजन डिमर के वानियर कार्य।]]वानियर | [[Image:N2 Wannier.png|thumb|upright=0.85|पैलेडियम नाइट्राइड में ट्रिपल- और सिंगल-बॉन्डेड नाइट्रोजन डिमर के वानियर कार्य।]]वानियर कार्य ठोस-अवस्था भौतिकी में उपयोग किए जाने वाले [[ऑर्थोगोनल फ़ंक्शन|ऑर्थोगोनल]] कार्य का पूरा समूह है। उन्हें 1937 में [[ ग्रेगरी वन्नियर |ग्रेगरी वन्नियर]] द्वारा प्रस्तुत किया गया था।<ref name=Wannier1937>{{cite journal | doi = 10.1103/PhysRev.52.191 | volume=52 | issue=3 | title=इंसुलेटिंग क्रिस्टल में इलेक्ट्रॉनिक उत्तेजना स्तरों की संरचना| year=1937 | journal=Physical Review | pages=191–197 | author=Wannier Gregory H| bibcode=1937PhRv...52..191W }}</ref><ref name=Wannier1962>{{cite journal | last=Wannier | first=Gregory H. | title=विद्युत और चुंबकीय क्षेत्रों में बैंड इलेक्ट्रॉनों की गतिशीलता| journal=Reviews of Modern Physics | publisher=American Physical Society (APS) | volume=34 | issue=4 | date=1 September 1962 | issn=0034-6861 | doi=10.1103/revmodphys.34.645 | pages=645–655 | bibcode=1962RvMP...34..645W}}</ref> वेनियर कार्य [[क्रिस्टल]] प्रणाली के [[स्थानीयकृत आणविक ऑर्बिटल्स]] हैं। | ||
एक क्रिस्टल में विभिन्न जालक स्थलों के लिए वानियर कार्य ऑर्थोगोनल हैं जो कुछ व्यवस्थाओं में [[इलेक्ट्रॉन]] अवस्थाओ के विस्तार के लिए | एक क्रिस्टल में विभिन्न जालक स्थलों के लिए वानियर कार्य ऑर्थोगोनल हैं जो कुछ व्यवस्थाओं में [[इलेक्ट्रॉन]] अवस्थाओ के विस्तार के लिए सुविधाजनक आधार की अनुमति देता है। वेनियर कार्य का व्यापक उपयोग पाया गया है, उदाहरण के लिए इलेक्ट्रॉनों पर कार्य करने वाली बाध्यकारी शक्तियों के विश्लेषण में; 2006 में इंसुलेटर में घातीय कार्यात्मक रूप से स्थानीयकृत वानियर कार्यों का अस्तित्व सिद्ध हुआ था।<ref name=Arxiv-Localization>{{cite journal | last1=Brouder | first1=Christian | last2=Panati | first2=Gianluca | last3=Calandra | first3=Matteo | last4=Mourougane | first4=Christophe | last5=Marzari | first5=Nicola | title=इंसुलेटर में वानियर कार्यों का घातीय स्थानीयकरण| journal=Physical Review Letters | publisher=American Physical Society (APS) | volume=98 | issue=4 | date=25 January 2007 | issn=0031-9007 | doi=10.1103/physrevlett.98.046402 | page=046402| pmid=17358792 |arxiv=cond-mat/0606726| bibcode=2007PhRvL..98d6402B | s2cid=32812449 }}</ref> विशेष रूप से इन कार्यों का उपयोग एक्सिटन्स और संघनित रिडबर्ग पदार्थ के विश्लेषण में भी किया जाता है। | ||
== परिभाषा == | == परिभाषा == | ||
[[Image:WanF-BaTiO3.png|upright=1.2|thumb|बेरियम टाइटेनेट (BaTiO3) में टाइटेनियम के स्थानीयकृत वेनियर | [[Image:WanF-BaTiO3.png|upright=1.2|thumb|बेरियम टाइटेनेट (BaTiO3) में टाइटेनियम के स्थानीयकृत वेनियर कार्य का उदाहरण]]चूँकि स्थानीयकृत आणविक कक्षाओं की तरह वानियर कार्यों को कई अलग-अलग विधियों से चुना जा सकता है,<ref>[http://www.psi-k.org/newsletters/News_57/Highlight_57.pdf Marzari ''et al.'': An Introduction to Maximally-Localized Wannier Functions]</ref> मूल,<ref name=Wannier1937/>ठोस-अवस्था भौतिकी में सबसे सरल और सबसे समान्य परिभाषा इस प्रकार है। पूर्ण क्रिस्टल में एकल [[इलेक्ट्रॉनिक बैंड संरचना]] चुनें और इसके [[बलोच राज्य|बलोच]] अवस्थाओ को निरूपित करें | ||
:<math>\psi_{\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_\mathbf{k}(\mathbf{r})</math> | :<math>\psi_{\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_\mathbf{k}(\mathbf{r})</math> | ||
जहां | जहां ''u''<sub>'''k'''</sub>('''r''') का आवर्तकाल क्रिस्टल के समान होता है। तब वानियर कार्यों द्वारा परिभाषित किया गया है | ||
:<math>\phi_{\mathbf{R}}(\mathbf{r}) = \frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{-i\mathbf{k}\cdot\mathbf{R}} \psi_{\mathbf{k}}(\mathbf{r})</math>, | :<math>\phi_{\mathbf{R}}(\mathbf{r}) = \frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{-i\mathbf{k}\cdot\mathbf{R}} \psi_{\mathbf{k}}(\mathbf{r})</math>, | ||
जहाँ | जहाँ | ||
* '''R''' कोई जाली वेक्टर है (जिससे प्रत्येक [[ब्रावाइस जाली]] के लिए | * '''R''' कोई जाली वेक्टर है (जिससे प्रत्येक [[ब्रावाइस जाली]] के लिए वानियर कार्य है); | ||
* ''N'' क्रिस्टल में [[आदिम कोशिका]]ओं की संख्या है; | * ''N'' क्रिस्टल में [[आदिम कोशिका]]ओं की संख्या है; | ||
* K पर योग में ब्रिलौइन ज़ोन (या [[पारस्परिक जाली]] के किसी अन्य आदिम सेल) में k के सभी मान सम्मिलित हैं जो क्रिस्टल पर आवधिक सीमा स्थितियों के अनुरूप हैं। इसमें 'N k के विभिन्न मान सम्मिलित हैं, जो ब्रिलौइन ज़ोन के माध्यम से समान रूप से फैले हुए हैं। चूंकि '''N''<nowiki/>' सामान्यतः बहुत बड़ा होता है | * K पर योग में ब्रिलौइन ज़ोन (या [[पारस्परिक जाली]] के किसी अन्य आदिम सेल) में k के सभी मान सम्मिलित हैं जो क्रिस्टल पर आवधिक सीमा स्थितियों के अनुरूप हैं। इसमें 'N k के विभिन्न मान सम्मिलित हैं, जो ब्रिलौइन ज़ोन के माध्यम से समान रूप से फैले हुए हैं। चूंकि '''N''<nowiki/>' सामान्यतः बहुत बड़ा होता है योग को प्रतिस्थापन नियम के अनुसार अभिन्न के रूप में लिखा जा सकता है: | ||
:<math>\sum_{\mathbf{k}} \longrightarrow \frac{N}{\Omega} \int_\text{BZ} d^3\mathbf{k}</math> | :<math>\sum_{\mathbf{k}} \longrightarrow \frac{N}{\Omega} \int_\text{BZ} d^3\mathbf{k}</math> | ||
जहां BZ ब्रिलौइन ज़ोन को दर्शाता है, जिसका आयतन Ω है। | जहां BZ ब्रिलौइन ज़ोन को दर्शाता है, जिसका आयतन Ω है। | ||
Line 21: | Line 21: | ||
* किसी भी जाली वेक्टर R' के लिए, | * किसी भी जाली वेक्टर R' के लिए, | ||
:<math>\phi_{\mathbf{R}}(\mathbf{r}) = \phi_{\mathbf{R}+\mathbf{R}'}(\mathbf{r}+\mathbf{R}')</math> | :<math>\phi_{\mathbf{R}}(\mathbf{r}) = \phi_{\mathbf{R}+\mathbf{R}'}(\mathbf{r}+\mathbf{R}')</math> | ||
दूसरे शब्दों में वानियर | दूसरे शब्दों में वानियर कार्य केवल मात्रा ('''r''' − '''R''') पर निर्भर करता है। परिणाम स्वरुप, इन कार्यों को अधिकांशतः वैकल्पिक संकेतन में लिखा जाता है | ||
:<math>\phi(\mathbf{r}-\mathbf{R}) := \phi_{\mathbf{R}}(\mathbf{r})</math> | :<math>\phi(\mathbf{r}-\mathbf{R}) := \phi_{\mathbf{R}}(\mathbf{r})</math> | ||
* बलोच कार्यों को वन्नियर कार्यों के संदर्भ में निम्नानुसार लिखा जा सकता है: | * बलोच कार्यों को वन्नियर कार्यों के संदर्भ में निम्नानुसार लिखा जा सकता है: | ||
Line 27: | Line 27: | ||
जहां योग क्रिस्टल में प्रत्येक जाली सदिश R के ऊपर है। | जहां योग क्रिस्टल में प्रत्येक जाली सदिश R के ऊपर है। | ||
* तरंग क्रिया का समूह <math>\phi_{\mathbf{R}}</math> विचाराधीन बैंड के लिए | * तरंग क्रिया का समूह <math>\phi_{\mathbf{R}}</math> विचाराधीन बैंड के लिए अलौकिक आधार है। | ||
:<math>\begin{align} | :<math>\begin{align} | ||
\int_\text{crystal} \phi_{\mathbf{R}}(\mathbf{r})^* \phi_{\mathbf{R'}}(\mathbf{r}) d^3\mathbf{r} & = \frac{1}{N} \sum_{\mathbf{k,k'}}\int_\text{crystal} e^{i\mathbf{k}\cdot\mathbf{R}} \psi_{\mathbf{k}}(\mathbf{r})^* e^{-i\mathbf{k'}\cdot\mathbf{R'}} \psi_{\mathbf{k'}}(\mathbf{r}) d^3\mathbf{r} \\ | \int_\text{crystal} \phi_{\mathbf{R}}(\mathbf{r})^* \phi_{\mathbf{R'}}(\mathbf{r}) d^3\mathbf{r} & = \frac{1}{N} \sum_{\mathbf{k,k'}}\int_\text{crystal} e^{i\mathbf{k}\cdot\mathbf{R}} \psi_{\mathbf{k}}(\mathbf{r})^* e^{-i\mathbf{k'}\cdot\mathbf{R'}} \psi_{\mathbf{k'}}(\mathbf{r}) d^3\mathbf{r} \\ | ||
Line 34: | Line 34: | ||
& =\delta_{\mathbf{R,R'}} | & =\delta_{\mathbf{R,R'}} | ||
\end{align} </math> | \end{align} </math> | ||
वानियर | वानियर कार्य को लगभग आवधिक क्षमता तक भी बढ़ाया गया है।<ref name=Kohn0>[http://www.physast.uga.edu/~mgeller/4.pdf MP Geller and W Kohn] ''Theory of generalized Wannier functions for nearly periodic potentials'' Physical Review B 48, 1993</ref> | ||
=== स्थानीयकरण === | === स्थानीयकरण === | ||
बलोच का कहना है कि | बलोच का कहना है कि ''ψ''<sub>'''k'''</sub>('''r''') को विशेष हैमिल्टनियन के ईजेनकार्य के रूप में परिभाषित किया गया है और इसलिए केवल समग्र चरण तक ही परिभाषित किया गया है। किसी भी (वास्तविक) कार्य ''θ''('''k''') के लिए कार्य ''ψ''<sub>'''k'''</sub>('''r''') में चरण परिवर्तन ''e<sup>iθ</sup>''<sup>('''k''')</sup> प्रयुक्त करने से, समान रूप से मान्य विकल्प पर पहुँचता है। जबकि बलोच स्थिति के गुणों के लिए परिवर्तन का कोई परिणाम नहीं है, इस परिवर्तन से संबंधित वानियर कार्य महत्वपूर्ण रूप से बदल गए हैं। | ||
इसलिए वनियर कार्यों का सबसे सुविधाजनक समूह देने के लिए बलोच स्थिति के चरणों को चुनने के लिए स्वतंत्रता का उपयोग किया जाता है। व्यवहार में, यह सामान्यतः अधिकतम-स्थानीयकृत समूह होता है जिसमें वानियर | इसलिए वनियर कार्यों का सबसे सुविधाजनक समूह देने के लिए बलोच स्थिति के चरणों को चुनने के लिए स्वतंत्रता का उपयोग किया जाता है। व्यवहार में, यह सामान्यतः अधिकतम-स्थानीयकृत समूह होता है जिसमें वानियर कार्य {{math|''ϕ''<sub>'''R'''</sub>}} बिंदु R के आसपास स्थानीयकृत होता है और तेज़ी से R से दूर शून्य हो जाता है। एक-आयामी स्थिति के लिए यह कोह्न द्वारा सिद्ध किया गया है<ref name="Kohn1">{{cite journal|doi=10.1103/PhysRev.115.809 | volume=115 | issue=4 | title=बलोच वेव्स और वेनियर फंक्शंस के विश्लेषणात्मक गुण| year=1959| journal=Physical Review | pages=809–821 | author=W. Kohn| bibcode=1959PhRv..115..809K}}</ref> कि वहाँ सदैव अनूठा विकल्प होता है जो इन गुणों को देता है (कुछ समरूपताओं के अधीन)। इसके परिणामस्वरूप उच्च आयामों में किसी भी वियोज्य क्षमता पर प्रयुक्त होता है; सामान्य स्थितियां स्थापित नहीं हैं और चल रहे शोध का विषय हैं।<ref name=Arxiv-Localization/> | ||
वानियर कार्यों को प्राप्त करने के लिए वर्तमान ही में | वानियर कार्यों को प्राप्त करने के लिए वर्तमान ही में पिपेक-मेज़ी शैली स्थानीयकरण योजना भी प्रस्तावित की गई है।<ref name="Jonsson2016">{{cite journal|doi=10.1021/acs.jctc.6b00809 | pmid=28099002 | volume=13 | issue=2 | title=Theory and Applications of Generalized Pipek–Mezey Wannier Functions | year=2017 | journal=Journal of Chemical Theory and Computation | pages=460–474 | author=Jónsson Elvar Ö., Lehtola Susi, Puska Martti, Jónsson Hannes| arxiv=1608.06396 | s2cid=206612913 }}</ref> अधिकतम स्थानीयकृत वेनियर कार्य के विपरीत (जो क्रिस्टलीय प्रणालियों के लिए फोस्टर-बॉयज़ योजना का अनुप्रयोग है) पिपेक-मेज़े वेनियर कार्य σ और π ऑर्बिटल्स को नहीं मिलाते हैं। | ||
==ध्रुवीकरण का आधुनिक सिद्धांत== | ==ध्रुवीकरण का आधुनिक सिद्धांत== | ||
वानियर | वानियर कार्य ने वर्तमान ही में क्रिस्टल में [[ध्रुवीकरण घनत्व]] का वर्णन करने में आवेदन पाया है, उदाहरण के लिए [[फेरोबिजली]] ध्रुवीकरण का आधुनिक सिद्धांत राफेल रेस्टा और डेविड वेंडरबिल्ट द्वारा अग्रणी है। उदाहरण के लिए देखें, बर्घोल्ड,<ref name=Berghold>{{cite journal | last1=Berghold | first1=Gerd | last2=Mundy | first2=Christopher J. | last3=Romero | first3=Aldo H. | last4=Hutter | first4=Jürg | last5=Parrinello | first5=Michele | title=अधिकतम स्थानीयकृत Wannier फ़ंक्शन प्राप्त करने के लिए सामान्य और कुशल एल्गोरिदम| journal=Physical Review B | publisher=American Physical Society (APS) | volume=61 | issue=15 | date=15 April 2000 | issn=0163-1829 | doi=10.1103/physrevb.61.10040 | pages=10040–10048| bibcode=2000PhRvB..6110040B }}</ref> और नख्मनसन,<ref name=Nakhmanson>{{cite journal | last1=Nakhmanson | first1=S. M. | last2=Calzolari | first2=A. | last3=Meunier | first3=V. | last4=Bernholc | first4=J. | last5=Buongiorno Nardelli | first5=M. | title=बोरॉन नाइट्राइड नैनोट्यूब में सहज ध्रुवीकरण और पीजोइलेक्ट्रिकिटी| journal=Physical Review B | volume=67 | issue=23 | date=10 June 2003 | issn=0163-1829 | doi=10.1103/physrevb.67.235406 | page=235406|arxiv=cond-mat/0305329v1| bibcode=2003PhRvB..67w5406N | s2cid=119345964 }}</ref> और वेंडरबिल्ट द्वारा पावर-प्वाइंट परिचय।<ref name=Vanderbilt>[http://www.physics.rutgers.edu/~dhv/talks/rahman.pdf D Vanderbilt] ''Berry phases and Curvatures in Electronic Structure Theory''.</ref> ठोस में प्रति ईकाई सेल ध्रुवीकरण को वानियर चार्ज घनत्व के द्विध्रुवीय पल के रूप में परिभाषित किया जा सकता है: | ||
:<math>\mathbf{p_c} = -e \sum_n \int\ d^3 r \,\, \mathbf{r} |W_n(\mathbf{r})|^2 \ , </math> | :<math>\mathbf{p_c} = -e \sum_n \int\ d^3 r \,\, \mathbf{r} |W_n(\mathbf{r})|^2 \ , </math> | ||
जहां योग अधिकृत वाले बैंड पर है, और डब्ल्यू<sub>n</sub>बैंड n के लिए सेल में स्थानीयकृत वानियर | जहां योग अधिकृत वाले बैंड पर है, और डब्ल्यू<sub>n</sub>बैंड n के लिए सेल में स्थानीयकृत वानियर कार्य है। निरंतर भौतिक प्रक्रिया के समय ध्रुवीकरण में परिवर्तन ध्रुवीकरण का समय व्युत्पन्न है और इसे अधिकृत वाले बलोच अवस्थाओ के [[बेरी चरण]] के संदर्भ में भी तैयार किया जा सकता है।<ref name=Bohm/><ref name=Resta>{{cite book |author=C. Pisani |title=क्रिस्टलीय सामग्री के गुणों की क्वांटम-मैकेनिकल एब-इनिटियो गणना|isbn=978-3-540-61645-0 |year=1994 |publisher=Springer |edition=Proceedings of the IV School of Computational Chemistry of the Italian Chemical Society |page=282 |url=https://books.google.com/books?id=5ak5TwSLreAC&dq=%22Berry+connection%22&pg=PA282}}</ref> | ||
जहां योग अधिकृत वाले बैंड पर है, और ''W<sub>n</sub>'' बैंड n के लिए सेल में स्थानीयकृत वानियर | जहां योग अधिकृत वाले बैंड पर है, और ''W<sub>n</sub>'' बैंड n के लिए सेल में स्थानीयकृत वानियर कार्य है। निरंतर भौतिक प्रक्रिया के समय ध्रुवीकरण में परिवर्तन ध्रुवीकरण का समय व्युत्पन्न है और इसे अधिकृत वाले बलोच स्थिति के बेरी चरण के संदर्भ में भी तैयार किया जा सकता है। | ||
== वानियर इंटरपोलेशन == | == वानियर इंटरपोलेशन == | ||
वानियर | वानियर कार्य का उपयोग अधिकांशतः 'k'-बिंदु के किसी मोटे ग्रिड पर किसी भी इच्छानुसार 'k'-बिंदु पर गणना किए गए बैंडस्ट्रक्चर को प्रक्षेपित करने के लिए किया जाता है। यह विशेष रूप से सघन ग्रिड पर ब्रिलौइन-ज़ोन इंटीग्रल के मूल्यांकन और वेइल बिंदु की खोज के लिए उपयोगी है, और 'के'-स्पेस में डेरिवेटिव भी ले रहा है। यह दृष्टिकोण टाइट बाइंडिंग या कनेक्शन टू वनियर कार्य सन्निकटन के समान है, किंतु इसके विपरीत निश्चित ऊर्जा सीमा में बैंड के स्पष्ट विवरण की अनुमति देता है। वर्णक्रमीय गुणों,<ref name="Yates Wang Vanderbilt Souza p.">{{cite journal | last1=Yates | first1=Jonathan R. | last2=Wang | first2=Xinjie | last3=Vanderbilt | first3=David | last4=Souza | first4=Ivo | title=वानियर इंटरपोलेशन से स्पेक्ट्रल और फर्मी सतह गुण| journal=Physical Review B | publisher=American Physical Society (APS) | volume=75 | issue=19 | date=2007-05-21 | page=195121 | issn=1098-0121 | doi=10.1103/physrevb.75.195121 | arxiv=cond-mat/0702554| bibcode=2007PhRvB..75s5121Y | s2cid=31224663 }}</ref> विषम हॉल चालकता,<ref name="Wang Yates Souza Vanderbilt p.">{{cite journal | last1=Wang | first1=Xinjie | last2=Yates | first2=Jonathan R. | last3=Souza | first3=Ivo | last4=Vanderbilt | first4=David | title=वानियर इंटरपोलेशन द्वारा विषम हॉल चालकता की प्रारंभिक गणना| journal=Physical Review B | volume=74 | issue=19 | date=2006-11-21 | page=195118 |arxiv=cond-mat/0608257| issn=1098-0121 | doi=10.1103/physrevb.74.195118 | bibcode=2006PhRvB..74s5118W | s2cid=30427871 }}</ref> कक्षीय चुंबकत्व, <ref name="Lopez Vanderbilt Thonhauser Souza p.">{{cite journal | last1=Lopez | first1=M. G. | last2=Vanderbilt | first2=David | last3=Thonhauser | first3=T. | last4=Souza | first4=Ivo | title=क्रिस्टल में कक्षीय चुंबकीयकरण की वानियर-आधारित गणना| journal=Physical Review B | volume=85 | issue=1 | date=2012-01-31 | page=014435 | issn=1098-0121 | doi=10.1103/physrevb.85.014435 | arxiv=1112.1938 | bibcode=2012PhRvB..85a4435L | s2cid=44056938 }}</ref> थर्मोइलेक्ट्रिक और इलेक्ट्रॉनिक परिवहन गुण, जाइरोट्रोपिक प्रभाव, शिफ्ट करंट, स्पिन हॉल चालकता के लिए वानियर इंटरपोलेशन योजनाएं प्राप्त की गई हैं। और अन्य प्रभाव है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 82: | Line 82: | ||
श्रेणी:संघनित पदार्थ भौतिकी | श्रेणी:संघनित पदार्थ भौतिकी | ||
[[Category:CS1 maint]] | |||
[[Category: | [[Category:Created On 11/06/2023|Wannier Function]] | ||
[[Category:Created On 11/06/2023]] | [[Category:Machine Translated Page|Wannier Function]] | ||
[[Category:Pages with script errors|Wannier Function]] | |||
[[Category:Templates Vigyan Ready|Wannier Function]] |
Latest revision as of 20:19, 19 June 2023
वानियर कार्य ठोस-अवस्था भौतिकी में उपयोग किए जाने वाले ऑर्थोगोनल कार्य का पूरा समूह है। उन्हें 1937 में ग्रेगरी वन्नियर द्वारा प्रस्तुत किया गया था।[1][2] वेनियर कार्य क्रिस्टल प्रणाली के स्थानीयकृत आणविक ऑर्बिटल्स हैं।
एक क्रिस्टल में विभिन्न जालक स्थलों के लिए वानियर कार्य ऑर्थोगोनल हैं जो कुछ व्यवस्थाओं में इलेक्ट्रॉन अवस्थाओ के विस्तार के लिए सुविधाजनक आधार की अनुमति देता है। वेनियर कार्य का व्यापक उपयोग पाया गया है, उदाहरण के लिए इलेक्ट्रॉनों पर कार्य करने वाली बाध्यकारी शक्तियों के विश्लेषण में; 2006 में इंसुलेटर में घातीय कार्यात्मक रूप से स्थानीयकृत वानियर कार्यों का अस्तित्व सिद्ध हुआ था।[3] विशेष रूप से इन कार्यों का उपयोग एक्सिटन्स और संघनित रिडबर्ग पदार्थ के विश्लेषण में भी किया जाता है।
परिभाषा
चूँकि स्थानीयकृत आणविक कक्षाओं की तरह वानियर कार्यों को कई अलग-अलग विधियों से चुना जा सकता है,[4] मूल,[1]ठोस-अवस्था भौतिकी में सबसे सरल और सबसे समान्य परिभाषा इस प्रकार है। पूर्ण क्रिस्टल में एकल इलेक्ट्रॉनिक बैंड संरचना चुनें और इसके बलोच अवस्थाओ को निरूपित करें
जहां uk(r) का आवर्तकाल क्रिस्टल के समान होता है। तब वानियर कार्यों द्वारा परिभाषित किया गया है
- ,
जहाँ
- R कोई जाली वेक्टर है (जिससे प्रत्येक ब्रावाइस जाली के लिए वानियर कार्य है);
- N क्रिस्टल में आदिम कोशिकाओं की संख्या है;
- K पर योग में ब्रिलौइन ज़ोन (या पारस्परिक जाली के किसी अन्य आदिम सेल) में k के सभी मान सम्मिलित हैं जो क्रिस्टल पर आवधिक सीमा स्थितियों के अनुरूप हैं। इसमें 'N k के विभिन्न मान सम्मिलित हैं, जो ब्रिलौइन ज़ोन के माध्यम से समान रूप से फैले हुए हैं। चूंकि 'N' सामान्यतः बहुत बड़ा होता है योग को प्रतिस्थापन नियम के अनुसार अभिन्न के रूप में लिखा जा सकता है:
जहां BZ ब्रिलौइन ज़ोन को दर्शाता है, जिसका आयतन Ω है।
गुण
इस परिभाषा के आधार पर, निम्नलिखित गुणों को धारण करना सिद्ध किया जा सकता है:[5]
- किसी भी जाली वेक्टर R' के लिए,
दूसरे शब्दों में वानियर कार्य केवल मात्रा (r − R) पर निर्भर करता है। परिणाम स्वरुप, इन कार्यों को अधिकांशतः वैकल्पिक संकेतन में लिखा जाता है
- बलोच कार्यों को वन्नियर कार्यों के संदर्भ में निम्नानुसार लिखा जा सकता है:
- ,
जहां योग क्रिस्टल में प्रत्येक जाली सदिश R के ऊपर है।
- तरंग क्रिया का समूह विचाराधीन बैंड के लिए अलौकिक आधार है।
वानियर कार्य को लगभग आवधिक क्षमता तक भी बढ़ाया गया है।[6]
स्थानीयकरण
बलोच का कहना है कि ψk(r) को विशेष हैमिल्टनियन के ईजेनकार्य के रूप में परिभाषित किया गया है और इसलिए केवल समग्र चरण तक ही परिभाषित किया गया है। किसी भी (वास्तविक) कार्य θ(k) के लिए कार्य ψk(r) में चरण परिवर्तन eiθ(k) प्रयुक्त करने से, समान रूप से मान्य विकल्प पर पहुँचता है। जबकि बलोच स्थिति के गुणों के लिए परिवर्तन का कोई परिणाम नहीं है, इस परिवर्तन से संबंधित वानियर कार्य महत्वपूर्ण रूप से बदल गए हैं।
इसलिए वनियर कार्यों का सबसे सुविधाजनक समूह देने के लिए बलोच स्थिति के चरणों को चुनने के लिए स्वतंत्रता का उपयोग किया जाता है। व्यवहार में, यह सामान्यतः अधिकतम-स्थानीयकृत समूह होता है जिसमें वानियर कार्य ϕR बिंदु R के आसपास स्थानीयकृत होता है और तेज़ी से R से दूर शून्य हो जाता है। एक-आयामी स्थिति के लिए यह कोह्न द्वारा सिद्ध किया गया है[7] कि वहाँ सदैव अनूठा विकल्प होता है जो इन गुणों को देता है (कुछ समरूपताओं के अधीन)। इसके परिणामस्वरूप उच्च आयामों में किसी भी वियोज्य क्षमता पर प्रयुक्त होता है; सामान्य स्थितियां स्थापित नहीं हैं और चल रहे शोध का विषय हैं।[3]
वानियर कार्यों को प्राप्त करने के लिए वर्तमान ही में पिपेक-मेज़ी शैली स्थानीयकरण योजना भी प्रस्तावित की गई है।[8] अधिकतम स्थानीयकृत वेनियर कार्य के विपरीत (जो क्रिस्टलीय प्रणालियों के लिए फोस्टर-बॉयज़ योजना का अनुप्रयोग है) पिपेक-मेज़े वेनियर कार्य σ और π ऑर्बिटल्स को नहीं मिलाते हैं।
ध्रुवीकरण का आधुनिक सिद्धांत
वानियर कार्य ने वर्तमान ही में क्रिस्टल में ध्रुवीकरण घनत्व का वर्णन करने में आवेदन पाया है, उदाहरण के लिए फेरोबिजली ध्रुवीकरण का आधुनिक सिद्धांत राफेल रेस्टा और डेविड वेंडरबिल्ट द्वारा अग्रणी है। उदाहरण के लिए देखें, बर्घोल्ड,[9] और नख्मनसन,[10] और वेंडरबिल्ट द्वारा पावर-प्वाइंट परिचय।[11] ठोस में प्रति ईकाई सेल ध्रुवीकरण को वानियर चार्ज घनत्व के द्विध्रुवीय पल के रूप में परिभाषित किया जा सकता है:
जहां योग अधिकृत वाले बैंड पर है, और डब्ल्यूnबैंड n के लिए सेल में स्थानीयकृत वानियर कार्य है। निरंतर भौतिक प्रक्रिया के समय ध्रुवीकरण में परिवर्तन ध्रुवीकरण का समय व्युत्पन्न है और इसे अधिकृत वाले बलोच अवस्थाओ के बेरी चरण के संदर्भ में भी तैयार किया जा सकता है।[5][12]
जहां योग अधिकृत वाले बैंड पर है, और Wn बैंड n के लिए सेल में स्थानीयकृत वानियर कार्य है। निरंतर भौतिक प्रक्रिया के समय ध्रुवीकरण में परिवर्तन ध्रुवीकरण का समय व्युत्पन्न है और इसे अधिकृत वाले बलोच स्थिति के बेरी चरण के संदर्भ में भी तैयार किया जा सकता है।
वानियर इंटरपोलेशन
वानियर कार्य का उपयोग अधिकांशतः 'k'-बिंदु के किसी मोटे ग्रिड पर किसी भी इच्छानुसार 'k'-बिंदु पर गणना किए गए बैंडस्ट्रक्चर को प्रक्षेपित करने के लिए किया जाता है। यह विशेष रूप से सघन ग्रिड पर ब्रिलौइन-ज़ोन इंटीग्रल के मूल्यांकन और वेइल बिंदु की खोज के लिए उपयोगी है, और 'के'-स्पेस में डेरिवेटिव भी ले रहा है। यह दृष्टिकोण टाइट बाइंडिंग या कनेक्शन टू वनियर कार्य सन्निकटन के समान है, किंतु इसके विपरीत निश्चित ऊर्जा सीमा में बैंड के स्पष्ट विवरण की अनुमति देता है। वर्णक्रमीय गुणों,[13] विषम हॉल चालकता,[14] कक्षीय चुंबकत्व, [15] थर्मोइलेक्ट्रिक और इलेक्ट्रॉनिक परिवहन गुण, जाइरोट्रोपिक प्रभाव, शिफ्ट करंट, स्पिन हॉल चालकता के लिए वानियर इंटरपोलेशन योजनाएं प्राप्त की गई हैं। और अन्य प्रभाव है।
यह भी देखें
- कक्षीय चुंबकीयकरण
संदर्भ
- ↑ 1.0 1.1 Wannier Gregory H (1937). "इंसुलेटिंग क्रिस्टल में इलेक्ट्रॉनिक उत्तेजना स्तरों की संरचना". Physical Review. 52 (3): 191–197. Bibcode:1937PhRv...52..191W. doi:10.1103/PhysRev.52.191.
- ↑ Wannier, Gregory H. (1 September 1962). "विद्युत और चुंबकीय क्षेत्रों में बैंड इलेक्ट्रॉनों की गतिशीलता". Reviews of Modern Physics. American Physical Society (APS). 34 (4): 645–655. Bibcode:1962RvMP...34..645W. doi:10.1103/revmodphys.34.645. ISSN 0034-6861.
- ↑ 3.0 3.1 Brouder, Christian; Panati, Gianluca; Calandra, Matteo; Mourougane, Christophe; Marzari, Nicola (25 January 2007). "इंसुलेटर में वानियर कार्यों का घातीय स्थानीयकरण". Physical Review Letters. American Physical Society (APS). 98 (4): 046402. arXiv:cond-mat/0606726. Bibcode:2007PhRvL..98d6402B. doi:10.1103/physrevlett.98.046402. ISSN 0031-9007. PMID 17358792. S2CID 32812449.
- ↑ Marzari et al.: An Introduction to Maximally-Localized Wannier Functions
- ↑ 5.0 5.1 A Bohm, A Mostafazadeh, H Koizumi, Q Niu and J Zqanziger (2003). क्वांटम सिस्टम में ज्यामितीय चरण. Springer. pp. §12.5, p. 292 ff. doi:10.1007/978-3-662-10333-3. ISBN 978-3-540-00031-0.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - ↑ MP Geller and W Kohn Theory of generalized Wannier functions for nearly periodic potentials Physical Review B 48, 1993
- ↑ W. Kohn (1959). "बलोच वेव्स और वेनियर फंक्शंस के विश्लेषणात्मक गुण". Physical Review. 115 (4): 809–821. Bibcode:1959PhRv..115..809K. doi:10.1103/PhysRev.115.809.
- ↑ Jónsson Elvar Ö., Lehtola Susi, Puska Martti, Jónsson Hannes (2017). "Theory and Applications of Generalized Pipek–Mezey Wannier Functions". Journal of Chemical Theory and Computation. 13 (2): 460–474. arXiv:1608.06396. doi:10.1021/acs.jctc.6b00809. PMID 28099002. S2CID 206612913.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ↑ Berghold, Gerd; Mundy, Christopher J.; Romero, Aldo H.; Hutter, Jürg; Parrinello, Michele (15 April 2000). "अधिकतम स्थानीयकृत Wannier फ़ंक्शन प्राप्त करने के लिए सामान्य और कुशल एल्गोरिदम". Physical Review B. American Physical Society (APS). 61 (15): 10040–10048. Bibcode:2000PhRvB..6110040B. doi:10.1103/physrevb.61.10040. ISSN 0163-1829.
- ↑ Nakhmanson, S. M.; Calzolari, A.; Meunier, V.; Bernholc, J.; Buongiorno Nardelli, M. (10 June 2003). "बोरॉन नाइट्राइड नैनोट्यूब में सहज ध्रुवीकरण और पीजोइलेक्ट्रिकिटी". Physical Review B. 67 (23): 235406. arXiv:cond-mat/0305329v1. Bibcode:2003PhRvB..67w5406N. doi:10.1103/physrevb.67.235406. ISSN 0163-1829. S2CID 119345964.
- ↑ D Vanderbilt Berry phases and Curvatures in Electronic Structure Theory.
- ↑ C. Pisani (1994). क्रिस्टलीय सामग्री के गुणों की क्वांटम-मैकेनिकल एब-इनिटियो गणना (Proceedings of the IV School of Computational Chemistry of the Italian Chemical Society ed.). Springer. p. 282. ISBN 978-3-540-61645-0.
- ↑ Yates, Jonathan R.; Wang, Xinjie; Vanderbilt, David; Souza, Ivo (2007-05-21). "वानियर इंटरपोलेशन से स्पेक्ट्रल और फर्मी सतह गुण". Physical Review B. American Physical Society (APS). 75 (19): 195121. arXiv:cond-mat/0702554. Bibcode:2007PhRvB..75s5121Y. doi:10.1103/physrevb.75.195121. ISSN 1098-0121. S2CID 31224663.
- ↑ Wang, Xinjie; Yates, Jonathan R.; Souza, Ivo; Vanderbilt, David (2006-11-21). "वानियर इंटरपोलेशन द्वारा विषम हॉल चालकता की प्रारंभिक गणना". Physical Review B. 74 (19): 195118. arXiv:cond-mat/0608257. Bibcode:2006PhRvB..74s5118W. doi:10.1103/physrevb.74.195118. ISSN 1098-0121. S2CID 30427871.
- ↑ Lopez, M. G.; Vanderbilt, David; Thonhauser, T.; Souza, Ivo (2012-01-31). "क्रिस्टल में कक्षीय चुंबकीयकरण की वानियर-आधारित गणना". Physical Review B. 85 (1): 014435. arXiv:1112.1938. Bibcode:2012PhRvB..85a4435L. doi:10.1103/physrevb.85.014435. ISSN 1098-0121. S2CID 44056938.
अग्रिम पठन
- Karin M Rabe; Jean-Marc Triscone; Charles H Ahn (2007). Physics of Ferroelectrics: a Modern Perspective. Springer. p. 2. ISBN 978-3-540-34590-9.
बाहरी संबंध
- Wannier Gregory H (1937). "The Structure of Electronic Excitation Levels in Insulating Crystals". Physical Review. 52 (3): 191–197. Bibcode:1937PhRv...52..191W. doi:10.1103/PhysRev.52.191.
- Wannier90 computer code that calculates maximally localized वानियर functions
- वानियर Transport code that calculates maximally localized वानियर functions fit for Quantum Transport applications
- WannierTools: An open-source software package for novel topological materials
- WannierBerri - a python code for वानियर interpolation and tight-binding calculations
यह भी देखें
- बलोच प्रमेय
- हन्ने कोण
- ज्यामितीय चरण
श्रेणी:संघनित पदार्थ भौतिकी