टेंसर प्रतिनिधित्व: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
गणित में, सामान्य रेखीय समूह के '''टेन्सर | गणित में, सामान्य रेखीय समूह के '''टेन्सर प्रतिनिधित्व''' वे होते हैं, जो मूलभूत प्रतिनिधित्व और उसके द्विगुणों के सूक्ष्म रूप से कई टेन्सर गुणनफल को परिमित रूप से प्राप्त किए जाते हैं। इस तरह के प्रतिनिधित्व के अलघुकरणीय कारकों को टेन्सर प्रतिनिधित्व कहा जाता है और [[युवा टेब्लो से संबद्ध स्कुर फक्टरों|यंग टेब्लो से संबद्ध स्कुर फक्टरों]] का प्रयोग करके प्राप्त किया जा सकता है। ये सामान्य रेखीय समूह के तर्कसंगत प्रतिनिधित्व के साथ मेल खाते हैं। | ||
सामान्यतः [[मैट्रिक्स समूह|आव्यूह समूह]] [[सामान्य रैखिक समूह]] का कोई उपसमूह होता है। किसी आव्यूह समूह का टेंसर प्रतिनिधित्व सामान्य रैखिक समूह के टेंसर प्रतिनिधित्व में निहित किसी भी प्रतिनिधित्व को कहते हैं। उदाहरण के लिए लंबकोणीय समूह O(''n'') क्रम के दो ट्रेस-मुक्त सममित टेंसरों के स्थान पर टेंसर प्रतिनिधित्व को स्वीकार करता है और इस प्रकार [[ऑर्थोगोनल समूह|लंबकोणीय समूह]] के लिए टेंसर प्रतिनिधित्व स्पिन प्रतिनिधित्व के विपरीत होते हैं। | |||
सिम्पलेक्टिक समूह की तरह [[शास्त्रीय समूह]]ों में यह गुण होता है कि शास्त्रीय लाई समूहों के सभी प्रतिनिधित्व | परिमित-आयामी प्रतिनिधित्व टेंसर प्रतिनिधित्व (वेइल के निर्माण द्वारा) होते हैं, जबकि अन्य प्रतिनिधित्व ([[मेटाप्लेक्टिक प्रतिनिधित्व]] की तरह) अनंत आयामों में मौजूद होते हैं। | सिम्पलेक्टिक समूह की तरह [[शास्त्रीय समूह]]ों में यह गुण होता है कि शास्त्रीय लाई समूहों के सभी प्रतिनिधित्व | परिमित-आयामी प्रतिनिधित्व टेंसर प्रतिनिधित्व (वेइल के निर्माण द्वारा) होते हैं, जबकि अन्य प्रतिनिधित्व ([[मेटाप्लेक्टिक प्रतिनिधित्व]] की तरह) अनंत आयामों में मौजूद होते हैं। |
Revision as of 12:04, 17 June 2023
गणित में, सामान्य रेखीय समूह के टेन्सर प्रतिनिधित्व वे होते हैं, जो मूलभूत प्रतिनिधित्व और उसके द्विगुणों के सूक्ष्म रूप से कई टेन्सर गुणनफल को परिमित रूप से प्राप्त किए जाते हैं। इस तरह के प्रतिनिधित्व के अलघुकरणीय कारकों को टेन्सर प्रतिनिधित्व कहा जाता है और यंग टेब्लो से संबद्ध स्कुर फक्टरों का प्रयोग करके प्राप्त किया जा सकता है। ये सामान्य रेखीय समूह के तर्कसंगत प्रतिनिधित्व के साथ मेल खाते हैं।
सामान्यतः आव्यूह समूह सामान्य रैखिक समूह का कोई उपसमूह होता है। किसी आव्यूह समूह का टेंसर प्रतिनिधित्व सामान्य रैखिक समूह के टेंसर प्रतिनिधित्व में निहित किसी भी प्रतिनिधित्व को कहते हैं। उदाहरण के लिए लंबकोणीय समूह O(n) क्रम के दो ट्रेस-मुक्त सममित टेंसरों के स्थान पर टेंसर प्रतिनिधित्व को स्वीकार करता है और इस प्रकार लंबकोणीय समूह के लिए टेंसर प्रतिनिधित्व स्पिन प्रतिनिधित्व के विपरीत होते हैं।
सिम्पलेक्टिक समूह की तरह शास्त्रीय समूहों में यह गुण होता है कि शास्त्रीय लाई समूहों के सभी प्रतिनिधित्व | परिमित-आयामी प्रतिनिधित्व टेंसर प्रतिनिधित्व (वेइल के निर्माण द्वारा) होते हैं, जबकि अन्य प्रतिनिधित्व (मेटाप्लेक्टिक प्रतिनिधित्व की तरह) अनंत आयामों में मौजूद होते हैं।
संदर्भ
- Roe Goodman; Nolan Wallach (2009), Symmetry, representations, and invariants, Springer, chapters 9 and 10.
- Bargmann, V., & Todorov, I. T. (1977). Spaces of analytic functions on a complex cone as carriers for the symmetric tensor representations of SO(n). Journal of Mathematical Physics, 18(6), 1141–1148.