गतिशील ब्रेकिंग: Difference between revisions
No edit summary |
No edit summary |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Dynamic braking is the use of the traction motors as generators when slowing a vehicle.}} | {{Short description|Dynamic braking is the use of the traction motors as generators when slowing a vehicle.}} | ||
{{Globalize|date=June 2008}} | {{Globalize|date=June 2008}} | ||
[[File:NSLocoNo.5348.jpg|thumb|नॉरफ़ॉक दक्षिणी 5348 डीजल-इलेक्ट्रिक | [[File:NSLocoNo.5348.jpg|thumb|नॉरफ़ॉक दक्षिणी 5348 डीजल-इलेक्ट्रिक इंजन गतिशील ब्रेकिंग का उपयोग करता है। ब्रेक ग्रिड प्रतिरोधों के लिए कूलिंग ग्रिल इंजन के शीर्ष केंद्र में है।]] | ||
'''गतिशील ब्रेकिंग (डायनेमिक ब्रेकिंग)''' किसी वाहन, जैसे विद्युत् या डीजल-विद्युत् | '''गतिशील ब्रेकिंग (डायनेमिक ब्रेकिंग)''' किसी वाहन, जैसे विद्युत् या डीजल-विद्युत् इंजन, को धीमा किये जाने के समय एक विद्युतीय कर्षण मोटर को एक जनरेटर के रूप में उपयोग किये जाने को कहते हैं। यदि उत्पन्न विद्युत् शक्ति ब्रेक ग्रिड प्रतिरोधों में ऊष्मा के रूप में विघटित हो तो उसे '''रियोस्टैटिक ब्रेकिंग''' कहते हैं और यदि शक्ति आपूर्ति लाइन में वापस कर दी जाये तो उसे '''पुनर्योजी ब्रेकिंग''' '''(रिजेनेरेटिव ब्रेकिंग)''' कहते है। गतिशील ब्रेकिंग घर्षण आधारित ब्रेकिंग घटकों पर होने वाले घिसाव को कम करता है, और पुनर्जनन शुद्ध ऊर्जा की खपत को कम करता है। गतिशील ब्रेकिंग का उपयोग बहु-इकाइयों युक्त रेल-कारों, हल्के रेल वाहनों, [[ ट्राम |ट्राम]], ट्राली-बसों और विद्युत वाहनों तथा मिश्रित (हाइब्रिड) विद्युत वाहनों में किया जा सकता है। | ||
== संचालन का सिद्धांत == | == संचालन का सिद्धांत == | ||
एक घूर्णन शाफ्ट (विद्युत् मोटर) की विद्युत ऊर्जा को यांत्रिक ऊर्जा में परिवर्तित करना एक घूर्णन शाफ्ट की यांत्रिक ऊर्जा को विद्युत ऊर्जा (विद्युत् जनरेटर) में परिवर्तित करने का व्युत्क्रम है। इन दोनों प्रक्रियाओं को आर्मेचर वाइंडिंग के एक (अपेक्षाकृत) बाहरी चल चुंबकीय क्षेत्र के संपर्क में आने से पूर्ण किया जा सकता है जबकि आर्मेचर एक पावर सप्लाई या जनरेटर युक्त विद्युतीय परिपथ से जुड़ा हुआ हो। चूंकि विद्युतीय/यांत्रिक ऊर्जा परिवर्तक उपकरण की भूमिका इससे निर्धारित होती है कि कौन सा | एक घूर्णन शाफ्ट (विद्युत् मोटर) की विद्युत ऊर्जा को यांत्रिक ऊर्जा में परिवर्तित करना एक घूर्णन शाफ्ट की यांत्रिक ऊर्जा को विद्युत ऊर्जा (विद्युत् जनरेटर) में परिवर्तित करने का व्युत्क्रम है। इन दोनों प्रक्रियाओं को आर्मेचर वाइंडिंग के एक (अपेक्षाकृत) बाहरी चल चुंबकीय क्षेत्र के संपर्क में आने से पूर्ण किया जा सकता है जबकि आर्मेचर एक पावर सप्लाई या जनरेटर युक्त विद्युतीय परिपथ से जुड़ा हुआ हो। चूंकि विद्युतीय/यांत्रिक ऊर्जा परिवर्तक उपकरण की भूमिका इससे निर्धारित होती है कि कौन सा अंतराफलक (विद्युतीय या यांत्रिक) ऊर्जा प्रदान या प्राप्त करता है इसलिए वह ही उपकरण मोटर या जनरेटर दोनों ही भूमिकाओं को पूरा कर सकता है। गतिशील ब्रेकिंग में, चुंबकीय क्षेत्र को उत्पन्न करने वाले कुंडल में विद्युत प्रवाह देते समय, कर्षण मोटर को एक सप्लाई परिपथ से ग्राही परिपथ में परिवर्तित करके, एक जनरेटर की भूमिका में परिवर्तित किया जाता है। | ||
घूर्णन शाफ्ट पर लागू प्रतिरोध (ब्रेकिंग | घूर्णन शाफ्ट पर लागू प्रतिरोध (ब्रेकिंग शक्ति) की मात्रा विद्युत बिजली उत्पादन की दर और कुछ दक्षता हानि के योग के बराबर होती है। यह चुंबकीय क्षेत्र की ताकत के आनुपात में होता है, जो कि चुंबकीय क्षेत्र के कुंडल में विद्युत प्रवाह तथा आर्मेचर और चुंबकीय क्षेत्र के एक दूसरे के विपरीत घूमने की दर द्वारा नियंत्रित किया जाता है। इसका निर्धारण पहियों के रोटेशन तथा पावर शाफ्ट और पहियों के क्रमावर्तन के अनुपात द्वारा होता है। चुंबकीय क्षेत्र के कुंडल में विद्युत प्रवाह की मात्रा के माध्यम से चुंबकीय क्षेत्र की ताकत को कम या बढ़ा कर ब्रेकिंग शक्ति को नियंत्रित किया जाता है। चूंकि विद्युत बिजली उत्पादन की दर, और इसके विपरीत ब्रेकिंग शक्ति, उस दर के आनुपातिक हैं जिस पर विद्युत-शक्ति शाफ्ट घूम रहा है, ब्रेकिंग पावर को बनाए रखने के लिए एक मजबूत चुंबकीय क्षेत्र की आवश्यकता होती है क्योंकि गति कम होती जाती है और एक निम्न सीमा होती है जिस पर गतिशील ब्रेकिंग प्रभावी रह सके। यह चुंबकीय क्षेत्र के कुंडल पर लगने वाले विद्युत प्रवाह की उपलब्धता पर निर्भर करता है। | ||
गतिशील ब्रेकिंग के दौरान उत्पन्न बिजली के प्रबंधन के दो मुख्य तरीके रियोस्टैटिक ब्रेकिंग और पुनर्योजी ब्रेकिंग हैं, जैसा कि नीचे वर्णित है। | गतिशील ब्रेकिंग के दौरान उत्पन्न बिजली के प्रबंधन के दो मुख्य तरीके रियोस्टैटिक ब्रेकिंग और पुनर्योजी ब्रेकिंग हैं, जैसा कि नीचे वर्णित है। | ||
स्थायी चुंबक | स्थायी चुंबक मोटरों के लिए, गतिशील ब्रेकिंग को मोटर टर्मिनलों को छोटा करके आसानी से प्राप्त किया जाता है, इस प्रकार मोटर को त्वरित ही अचानक रोक दिया जाता है। यह विधि पूरी ऊर्जा को ऊष्मा के रूप मोटर में ही फैलाती है और इसलिए शीतलन सीमाओं के कारण कम-शक्ति के रुक-रुक के चलने वाले अनुप्रयोगों के अलावा किसी भी अन्य चीज़ में इसका उपयोग नहीं किया जा सकता है। यह कर्षण अनुप्रयोगों के लिए उपयुक्त नहीं है। | ||
== रियोस्टैटिक ब्रेकिंग == | == रियोस्टैटिक ब्रेकिंग == | ||
मोटरों द्वारा उत्पादित विद्युत ऊर्जा को ऑनबोर्ड प्रतिरोधों के एक बैंक द्वारा | मोटरों द्वारा उत्पादित विद्युत ऊर्जा को ऑनबोर्ड प्रतिरोधों के एक बैंक द्वारा ऊष्मा के रूप में विघटित किया जाता है जिसे ''ब्रेकिंग ग्रिड'' कहते हैं। प्रतिरोधों को क्षतिग्रस्त होने से बचाने के लिए बड़े शीतलन पंखों की आवश्यकता होती है। आधुनिक प्रणालियों में थर्मल मॉनिटरिंग होती है, ताकि यदि प्रतिरोध-बैंक का तापमान अत्यधिक हो जाए तो इसे बंद कर दिया जाएगा और ब्रेकिंग केवल घर्षण से हो जाएगी। | ||
== पुनर्योजी ब्रेकिंग == | == पुनर्योजी ब्रेकिंग == | ||
विद्युतीकृत प्रणाली में पुनर्योजी ब्रेकिंग की प्रक्रिया को नियोजित किया जाता है जिससे ब्रेकिंग के दौरान उत्पादित विद्युत प्रवाह को ऊष्मा के रूप में बर्बाद होने के बजाय अन्य कर्षण इकाइयों द्वारा उपयोग के लिए बिजली आपूर्ति प्रणाली में वापस सिंचित किया जाता है। विद्युतीकृत प्रणालियों में पुनर्योजी और रियोस्टैटिक ब्रेकिंग दोनों को शामिल करना सामान्य है। यदि बिजली की आपूर्ति प्रणाली ग्रहणशील नहीं है, यानी | विद्युतीकृत प्रणाली में पुनर्योजी ब्रेकिंग की प्रक्रिया को नियोजित किया जाता है जिससे ब्रेकिंग के दौरान उत्पादित विद्युत प्रवाह को ऊष्मा के रूप में बर्बाद होने के बजाय अन्य कर्षण इकाइयों द्वारा उपयोग के लिए बिजली आपूर्ति प्रणाली में वापस सिंचित किया जाता है। विद्युतीकृत प्रणालियों में पुनर्योजी और रियोस्टैटिक ब्रेकिंग दोनों को शामिल करना सामान्य है। यदि बिजली की आपूर्ति प्रणाली ग्रहणशील नहीं है, यानी विद्युत प्रवाह को अवशोषित करने में असमर्थ है, तो विद्युतीकृत प्रणाली ब्रेकिंग प्रभाव प्रदान करने के लिए रियोस्टैटिक प्रणाली में डिफ़ॉल्ट रूप से परिवर्तित हो जाती है। | ||
वर्तमान समय में ऑनबोर्ड ऊर्जा भंडारण प्रणाली (ऑन-बोर्ड एनर्जी स्टोरेज सिस्टम) युक्त यार्ड इंजन उपलब्ध हैं जो कुछ ऊर्जा की पुनः प्राप्ति में सक्षम हैं अन्यथा यह ऊर्जा ऊष्मा के रूप में बर्बाद हो जाती है। उदाहरण के लिए, कैनेडियन पैसिफिक रेलवे, BNSF रेलवे, केंसास सिटी साउथर्न रेलवे एवं यूनियन पैसिफिक रेलरोड द्वारा द ग्रीन गोट मॉडल उपयोग हो रहा है। | |||
प्रत्यावर्ती धारा (AC) इन्वर्टर से सुसज्जित आधुनिक यात्री | प्रत्यावर्ती धारा (AC) इन्वर्टर से सुसज्जित आधुनिक यात्री इंजन पर्याप्त शीर्षात (हेड-एंड पावर; HEP) लोड के साथ ट्रेनें खींचता हैं। इनमे ब्रेकिंग ऊर्जा का उपयोग पुनर्योजी ब्रेकिंग के माध्यम से ट्रेन की ऑन-बोर्ड प्रणाली को विद्युत् शक्ति प्रदान करने के लिए किया जा सकता है यदि विद्युतीकरण प्रणाली ग्रहणशील न हो या फिर रेल पथ ही विद्युतीकृत न हो। आधुनिक यात्री ट्रेनों पर शीर्षात लोड इतना अच्छे से कारगर होता है कि कुछ नए इलेक्ट्रिक इंजन जैसे कि [[ ALP-46 ]] को पारंपरिक प्रतिरोध ग्रिड के बिना डिज़ाइन किया गया था। | ||
== मिश्रित ब्रेकिंग == | == मिश्रित ब्रेकिंग == | ||
Line 25: | Line 25: | ||
]] | ]] | ||
अकेले गतिशील ब्रेकिंग एक | अकेले गतिशील ब्रेकिंग एक इंजन को रोकने के लिए पर्याप्त नहीं है, क्योंकि इसका ब्रेकिंग प्रभाव तेजी से १० से १२ मील प्रति घंटा (१६ से १९ किमी प्रति घंटा) कम हो जाता है। इसलिए, इसका उपयोग हमेशा सामान्य वायु ब्रेक के साथ संयोजन में किया जाता है। इस संयुक्त प्रणाली को '''मिश्रित ब्रेकिंग''' कहा जाता है। ट्रेनों को पूर्णतयः रोकने के लिए उपयोग होने वाली ऊर्जा के भंडारण के लिए लिथियम-आयन बैटरी का भी उपयोग होता है।<ref name="rgi">{{cite news|title=Wayside and on-board storage can capture more regenerated energy|url=http://www.railwaygazette.com/news/single-view/view//wayside-and-on-board-storage-can-capture-more-regenerated-energy.html|work=[[Railway Gazette International]]|date=2007-07-02|author=Professor Satoru Sone, Kogakuin University|archive-date=10 July 2018|archive-url=https://web.archive.org/web/20180710141424/http://www.railwaygazette.com:80/news/single-view/view/wayside-and-on-board-storage-can-capture-more-regenerated-energy.html|access-date=29 August 2021|url-status=live}}</ref> | ||
यद्यपि मिश्रित ब्रेकिंग दोनों डायनामिक और | यद्यपि मिश्रित ब्रेकिंग दोनों, डायनामिक और वायु ब्रेक, को सम्मिलित करती है, परिणामी ब्रेकिंग बल को अकेले वायु ब्रेक द्वारा प्रदान किये जाने वाले ब्रेकिंग बल के सामान रखा जाता है। यह गतिशील ब्रेक हिस्से को अधिकतम और स्वचालित रूप से वायु ब्रेक भाग को विनियमित करके प्राप्त किया जाता है, क्योंकि गतिशील ब्रेकिंग का मुख्य उद्देश्य आवश्यक वायु ब्रेक की ब्रेकिंग की मात्रा को कम करना है। यह वायु का संरक्षण करता है और अति-गर्म पहियों के जोखिमों को कम करता है। एक इंजन निर्माता, इलेक्ट्रो-मोटिव डीजल (EMD) का अनुमान है कि गतिशील ब्रेकिंग मिश्रित ब्रेकिंग के दौरान ५०% से ७०% के बीच ब्रेकिंग फोर्स प्रदान करता है। | ||
== सेल्फ-लोड टेस्ट == | == सेल्फ-लोड टेस्ट == | ||
एक | एक इंजन के शक्ति निर्गत (पावर आउटपुट) का सेल्फ-लोड टेस्ट करने के लिए डायनेमोमीटर या लोड बैंक के रूप में ब्रेक ग्रिड का उपयोग किया जा सकता है। इंजन की स्थिर अवस्था में, कर्षण मोटर के बजाय मुख्य जनरेटर (MG) को आउटपुट ग्रिड से जोड़ दिया जाता है। ग्रिड आम तौर पर इंजन के पूर्ण शक्ति निर्गत को अवशोषित करने के लिए पर्याप्त रूप से बड़े होते हैं। इंजन के पूर्ण पावर आउटपुट की गणना MG वोल्टता और निर्गत विद्युत् प्रवाह से की जाती है। | ||
== हाइड्रोडायनामिक ब्रेकिंग == | == हाइड्रोडायनामिक ब्रेकिंग == | ||
हाइड्रोलिक ट्रांसमिशन युक्त डीजल | द्रवचालित संप्रेषण (हाइड्रोलिक ट्रांसमिशन) युक्त डीजल इंजन को हाइड्रोडायनामिक ब्रेकिंग के लिए सुसज्जित किया जा सकता है। इस परिस्थिति में, आघूर्ण बल परिवर्त्तक या द्रव युग्मन एक पानी के ब्रेक की तरह गति अवरोधक के रूप में कार्य करता है। ब्रेकिंग एनर्जी हाइड्रोलिक द्रव को गर्म करती है, और इंजन शीतलन तापविकिरक (रेडिएटर) द्वारा ऊष्मा (ऊष्मा विनिमयक के माध्यम से) विघटित होती है। ब्रेकिंग के दौरान इंजन (नाम मात्र की ऊष्मा उत्पादित करते हुए) निष्क्रिय होता है, इसलिए रेडिएटर ओवरलोड नहीं होता है। | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[ काउंटर-प्रेशर ब्रेक ]] | * [[ काउंटर-प्रेशर ब्रेक |काउंटर-प्रेशर ब्रेक]] | ||
*रिटार्डर (मैकेनिकल इंजीनियरिंग) | *[[रिटार्डर (मैकेनिकल इंजीनियरिंग)]] | ||
*[[ एडी करंट ब्रेक ]] | *[[ एडी करंट ब्रेक |एडी करंट ब्रेक]] | ||
==संदर्भ== | ==संदर्भ== | ||
Line 128: | Line 128: | ||
{{Railway brakes}} | {{Railway brakes}} | ||
{{DEFAULTSORT:Dynamic Braking}} | {{DEFAULTSORT:Dynamic Braking}} | ||
[[Category: | [[Category:Articles with invalid date parameter in template|Dynamic Braking]] | ||
[[Category:Created with V14 On 06/09/2022]] | [[Category:Articles with limited geographic scope from June 2008|Dynamic Braking]] | ||
[[Category:Articles with short description|Dynamic Braking]] | |||
[[Category:Created with V14 On 06/09/2022|Dynamic Braking]] | |||
[[Category:Exclude in print|Dynamic Braking]] | |||
[[Category:Interwiki category linking templates|Dynamic Braking]] | |||
[[Category:Interwiki link templates|Dynamic Braking]] | |||
[[Category:Machine Translated Page|Dynamic Braking]] | |||
[[Category:Pages with broken file links|Dynamic Braking]] | |||
[[Category:Pages with script errors|Dynamic Braking]] | |||
[[Category:Short description with empty Wikidata description|Dynamic Braking]] | |||
[[Category:Templates that add a tracking category|Dynamic Braking]] | |||
[[Category:Templates using TemplateData|Dynamic Braking]] | |||
[[Category:Webarchive template wayback links|Dynamic Braking]] | |||
[[Category:Wikimedia Commons templates|Dynamic Braking]] | |||
[[Category:गतिशील ब्रेकिंग| गतिशील ब्रेकिंग ]] | |||
[[Category:रेलवे ब्रेक|Dynamic Braking]] |
Latest revision as of 16:15, 19 October 2022
The examples and perspective in this article may not represent a worldwide view of the subject. (June 2008) (Learn how and when to remove this template message) |
गतिशील ब्रेकिंग (डायनेमिक ब्रेकिंग) किसी वाहन, जैसे विद्युत् या डीजल-विद्युत् इंजन, को धीमा किये जाने के समय एक विद्युतीय कर्षण मोटर को एक जनरेटर के रूप में उपयोग किये जाने को कहते हैं। यदि उत्पन्न विद्युत् शक्ति ब्रेक ग्रिड प्रतिरोधों में ऊष्मा के रूप में विघटित हो तो उसे रियोस्टैटिक ब्रेकिंग कहते हैं और यदि शक्ति आपूर्ति लाइन में वापस कर दी जाये तो उसे पुनर्योजी ब्रेकिंग (रिजेनेरेटिव ब्रेकिंग) कहते है। गतिशील ब्रेकिंग घर्षण आधारित ब्रेकिंग घटकों पर होने वाले घिसाव को कम करता है, और पुनर्जनन शुद्ध ऊर्जा की खपत को कम करता है। गतिशील ब्रेकिंग का उपयोग बहु-इकाइयों युक्त रेल-कारों, हल्के रेल वाहनों, ट्राम, ट्राली-बसों और विद्युत वाहनों तथा मिश्रित (हाइब्रिड) विद्युत वाहनों में किया जा सकता है।
संचालन का सिद्धांत
एक घूर्णन शाफ्ट (विद्युत् मोटर) की विद्युत ऊर्जा को यांत्रिक ऊर्जा में परिवर्तित करना एक घूर्णन शाफ्ट की यांत्रिक ऊर्जा को विद्युत ऊर्जा (विद्युत् जनरेटर) में परिवर्तित करने का व्युत्क्रम है। इन दोनों प्रक्रियाओं को आर्मेचर वाइंडिंग के एक (अपेक्षाकृत) बाहरी चल चुंबकीय क्षेत्र के संपर्क में आने से पूर्ण किया जा सकता है जबकि आर्मेचर एक पावर सप्लाई या जनरेटर युक्त विद्युतीय परिपथ से जुड़ा हुआ हो। चूंकि विद्युतीय/यांत्रिक ऊर्जा परिवर्तक उपकरण की भूमिका इससे निर्धारित होती है कि कौन सा अंतराफलक (विद्युतीय या यांत्रिक) ऊर्जा प्रदान या प्राप्त करता है इसलिए वह ही उपकरण मोटर या जनरेटर दोनों ही भूमिकाओं को पूरा कर सकता है। गतिशील ब्रेकिंग में, चुंबकीय क्षेत्र को उत्पन्न करने वाले कुंडल में विद्युत प्रवाह देते समय, कर्षण मोटर को एक सप्लाई परिपथ से ग्राही परिपथ में परिवर्तित करके, एक जनरेटर की भूमिका में परिवर्तित किया जाता है।
घूर्णन शाफ्ट पर लागू प्रतिरोध (ब्रेकिंग शक्ति) की मात्रा विद्युत बिजली उत्पादन की दर और कुछ दक्षता हानि के योग के बराबर होती है। यह चुंबकीय क्षेत्र की ताकत के आनुपात में होता है, जो कि चुंबकीय क्षेत्र के कुंडल में विद्युत प्रवाह तथा आर्मेचर और चुंबकीय क्षेत्र के एक दूसरे के विपरीत घूमने की दर द्वारा नियंत्रित किया जाता है। इसका निर्धारण पहियों के रोटेशन तथा पावर शाफ्ट और पहियों के क्रमावर्तन के अनुपात द्वारा होता है। चुंबकीय क्षेत्र के कुंडल में विद्युत प्रवाह की मात्रा के माध्यम से चुंबकीय क्षेत्र की ताकत को कम या बढ़ा कर ब्रेकिंग शक्ति को नियंत्रित किया जाता है। चूंकि विद्युत बिजली उत्पादन की दर, और इसके विपरीत ब्रेकिंग शक्ति, उस दर के आनुपातिक हैं जिस पर विद्युत-शक्ति शाफ्ट घूम रहा है, ब्रेकिंग पावर को बनाए रखने के लिए एक मजबूत चुंबकीय क्षेत्र की आवश्यकता होती है क्योंकि गति कम होती जाती है और एक निम्न सीमा होती है जिस पर गतिशील ब्रेकिंग प्रभावी रह सके। यह चुंबकीय क्षेत्र के कुंडल पर लगने वाले विद्युत प्रवाह की उपलब्धता पर निर्भर करता है।
गतिशील ब्रेकिंग के दौरान उत्पन्न बिजली के प्रबंधन के दो मुख्य तरीके रियोस्टैटिक ब्रेकिंग और पुनर्योजी ब्रेकिंग हैं, जैसा कि नीचे वर्णित है।
स्थायी चुंबक मोटरों के लिए, गतिशील ब्रेकिंग को मोटर टर्मिनलों को छोटा करके आसानी से प्राप्त किया जाता है, इस प्रकार मोटर को त्वरित ही अचानक रोक दिया जाता है। यह विधि पूरी ऊर्जा को ऊष्मा के रूप मोटर में ही फैलाती है और इसलिए शीतलन सीमाओं के कारण कम-शक्ति के रुक-रुक के चलने वाले अनुप्रयोगों के अलावा किसी भी अन्य चीज़ में इसका उपयोग नहीं किया जा सकता है। यह कर्षण अनुप्रयोगों के लिए उपयुक्त नहीं है।
रियोस्टैटिक ब्रेकिंग
मोटरों द्वारा उत्पादित विद्युत ऊर्जा को ऑनबोर्ड प्रतिरोधों के एक बैंक द्वारा ऊष्मा के रूप में विघटित किया जाता है जिसे ब्रेकिंग ग्रिड कहते हैं। प्रतिरोधों को क्षतिग्रस्त होने से बचाने के लिए बड़े शीतलन पंखों की आवश्यकता होती है। आधुनिक प्रणालियों में थर्मल मॉनिटरिंग होती है, ताकि यदि प्रतिरोध-बैंक का तापमान अत्यधिक हो जाए तो इसे बंद कर दिया जाएगा और ब्रेकिंग केवल घर्षण से हो जाएगी।
पुनर्योजी ब्रेकिंग
विद्युतीकृत प्रणाली में पुनर्योजी ब्रेकिंग की प्रक्रिया को नियोजित किया जाता है जिससे ब्रेकिंग के दौरान उत्पादित विद्युत प्रवाह को ऊष्मा के रूप में बर्बाद होने के बजाय अन्य कर्षण इकाइयों द्वारा उपयोग के लिए बिजली आपूर्ति प्रणाली में वापस सिंचित किया जाता है। विद्युतीकृत प्रणालियों में पुनर्योजी और रियोस्टैटिक ब्रेकिंग दोनों को शामिल करना सामान्य है। यदि बिजली की आपूर्ति प्रणाली ग्रहणशील नहीं है, यानी विद्युत प्रवाह को अवशोषित करने में असमर्थ है, तो विद्युतीकृत प्रणाली ब्रेकिंग प्रभाव प्रदान करने के लिए रियोस्टैटिक प्रणाली में डिफ़ॉल्ट रूप से परिवर्तित हो जाती है।
वर्तमान समय में ऑनबोर्ड ऊर्जा भंडारण प्रणाली (ऑन-बोर्ड एनर्जी स्टोरेज सिस्टम) युक्त यार्ड इंजन उपलब्ध हैं जो कुछ ऊर्जा की पुनः प्राप्ति में सक्षम हैं अन्यथा यह ऊर्जा ऊष्मा के रूप में बर्बाद हो जाती है। उदाहरण के लिए, कैनेडियन पैसिफिक रेलवे, BNSF रेलवे, केंसास सिटी साउथर्न रेलवे एवं यूनियन पैसिफिक रेलरोड द्वारा द ग्रीन गोट मॉडल उपयोग हो रहा है।
प्रत्यावर्ती धारा (AC) इन्वर्टर से सुसज्जित आधुनिक यात्री इंजन पर्याप्त शीर्षात (हेड-एंड पावर; HEP) लोड के साथ ट्रेनें खींचता हैं। इनमे ब्रेकिंग ऊर्जा का उपयोग पुनर्योजी ब्रेकिंग के माध्यम से ट्रेन की ऑन-बोर्ड प्रणाली को विद्युत् शक्ति प्रदान करने के लिए किया जा सकता है यदि विद्युतीकरण प्रणाली ग्रहणशील न हो या फिर रेल पथ ही विद्युतीकृत न हो। आधुनिक यात्री ट्रेनों पर शीर्षात लोड इतना अच्छे से कारगर होता है कि कुछ नए इलेक्ट्रिक इंजन जैसे कि ALP-46 को पारंपरिक प्रतिरोध ग्रिड के बिना डिज़ाइन किया गया था।
मिश्रित ब्रेकिंग
अकेले गतिशील ब्रेकिंग एक इंजन को रोकने के लिए पर्याप्त नहीं है, क्योंकि इसका ब्रेकिंग प्रभाव तेजी से १० से १२ मील प्रति घंटा (१६ से १९ किमी प्रति घंटा) कम हो जाता है। इसलिए, इसका उपयोग हमेशा सामान्य वायु ब्रेक के साथ संयोजन में किया जाता है। इस संयुक्त प्रणाली को मिश्रित ब्रेकिंग कहा जाता है। ट्रेनों को पूर्णतयः रोकने के लिए उपयोग होने वाली ऊर्जा के भंडारण के लिए लिथियम-आयन बैटरी का भी उपयोग होता है।[1]
यद्यपि मिश्रित ब्रेकिंग दोनों, डायनामिक और वायु ब्रेक, को सम्मिलित करती है, परिणामी ब्रेकिंग बल को अकेले वायु ब्रेक द्वारा प्रदान किये जाने वाले ब्रेकिंग बल के सामान रखा जाता है। यह गतिशील ब्रेक हिस्से को अधिकतम और स्वचालित रूप से वायु ब्रेक भाग को विनियमित करके प्राप्त किया जाता है, क्योंकि गतिशील ब्रेकिंग का मुख्य उद्देश्य आवश्यक वायु ब्रेक की ब्रेकिंग की मात्रा को कम करना है। यह वायु का संरक्षण करता है और अति-गर्म पहियों के जोखिमों को कम करता है। एक इंजन निर्माता, इलेक्ट्रो-मोटिव डीजल (EMD) का अनुमान है कि गतिशील ब्रेकिंग मिश्रित ब्रेकिंग के दौरान ५०% से ७०% के बीच ब्रेकिंग फोर्स प्रदान करता है।
सेल्फ-लोड टेस्ट
एक इंजन के शक्ति निर्गत (पावर आउटपुट) का सेल्फ-लोड टेस्ट करने के लिए डायनेमोमीटर या लोड बैंक के रूप में ब्रेक ग्रिड का उपयोग किया जा सकता है। इंजन की स्थिर अवस्था में, कर्षण मोटर के बजाय मुख्य जनरेटर (MG) को आउटपुट ग्रिड से जोड़ दिया जाता है। ग्रिड आम तौर पर इंजन के पूर्ण शक्ति निर्गत को अवशोषित करने के लिए पर्याप्त रूप से बड़े होते हैं। इंजन के पूर्ण पावर आउटपुट की गणना MG वोल्टता और निर्गत विद्युत् प्रवाह से की जाती है।
हाइड्रोडायनामिक ब्रेकिंग
द्रवचालित संप्रेषण (हाइड्रोलिक ट्रांसमिशन) युक्त डीजल इंजन को हाइड्रोडायनामिक ब्रेकिंग के लिए सुसज्जित किया जा सकता है। इस परिस्थिति में, आघूर्ण बल परिवर्त्तक या द्रव युग्मन एक पानी के ब्रेक की तरह गति अवरोधक के रूप में कार्य करता है। ब्रेकिंग एनर्जी हाइड्रोलिक द्रव को गर्म करती है, और इंजन शीतलन तापविकिरक (रेडिएटर) द्वारा ऊष्मा (ऊष्मा विनिमयक के माध्यम से) विघटित होती है। ब्रेकिंग के दौरान इंजन (नाम मात्र की ऊष्मा उत्पादित करते हुए) निष्क्रिय होता है, इसलिए रेडिएटर ओवरलोड नहीं होता है।
यह भी देखें
संदर्भ
- ↑ Professor Satoru Sone, Kogakuin University (2007-07-02). "Wayside and on-board storage can capture more regenerated energy". Railway Gazette International. Archived from the original on 10 July 2018. Retrieved 29 August 2021.
इस पृष्ठ में गुम आंतरिक लिंक की सूची
- धारावाहिक संचार
- आंकड़ा टर्मिनल उपकरण
- अनुशंसित मानक (ईआईए)
- बिना अवरोध के साथ बिजली की आपूर्ति
- डेटा संचार उपस्कर
- तर्क -स्तरीय स्तर
- टेलीटाइपराइटर
- प्रवाह नियंत्रण (आंकड़ा)
- अशक्त मोडेम
- पीसीआई एक्सप्रेस
- विद्युतचुंबकीय व्यवधान
- फुल डुप्लेक्स
- समय श्रृंखला
- वर्तमान परिपथ
- एकल-समाप्त संकेत
- यूज़्रोबोटिक्स
- विशिष्ट अंगूठी
- बिट त्रुटि दर परीक्षण
- टीटीएल स्तर
- विभेदक संकेत
- असंतुलित संकेत
- रिकॉर्डर वीडियोटेप्स
- भास्वर
- रोह
- सात-खंड प्रदर्शन
- क्षारीय मृदा
- रोशनी
- जिंक आक्साइड
- दृष्टि के हठ
- संयुक्त राज्य अमेरिका में मोटर वाहन उद्योग
- प्रत्यावर्ती धारा
- जैविक प्रकाश उत्सर्जक डायोड
- शौकिया रेडियो प्रचालक
- वोक्स (संगीत उपकरण)
- डिजिटल घड़ी
- सीधा
- आईपीएस पैनल
- डिजिटल घड़ी
- ओटो लेहमन (भौतिक विज्ञानी)
- दाऊन कहंग
- IEEE मील के पत्थर की सूची
- आरसीए प्रयोगशालाएँ
- यूनिवर्सिटी ऑफ हल
- जेम्स फर्गसन
- LXD निगमित
- Seiko
- उच्च संकल्प
- विमान - में स्विच करना
- डिस्प्ले के माध्यम से देखें
- कोल्ड कैथोड
- आवक -विद्युत (विद्युत)
- माइक्रोल किया हुआ
- नाइट (इकाई)
- डेड पिक्सेल
- एकीकृत परिपथ
- शंकु को देखना
- रंगों के सारे पहलू
- देशी संकल्प
- नमूना और पकड़
- देखने का कोण
- प्रदर्शन गति धब्बा
- आंख पर जोर
- प्रकाश उत्सर्जक डायोड
- हाफ लाइफ
- नॉरफ़ॉक सदर्न
- अवरोध
- बहु इकाई
- प्रकाश रेल वाहन
- हरी बकरी
- कैनसस सिटी सदर्न रेलवे
- रेल विद्युतीकरण तंत्र
- पुनर्योजी ब्रेक लगाना
- कोनक्स साउथ ईस्टर्न
- LI-आयन
- रिटार्डर (मैकेनिकल इंजीनियरिंग)
- वाटर ब्रेक
बाहरी संबंध
- Blended braking Archived 2016-03-04 at the Wayback Machine
- Regenerative braking boosts green credentials Archived 2007-10-15 at the Wayback Machine, Railway Gazette International July 2007