धारिता-विद्युत-दाब प्रोफाइलन: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
'''धारिता-विद्युत-दाब''' '''प्रोफाइलन''' (या '''C–V''' '''प्रोफाइलन''', कभी-कभी '''CV प्रोफाइलन''') [[ अर्धचालक ]] पदार्थ और उपकरणों को चिह्नित करने की एक तकनीक है। प्रयुक्त विद्युत-दाब | '''धारिता-विद्युत-दाब''' '''प्रोफाइलन''' (या '''C–V''' '''प्रोफाइलन''', कभी-कभी '''CV प्रोफाइलन''') [[ अर्धचालक |अर्धचालक]] पदार्थ और उपकरणों को चिह्नित करने की एक तकनीक है। प्रयुक्त विद्युत-दाब विविध प्रकार का होता है, और [[समाई|धारिता]] को मापा जाता है और विद्युत-दाब के कार्य के रूप में आलेखित किया जाता है। यह तकनीक [[ धातु |धातु]] -अर्धचालक संयोजन ([[शोट्की बाधा]]) या p–n संयोजन<ref>J. Hilibrand and R.D. Gold, "Determination of the Impurity Distribution in Junction Diodes From Capacitance-Voltage Measurements", RCA Review, vol. 21, p. 245, June 1960</ref> या एक धातु आक्साइड अर्धचालक क्षेत्र-प्रभावक प्रतिरोधान्तरित्र का उपयोग एक अवक्षय क्षेत्र बनाने के लिए करते है, एक ऐसा क्षेत्र जो इलेक्ट्रॉनोंऔर [[इलेक्ट्रॉन छेद|छिद्रों]] का संचालन करने के लिए रिक्त है, लेकिन इसमें आयनित दाताओं और विद्युत रूप से सक्रिय दोष या जाल हो सकते हैं। इसके आयनित आवेशों के साथ अवक्षय क्षेत्र एक संधारित्र की तरह व्यवहार करता है। संयोजन पर लगाए गए विद्युत-दाब को बदलकर अवक्षय आयाम को बदलना संभव है। प्रयुक्त विद्युत-दाब पर [[कमी की चौड़ाई|अवक्षय आयाम]] की निर्भरता अर्धचालक की आंतरिक विशेषताओं, जैसे इसकी अपमिश्रण रूपरेखा और विद्युत सक्रिय दोष घनत्व के बारे में जानकारी प्रदान करती है।<ref name=Diebold> | ||
{{cite book | {{cite book | ||
Line 39: | Line 39: | ||
== अनुप्रयोग | == अनुप्रयोग == | ||
कई शोधकर्ता विशेष रूप से | कई शोधकर्ता विशेष रूप से एमओएससीएपी और धातु आक्साइड अर्धचालक क्षेत्र-प्रभावक प्रतिरोधान्तरित्र संरचनाओं में अर्धचालक मापदंडों को निर्धारित करने के लिए धारिता-विद्युत-दाब (C-V) परीक्षण का उपयोग करते हैं। हालांकि, धारिता-विद्युत-दाब माप का व्यापक रूप से अन्य प्रकार के अर्धचालक उपकरणों और प्रौद्योगिकियों को चित्रित करने के लिए भी उपयोग किया जाता है, जिसमें द्विध्रुवी संयोजन प्रतिरोधान्तरित्र, जेएफईटी, III-V मिश्रित उपकरण, प्रकाश वोल्टीय सेल, एमईएमएस उपकरण, कार्बनिक तनु परत प्रतिरोधान्तरित्र (टीएफटी) डिस्प्ले, प्रकाश चालकीय डायोड और कार्बन नैनोट्यूब (सीएनटी) सम्मिलित हैं। | ||
इन मापों की मौलिक प्रकृति उन्हें अनुसंधान कार्यों और विषयों की एक विस्तृत श्रृंखला के लिए प्रयुक्त करती है। उदाहरण के लिए, शोधकर्ता उन्हें नई प्रक्रियाओं, | इन मापों की मौलिक प्रकृति उन्हें अनुसंधान कार्यों और विषयों की एक विस्तृत श्रृंखला के लिए प्रयुक्त करती है। उदाहरण के लिए, शोधकर्ता उन्हें नई प्रक्रियाओं, पदार्थों, उपकरणों और परिपथों का मूल्यांकन करने के लिए विश्वविद्यालय और अर्धचालक निर्माताओं की प्रयोगशालाओं में उपयोग करते हैं। ये माप उत्पाद और लब्धि बढ़ाने वाले इंजीनियरों के लिए अत्यधिक मूल्यवान हैं जो प्रक्रियाओं और उपकरण के प्रदर्शन में सुधार के लिए अधीन हैं। विश्वसनीयता इंजीनियर इन मापों का उपयोग उन पदार्थों के आपूर्तिकर्ताओं को योग्य बनाने के लिए भी करते हैं जिनका उपयोग वे प्रक्रिया मापदंडों के संरक्षण करने के लिए, और विफलता तंत्र का विश्लेषण करने के लिए करते हैं। | ||
अर्धचालक | अर्धचालक उपकरण और पदार्थ पैरामीटर की एक प्ररूप C-V माप से उपयुक्त पद्धति, उपकरण और सॉफ्टवेयर के साथ प्राप्त की जा सकती है। यह जानकारी अर्धचालक उत्पादन श्रृंखला में उपयोग की जाती है, और औसत अपमिश्रण सांद्रता, अपमिश्रण रूपरेखा और वाहक जीवन काल जैसे पैरामीटर सहित अधिस्तरी रूप से विकसित क्रिस्टल का मूल्यांकन करने के साथ प्रारंभ होता है। | ||
C-V माप ऑक्साइड की संघनता, ऑक्साइड आवेश, गतिशील आयनों से संदूषण और वेफर प्रक्रियाओं में अंतराफलक विपाश घनत्व प्रकट कर सकते हैं। विभिन्न ऑक्साइड संघनता के साथ स्थूल एमओएसएफईटी के लिए [[android|नैनोहब]] पर उत्पन्न धारिता-विद्युत-दाब रूपरेखा है। ध्यान दें कि लाल वक्र कम आवृत्ति को इंगित करता है जबकि नीला वक्र उच्च आवृत्ति C-V रूपरेखा को दिखाता है। विभिन्न ऑक्साइड संघनता के साथ प्रभाव सीमा विद्युत-दाब में परिवर्तन पर विशेष ध्यान दें। | |||
लिथोग्राफी, | लिथोग्राफी, निक्षारण, शोधन, परावैद्युत और पॉलीसिलिकॉन निक्षेपण, और धातुकरण सहित अन्य प्रक्रिया चरणों के प्रदर्शन के बाद ये प्रमाण महत्वपूर्ण बने हुए हैं। एक बार उपकरणों के पूरी तरह से स्थिर हो जाने के बाद, C-V प्रोफाइलन का उपयोग प्रायः प्रभावसीमा विद्युत-दाब और अन्य मापदंडों को विश्वसनीयता और मौलिक उपकरण परीक्षण के समय और मॉडल उपकरण के प्रदर्शन के लिए किया जाता है। | ||
इलेक्ट्रॉनिक | इलेक्ट्रॉनिक उपकरण के धारिता-विद्युत-दाब मीटर का उपयोग करके C-V मापन किया जाता है। प्राप्त C-V ग्राफ द्वारा अर्धचालक उपकरणों के अपमिश्रण रूपरेखा का विश्लेषण करने के लिए उनका उपयोग किया जाता है। | ||
[[File:Illustration of C-V measurement.gif|thumb|300px|right|विभिन्न ऑक्साइड | [[File:Illustration of C-V measurement.gif|thumb|300px|right|विभिन्न ऑक्साइड संघनता वाले स्थूल एमओएसएफईटी के लिए C-V रूपरेखा।]] | ||
== | == C-V धातु-ऑक्साइड-अर्धचालक संरचना की विशेषताएं == | ||
गेट ऑक्साइड के माध्यम से [[ चैनल (अर्धचालक) ]] में संभावित अवरोध की ऊंचाई को नियंत्रित करते हुए एक धातु-ऑक्साइड-अर्धचालक संरचना | गेट ऑक्साइड के माध्यम से [[ चैनल (अर्धचालक) |प्रणाली (अर्धचालक)]] में संभावित अवरोध की ऊंचाई को नियंत्रित करते हुए एक धातु-ऑक्साइड-अर्धचालक संरचना एमओएसएफईटी का महत्वपूर्ण भाग है। | ||
n-प्रणाली धातु आक्साइड अर्धचालक क्षेत्र-प्रभावक प्रतिरोधान्तरित्र के संचालन को तीन क्षेत्रों में विभाजित किया जा सकता है, जो नीचे दिखाया गया है और सही आंकड़े के अनुरूप है। | |||
=== | === अपक्षय === | ||
जब धातु पर एक छोटा | जब धातु पर एक छोटा धनात्मक अभिनति विद्युत-दाब लगाया जाता है, तो [[संयोजी बंध|संयोजकता बैंड]] कोर [[फर्मी स्तर]] से दूर संचालित किया जाता है, और निकाय से छिद्रों गेट से दूर संचरित किया जाता है, जिसके परिणामस्वरूप कम वाहक घनत्व होता है, इसलिए (दाईं ओर आकृति के बीच में क्षेत्र) धारिता कम होती है। | ||
=== | === विपरिवर्तन === | ||
अर्धचालक सतह के पास अभी भी बड़े गेट | अर्धचालक सतह के पास अभी भी बड़े गेट अभिनति पर चालन बैंड कोर को फर्मी स्तर के निकट लाया जाता है, अर्धचालक और ऑक्साइड के बीच अन्तराफलक में विपरिवर्तन परत या n-प्रणाली में इलेक्ट्रॉनों के साथ सतह को स्थित करता है। इसका परिणाम धारिता में वृद्धि के रूप में होता है, जैसा कि दायें चित्र के दाहिने भाग में दिखाया गया है। | ||
=== | === संचयन === | ||
जब एक | जब एक ऋणात्मक गेट-स्त्रोत विद्युत-दाब (धनात्मक स्त्रोत-गेट) लगाया जाता है, तो यह n क्षेत्र की सतह पर एक p-प्रणाली बनाता है, जो n-प्रणाली स्थितियों के अनुरूप होता है, लेकिन आवेशों और विद्युत-दाब के विपरीत ध्रुवों के साथ होता है। छिद्र के घनत्व में वृद्धि धारिता में वृद्धि से समान है, जिसे दाएं चित्र के बाएं भाग में दिखाया गया है। | ||
== यह भी देखें == | == यह भी देखें == | ||
* | * धारा-विद्युत-दाब विशेषता | ||
* | *अपक्षय क्षेत्र | ||
* | * अपक्षय आयाम | ||
* [[ड्राइव लेवल कैपेसिटेंस प्रोफाइलिंग| | * [[ड्राइव लेवल कैपेसिटेंस प्रोफाइलिंग|परिचालन स्तरीय धारिता प्रोफाइलन]] | ||
* | * गहन स्तर की क्षणिक स्पेक्ट्रमदर्शी | ||
* धातु-ऑक्साइड-अर्धचालक संरचना | * धातु-ऑक्साइड-अर्धचालक संरचना | ||
Revision as of 18:53, 18 June 2023
धारिता-विद्युत-दाब प्रोफाइलन (या C–V प्रोफाइलन, कभी-कभी CV प्रोफाइलन) अर्धचालक पदार्थ और उपकरणों को चिह्नित करने की एक तकनीक है। प्रयुक्त विद्युत-दाब विविध प्रकार का होता है, और धारिता को मापा जाता है और विद्युत-दाब के कार्य के रूप में आलेखित किया जाता है। यह तकनीक धातु -अर्धचालक संयोजन (शोट्की बाधा) या p–n संयोजन[1] या एक धातु आक्साइड अर्धचालक क्षेत्र-प्रभावक प्रतिरोधान्तरित्र का उपयोग एक अवक्षय क्षेत्र बनाने के लिए करते है, एक ऐसा क्षेत्र जो इलेक्ट्रॉनोंऔर छिद्रों का संचालन करने के लिए रिक्त है, लेकिन इसमें आयनित दाताओं और विद्युत रूप से सक्रिय दोष या जाल हो सकते हैं। इसके आयनित आवेशों के साथ अवक्षय क्षेत्र एक संधारित्र की तरह व्यवहार करता है। संयोजन पर लगाए गए विद्युत-दाब को बदलकर अवक्षय आयाम को बदलना संभव है। प्रयुक्त विद्युत-दाब पर अवक्षय आयाम की निर्भरता अर्धचालक की आंतरिक विशेषताओं, जैसे इसकी अपमिश्रण रूपरेखा और विद्युत सक्रिय दोष घनत्व के बारे में जानकारी प्रदान करती है।[2]Cite error: Closing </ref>
missing for <ref>
tag मापन दिष्ट धारा पर किया जा सकता है, या दिष्ट धारा और एक छोटे दोनों का उपयोग किया जा सकता है। सिग्नल प्रत्यावर्ती धारा सिग्नल चालन विधि[3] या एक बड़े-सिग्नल क्षणिक विद्युत-दाब का उपयोग करना।
अनुप्रयोग
कई शोधकर्ता विशेष रूप से एमओएससीएपी और धातु आक्साइड अर्धचालक क्षेत्र-प्रभावक प्रतिरोधान्तरित्र संरचनाओं में अर्धचालक मापदंडों को निर्धारित करने के लिए धारिता-विद्युत-दाब (C-V) परीक्षण का उपयोग करते हैं। हालांकि, धारिता-विद्युत-दाब माप का व्यापक रूप से अन्य प्रकार के अर्धचालक उपकरणों और प्रौद्योगिकियों को चित्रित करने के लिए भी उपयोग किया जाता है, जिसमें द्विध्रुवी संयोजन प्रतिरोधान्तरित्र, जेएफईटी, III-V मिश्रित उपकरण, प्रकाश वोल्टीय सेल, एमईएमएस उपकरण, कार्बनिक तनु परत प्रतिरोधान्तरित्र (टीएफटी) डिस्प्ले, प्रकाश चालकीय डायोड और कार्बन नैनोट्यूब (सीएनटी) सम्मिलित हैं।
इन मापों की मौलिक प्रकृति उन्हें अनुसंधान कार्यों और विषयों की एक विस्तृत श्रृंखला के लिए प्रयुक्त करती है। उदाहरण के लिए, शोधकर्ता उन्हें नई प्रक्रियाओं, पदार्थों, उपकरणों और परिपथों का मूल्यांकन करने के लिए विश्वविद्यालय और अर्धचालक निर्माताओं की प्रयोगशालाओं में उपयोग करते हैं। ये माप उत्पाद और लब्धि बढ़ाने वाले इंजीनियरों के लिए अत्यधिक मूल्यवान हैं जो प्रक्रियाओं और उपकरण के प्रदर्शन में सुधार के लिए अधीन हैं। विश्वसनीयता इंजीनियर इन मापों का उपयोग उन पदार्थों के आपूर्तिकर्ताओं को योग्य बनाने के लिए भी करते हैं जिनका उपयोग वे प्रक्रिया मापदंडों के संरक्षण करने के लिए, और विफलता तंत्र का विश्लेषण करने के लिए करते हैं।
अर्धचालक उपकरण और पदार्थ पैरामीटर की एक प्ररूप C-V माप से उपयुक्त पद्धति, उपकरण और सॉफ्टवेयर के साथ प्राप्त की जा सकती है। यह जानकारी अर्धचालक उत्पादन श्रृंखला में उपयोग की जाती है, और औसत अपमिश्रण सांद्रता, अपमिश्रण रूपरेखा और वाहक जीवन काल जैसे पैरामीटर सहित अधिस्तरी रूप से विकसित क्रिस्टल का मूल्यांकन करने के साथ प्रारंभ होता है।
C-V माप ऑक्साइड की संघनता, ऑक्साइड आवेश, गतिशील आयनों से संदूषण और वेफर प्रक्रियाओं में अंतराफलक विपाश घनत्व प्रकट कर सकते हैं। विभिन्न ऑक्साइड संघनता के साथ स्थूल एमओएसएफईटी के लिए नैनोहब पर उत्पन्न धारिता-विद्युत-दाब रूपरेखा है। ध्यान दें कि लाल वक्र कम आवृत्ति को इंगित करता है जबकि नीला वक्र उच्च आवृत्ति C-V रूपरेखा को दिखाता है। विभिन्न ऑक्साइड संघनता के साथ प्रभाव सीमा विद्युत-दाब में परिवर्तन पर विशेष ध्यान दें।
लिथोग्राफी, निक्षारण, शोधन, परावैद्युत और पॉलीसिलिकॉन निक्षेपण, और धातुकरण सहित अन्य प्रक्रिया चरणों के प्रदर्शन के बाद ये प्रमाण महत्वपूर्ण बने हुए हैं। एक बार उपकरणों के पूरी तरह से स्थिर हो जाने के बाद, C-V प्रोफाइलन का उपयोग प्रायः प्रभावसीमा विद्युत-दाब और अन्य मापदंडों को विश्वसनीयता और मौलिक उपकरण परीक्षण के समय और मॉडल उपकरण के प्रदर्शन के लिए किया जाता है।
इलेक्ट्रॉनिक उपकरण के धारिता-विद्युत-दाब मीटर का उपयोग करके C-V मापन किया जाता है। प्राप्त C-V ग्राफ द्वारा अर्धचालक उपकरणों के अपमिश्रण रूपरेखा का विश्लेषण करने के लिए उनका उपयोग किया जाता है।
C-V धातु-ऑक्साइड-अर्धचालक संरचना की विशेषताएं
गेट ऑक्साइड के माध्यम से प्रणाली (अर्धचालक) में संभावित अवरोध की ऊंचाई को नियंत्रित करते हुए एक धातु-ऑक्साइड-अर्धचालक संरचना एमओएसएफईटी का महत्वपूर्ण भाग है।
n-प्रणाली धातु आक्साइड अर्धचालक क्षेत्र-प्रभावक प्रतिरोधान्तरित्र के संचालन को तीन क्षेत्रों में विभाजित किया जा सकता है, जो नीचे दिखाया गया है और सही आंकड़े के अनुरूप है।
अपक्षय
जब धातु पर एक छोटा धनात्मक अभिनति विद्युत-दाब लगाया जाता है, तो संयोजकता बैंड कोर फर्मी स्तर से दूर संचालित किया जाता है, और निकाय से छिद्रों गेट से दूर संचरित किया जाता है, जिसके परिणामस्वरूप कम वाहक घनत्व होता है, इसलिए (दाईं ओर आकृति के बीच में क्षेत्र) धारिता कम होती है।
विपरिवर्तन
अर्धचालक सतह के पास अभी भी बड़े गेट अभिनति पर चालन बैंड कोर को फर्मी स्तर के निकट लाया जाता है, अर्धचालक और ऑक्साइड के बीच अन्तराफलक में विपरिवर्तन परत या n-प्रणाली में इलेक्ट्रॉनों के साथ सतह को स्थित करता है। इसका परिणाम धारिता में वृद्धि के रूप में होता है, जैसा कि दायें चित्र के दाहिने भाग में दिखाया गया है।
संचयन
जब एक ऋणात्मक गेट-स्त्रोत विद्युत-दाब (धनात्मक स्त्रोत-गेट) लगाया जाता है, तो यह n क्षेत्र की सतह पर एक p-प्रणाली बनाता है, जो n-प्रणाली स्थितियों के अनुरूप होता है, लेकिन आवेशों और विद्युत-दाब के विपरीत ध्रुवों के साथ होता है। छिद्र के घनत्व में वृद्धि धारिता में वृद्धि से समान है, जिसे दाएं चित्र के बाएं भाग में दिखाया गया है।
यह भी देखें
- धारा-विद्युत-दाब विशेषता
- अपक्षय क्षेत्र
- अपक्षय आयाम
- परिचालन स्तरीय धारिता प्रोफाइलन
- गहन स्तर की क्षणिक स्पेक्ट्रमदर्शी
- धातु-ऑक्साइड-अर्धचालक संरचना
संदर्भ
- ↑ J. Hilibrand and R.D. Gold, "Determination of the Impurity Distribution in Junction Diodes From Capacitance-Voltage Measurements", RCA Review, vol. 21, p. 245, June 1960
- ↑ Alain C. Diebold, ed. (2001). Handbook of Silicon Semiconductor Metrology. CRC Press. pp. 59–60. ISBN 0-8247-0506-8.
- ↑ Sheng S. Li and Sorin Cristoloveanu (1995). Electrical Characterization of Silicon-On-Insulator Materials and Devices. Springer. Chapter 6, p. 163. ISBN 0-7923-9548-4.
बाहरी संबंध
- MOScap simulator on nanoHUB.org enables users to compute C-V characteristics for different doping profiles, materials, and temperatures.