कुल वायु तापमान: Difference between revisions

From Vigyanwiki
(Created page with "{{More footnotes|date=March 2011}} उड्डयन में, ठहराव तापमान को कुल वायु तापमान के रूप में...")
 
No edit summary
Line 1: Line 1:
{{More footnotes|date=March 2011}}
उड्डयन में, ठहराव तापमान को कुल वायु तापमान के रूप में जाना जाता है और इसे विमान की सतह पर लगे [[तापमान जांच]] से मापा जाता है। जांच को विमान के सापेक्ष आराम करने के लिए हवा लाने के लिए डिज़ाइन किया गया है। जैसे ही हवा को आराम में लाया जाता है, [[गतिज ऊर्जा]] [[आंतरिक ऊर्जा]] में परिवर्तित हो जाती है। हवा संकुचित होती है और तापमान में [[एडियाबेटिक प्रक्रिया]] में वृद्धि का अनुभव करती है। इसलिए, कुल [[हवा का तापमान]] स्थिर (या परिवेश) हवा के तापमान से अधिक है।
उड्डयन में, ठहराव तापमान को कुल वायु तापमान के रूप में जाना जाता है और इसे विमान की सतह पर लगे [[तापमान जांच]] से मापा जाता है। जांच को विमान के सापेक्ष आराम करने के लिए हवा लाने के लिए डिज़ाइन किया गया है। जैसे ही हवा को आराम में लाया जाता है, [[गतिज ऊर्जा]] [[आंतरिक ऊर्जा]] में परिवर्तित हो जाती है। हवा संकुचित होती है और तापमान में [[एडियाबेटिक प्रक्रिया]] में वृद्धि का अनुभव करती है। इसलिए, कुल [[हवा का तापमान]] स्थिर (या परिवेश) हवा के तापमान से अधिक है।


स्थैतिक हवा के तापमान की गणना को सक्षम करने के लिए कुल हवा का तापमान एक [[एयर डेटा कंप्यूटर]] के लिए एक आवश्यक इनपुट है और इसलिए सही एयरस्पीड है।
स्थैतिक हवा के तापमान की गणना को सक्षम करने के लिए कुल हवा का तापमान [[एयर डेटा कंप्यूटर]] के लिए आवश्यक इनपुट है और इसलिए सही एयरस्पीड है।


स्थिर और कुल वायु तापमान के बीच संबंध निम्न द्वारा दिया जाता है:
स्थिर और कुल वायु तापमान के बीच संबंध निम्न द्वारा दिया जाता है:
Line 12: Line 11:
*<math>\gamma\ =\,</math> विशिष्ट हीट का अनुपात, शुष्क हवा के लिए लगभग 1.400
*<math>\gamma\ =\,</math> विशिष्ट हीट का अनुपात, शुष्क हवा के लिए लगभग 1.400


व्यवहार में, कुल वायु तापमान जांच वायु प्रवाह की ऊर्जा को पूरी तरह से पुनर्प्राप्त नहीं करेगी, और तापमान वृद्धि पूरी तरह से रुद्धोष्म प्रक्रिया के कारण नहीं हो सकती है। इस मामले में, क्षतिपूर्ति के लिए एक अनुभवजन्य पुनर्प्राप्ति कारक (1 से कम) पेश किया जा सकता है:
व्यवहार में, कुल वायु तापमान जांच वायु प्रवाह की ऊर्जा को पूरी तरह से पुनर्प्राप्त नहीं करेगी, और तापमान वृद्धि पूरी तरह से रुद्धोष्म प्रक्रिया के कारण नहीं हो सकती है। इस मामले में, क्षतिपूर्ति के लिए अनुभवजन्य पुनर्प्राप्ति कारक (1 से कम) पेश किया जा सकता है:
{{NumBlk||<math display="block"> \frac{T_\mathrm{total}}{T_{s}}={1+\frac{\gamma -1}{2}eM_a^2} </math>|{{EquationRef|1}}}}
{{NumBlk||<math display="block"> \frac{T_\mathrm{total}}{T_{s}}={1+\frac{\gamma -1}{2}eM_a^2} </math>|{{EquationRef|1}}}}
जहाँ e पुनर्प्राप्ति कारक है (यह भी नोट किया गया है कि C<sub>t</sub>)
जहाँ e पुनर्प्राप्ति कारक है (यह भी नोट किया गया है कि C<sub>t</sub>)
Line 37: Line 36:


* काइनेटिक हीटिंग। जैसे-जैसे हवा की गति बढ़ती है, प्रति सेकंड हवा के अधिक से अधिक अणु विमान से टकराते हैं। यह घर्षण के कारण विमान के डायरेक्ट रीडिंग थर्मामीटर जांच में तापमान वृद्धि का कारण बनता है। क्योंकि वायु प्रवाह को संपीड़ित और [[आइसेंट्रोपिक प्रक्रिया]] माना जाता है, जो कि परिभाषा के अनुसार, रूद्धोष्म और प्रतिवर्ती है, इस लेख में प्रयुक्त समीकरण घर्षण ताप का हिसाब नहीं रखते हैं। यही कारण है कि स्थिर हवा के तापमान की गणना के लिए रिकवरी फैक्टर के उपयोग की आवश्यकता होती है, <math> {e} </math>. आधुनिक यात्री जेट विमानों के लिए काइनेटिक हीटिंग लगभग नगण्य है।
* काइनेटिक हीटिंग। जैसे-जैसे हवा की गति बढ़ती है, प्रति सेकंड हवा के अधिक से अधिक अणु विमान से टकराते हैं। यह घर्षण के कारण विमान के डायरेक्ट रीडिंग थर्मामीटर जांच में तापमान वृद्धि का कारण बनता है। क्योंकि वायु प्रवाह को संपीड़ित और [[आइसेंट्रोपिक प्रक्रिया]] माना जाता है, जो कि परिभाषा के अनुसार, रूद्धोष्म और प्रतिवर्ती है, इस लेख में प्रयुक्त समीकरण घर्षण ताप का हिसाब नहीं रखते हैं। यही कारण है कि स्थिर हवा के तापमान की गणना के लिए रिकवरी फैक्टर के उपयोग की आवश्यकता होती है, <math> {e} </math>. आधुनिक यात्री जेट विमानों के लिए काइनेटिक हीटिंग लगभग नगण्य है।
* एडियाबेटिक प्रक्रिया। जैसा कि ऊपर वर्णित है, यह ऊर्जा के रूपांतरण के कारण होता है न कि सीधे ऊष्मा के प्रयोग से। मच 0.2 से अधिक एयरस्पीड पर, रिमोट रीडिंग टेम्परेचर प्रोब (टीएटी-प्रोब) में, बाहरी वायु प्रवाह, जो कई सौ समुद्री मील हो सकता है, वस्तुतः बहुत तेजी से आराम करने के लिए लाया जाता है। गतिमान वायु की ऊर्जा ([[विशिष्ट गतिज ऊर्जा]]) तब तापमान वृद्धि (विशिष्ट तापीय धारिता) के रूप में जारी (परिवर्तित) होती है। ऊर्जा को नष्ट नहीं किया जा सकता बल्कि केवल रूपांतरित किया जा सकता है; इसका मतलब यह है कि ऊष्मप्रवैगिकी के पहले नियम के अनुसार, एक पृथक प्रणाली की कुल ऊर्जा स्थिर रहनी चाहिए।
* एडियाबेटिक प्रक्रिया। जैसा कि ऊपर वर्णित है, यह ऊर्जा के रूपांतरण के कारण होता है न कि सीधे ऊष्मा के प्रयोग से। मच 0.2 से अधिक एयरस्पीड पर, रिमोट रीडिंग टेम्परेचर प्रोब (टीएटी-प्रोब) में, बाहरी वायु प्रवाह, जो कई सौ समुद्री मील हो सकता है, वस्तुतः बहुत तेजी से आराम करने के लिए लाया जाता है। गतिमान वायु की ऊर्जा ([[विशिष्ट गतिज ऊर्जा]]) तब तापमान वृद्धि (विशिष्ट तापीय धारिता) के रूप में जारी (परिवर्तित) होती है। ऊर्जा को नष्ट नहीं किया जा सकता बल्कि केवल रूपांतरित किया जा सकता है; इसका मतलब यह है कि ऊष्मप्रवैगिकी के पहले नियम के अनुसार, पृथक प्रणाली की कुल ऊर्जा स्थिर रहनी चाहिए।


काइनेटिक हीटिंग और एडियाबेटिक तापमान परिवर्तन (एडियाबेटिक कम्प्रेशन के कारण) का कुल योग 'टोटल राम राइज' है।
काइनेटिक हीटिंग और एडियाबेटिक तापमान परिवर्तन (एडियाबेटिक कम्प्रेशन के कारण) का कुल योग 'टोटल राम राइज' है।
Line 52: Line 51:
जिसे सरल बनाया जा सकता है:
जिसे सरल बनाया जा सकता है:


<math display="block">RR_\text{total} = {\frac{V^2}{2 C_p}} e </math> का उपयोग करके <math>  R_{sp} = { C_p - C_v }</math>
<math display="block">RR_\text{total} = {\frac{V^2}{2 C_p}} e </math> का उपयोग करके <math>  R_{sp} = { C_p - C_v }</math>
और
और
*<math> \gamma = {\frac{ C_p}{C_v}} </math>
*<math> \gamma = {\frac{ C_p}{C_v}} </math>
Line 64: Line 63:
*<math> e = </math> पुनर्प्राप्ति कारक, जिसका अनुमानित मान 0.98 है, जो आधुनिक TAT-जांच के लिए विशिष्ट है।
*<math> e = </math> पुनर्प्राप्ति कारक, जिसका अनुमानित मान 0.98 है, जो आधुनिक TAT-जांच के लिए विशिष्ट है।


TAS के साथ गांठों में उपरोक्त मानों के लिए (3) हल करके, राम वृद्धि के लिए एक सरल सटीक सूत्र है:
TAS के साथ गांठों में उपरोक्त मानों के लिए (3) हल करके, राम वृद्धि के लिए सरल सटीक सूत्र है:
<math display="block">  RR_\mathrm{total}=\frac{V^2}{87^2}  </math>
<math display="block">  RR_\mathrm{total}=\frac{V^2}{87^2}  </math>



Revision as of 15:01, 17 June 2023

उड्डयन में, ठहराव तापमान को कुल वायु तापमान के रूप में जाना जाता है और इसे विमान की सतह पर लगे तापमान जांच से मापा जाता है। जांच को विमान के सापेक्ष आराम करने के लिए हवा लाने के लिए डिज़ाइन किया गया है। जैसे ही हवा को आराम में लाया जाता है, गतिज ऊर्जा आंतरिक ऊर्जा में परिवर्तित हो जाती है। हवा संकुचित होती है और तापमान में एडियाबेटिक प्रक्रिया में वृद्धि का अनुभव करती है। इसलिए, कुल हवा का तापमान स्थिर (या परिवेश) हवा के तापमान से अधिक है।

स्थैतिक हवा के तापमान की गणना को सक्षम करने के लिए कुल हवा का तापमान एयर डेटा कंप्यूटर के लिए आवश्यक इनपुट है और इसलिए सही एयरस्पीड है।

स्थिर और कुल वायु तापमान के बीच संबंध निम्न द्वारा दिया जाता है:

कहाँ:

  • स्थैतिक हवा का तापमान, एसएटी (केल्विन या रैंकिन स्केल)
  • कुल हवा का तापमान, TAT (केल्विन या डिग्री रैंकिन)
  • मच संख्या
  • विशिष्ट हीट का अनुपात, शुष्क हवा के लिए लगभग 1.400

व्यवहार में, कुल वायु तापमान जांच वायु प्रवाह की ऊर्जा को पूरी तरह से पुनर्प्राप्त नहीं करेगी, और तापमान वृद्धि पूरी तरह से रुद्धोष्म प्रक्रिया के कारण नहीं हो सकती है। इस मामले में, क्षतिपूर्ति के लिए अनुभवजन्य पुनर्प्राप्ति कारक (1 से कम) पेश किया जा सकता है:

 

 

 

 

(1)

जहाँ e पुनर्प्राप्ति कारक है (यह भी नोट किया गया है कि Ct)

विशिष्ट पुनर्प्राप्ति कारक

प्लेटिनम वायर रेशियोमीटर थर्मामीटर (फ्लश बल्ब प्रकार): e ≈ 0.75 - 0.9

डबल प्लेटिनम ट्यूब रेशियोमीटर थर्मामीटर (टीएटी जांच): ≈ 1

अन्य संकेतन

कुल हवा का तापमान (TAT) भी कहा जाता है: संकेतित हवा का तापमान (IAT) या राम हवा का तापमान (RAT)
बाहरी हवा का तापमान | स्थिर हवा का तापमान (एसएटी) भी कहा जाता है: बाहरी हवा का तापमान | बाहरी हवा का तापमान (ओएटी) या वास्तविक हवा का तापमान

राम उदय

TAT और SAT के बीच के अंतर को रेम राइज (RR) कहा जाता है और यह उच्च वेग पर हवा की संपीड्यता और घर्षण के कारण होता है।

 

 

 

 

(2)

अभ्यास में मैक 0.2 के तहत (सही) एयरस्पीड पर उड़ान भरने वाले विमानों के लिए रैम वृद्धि नगण्य है

मच 0.2 से अधिक के एयरस्पीड्स (TAS) के लिए, जैसे ही एयरस्पीड बढ़ता है तापमान स्थिर हवा के तापमान से अधिक हो जाता है। यह काइनेटिक (घर्षण) हीटिंग और एडियाबेटिक प्रक्रिया के संयोजन के कारण होता है

  • काइनेटिक हीटिंग। जैसे-जैसे हवा की गति बढ़ती है, प्रति सेकंड हवा के अधिक से अधिक अणु विमान से टकराते हैं। यह घर्षण के कारण विमान के डायरेक्ट रीडिंग थर्मामीटर जांच में तापमान वृद्धि का कारण बनता है। क्योंकि वायु प्रवाह को संपीड़ित और आइसेंट्रोपिक प्रक्रिया माना जाता है, जो कि परिभाषा के अनुसार, रूद्धोष्म और प्रतिवर्ती है, इस लेख में प्रयुक्त समीकरण घर्षण ताप का हिसाब नहीं रखते हैं। यही कारण है कि स्थिर हवा के तापमान की गणना के लिए रिकवरी फैक्टर के उपयोग की आवश्यकता होती है, . आधुनिक यात्री जेट विमानों के लिए काइनेटिक हीटिंग लगभग नगण्य है।
  • एडियाबेटिक प्रक्रिया। जैसा कि ऊपर वर्णित है, यह ऊर्जा के रूपांतरण के कारण होता है न कि सीधे ऊष्मा के प्रयोग से। मच 0.2 से अधिक एयरस्पीड पर, रिमोट रीडिंग टेम्परेचर प्रोब (टीएटी-प्रोब) में, बाहरी वायु प्रवाह, जो कई सौ समुद्री मील हो सकता है, वस्तुतः बहुत तेजी से आराम करने के लिए लाया जाता है। गतिमान वायु की ऊर्जा (विशिष्ट गतिज ऊर्जा) तब तापमान वृद्धि (विशिष्ट तापीय धारिता) के रूप में जारी (परिवर्तित) होती है। ऊर्जा को नष्ट नहीं किया जा सकता बल्कि केवल रूपांतरित किया जा सकता है; इसका मतलब यह है कि ऊष्मप्रवैगिकी के पहले नियम के अनुसार, पृथक प्रणाली की कुल ऊर्जा स्थिर रहनी चाहिए।

काइनेटिक हीटिंग और एडियाबेटिक तापमान परिवर्तन (एडियाबेटिक कम्प्रेशन के कारण) का कुल योग 'टोटल राम राइज' है।

संयोजन समीकरण (1) & (2), हम पाते हैं:

यदि हम शुष्क हवा के लिए मच संख्या समीकरण का उपयोग करते हैं:
कहाँ हम पाते हैं

 

 

 

 

(3)

जिसे सरल बनाया जा सकता है:

का उपयोग करके और

  • ध्वनि की गति
  • ताप क्षमता अनुपात (ताप क्षमता का अनुपात) और विमानन उद्देश्यों के लिए 7/5 = 1.400 माना जाता है।
  • गैस स्थिरांक। का अनुमानित मूल्य शुष्क हवा के लिए 286.9 J·kg−1·K−1 है।
  • निरंतर दबाव के लिए ताप क्षमता स्थिर।
  • निरंतर मात्रा के लिए ताप क्षमता स्थिर।
  • स्थिर हवा का तापमान, एसएटी, केल्विन में मापा जाता है।
  • विमान का सच्चा एयरस्पीड, TAS।
  • पुनर्प्राप्ति कारक, जिसका अनुमानित मान 0.98 है, जो आधुनिक TAT-जांच के लिए विशिष्ट है।

TAS के साथ गांठों में उपरोक्त मानों के लिए (3) हल करके, राम वृद्धि के लिए सरल सटीक सूत्र है:


यह भी देखें

  • ठहराव बिंदु
  • ठहराव तापमान
  • बाहर हवा का तापमान
  • मच संख्या
  • ध्वनि की गति
  • एडियाबेटिक प्रक्रिया
  • आइसेंट्रोपिक प्रक्रिया
  • विशिष्ट तापीय धारिता

बाहरी संबंध