एंटीफ्यूज: Difference between revisions
(Created page with "{{More citations needed|date=May 2014}} एक एंटीफ्यूज एक विद्युत उपकरण है जो फ़्यूज़ (विद्य...") |
(TEXT) |
||
Line 1: | Line 1: | ||
एंटीफ्यूज एक विद्युत उपकरण है जो[[ फ़्यूज़ (विद्युत) | फ़्यूज़]] के विपरीत कार्य करता है। जबकि एक फ्यूज कम प्रतिरोध के साथ प्रारंभ होता है और एक [[विद्युत प्रतिरोधकता और चालकता|विद्युत चालकीय पथ]] को स्थायी रूप से तोड़ने के लिए प्रारूप किया गया है (विशिष्ट रूप से जब पथ के माध्यम से [[विद्युत प्रवाह]] एक निर्दिष्ट सीमा से अधिक हो जाता है), एक एंटीफ्यूज एक उच्च प्रतिरोध के साथ प्रारंभ होता है, और क्रमादेशन इसे एक स्थायी विद्युत प्रवाहकीय पथ में परिवर्तित करता है (विशिष्ट रूप से जब एंटीफ्यूज में वोल्टेज एक निश्चित स्तर से अधिक हो जाता है)। इस तकनीक के कई अनुप्रयोग हैं। | |||
== क्रिसमस ट्री रोशनी == | == क्रिसमस ट्री रोशनी == | ||
एंटीफ्यूज मिनी-लाइट (या | एंटीफ्यूज मिनी-लाइट (या लघुरूप) शैली निम्न वोल्टता [[क्रिसमस रोशनी|क्रिसमस ट्री रोशनी]] में उनके उपयोग के लिए जाने जाते हैं। सामान्य रूप से (मुख्य वोल्टेज से संचालन के लिए), लैंप श्रृंखला में तारित होते हैं। (बड़ी, पारंपरिक, C7 और C9 शैली की रोशनी को श्रृंखला और समानांतर में तार दिया जाता है और मुख्य वोल्टेज पर सीधे संचालित करने के लिए निर्धारित किया जाता है।) क्योंकि श्रृंखला स्ट्रिंग को एकल दीपक के विफल होने से निष्क्रिय कर दिया जाएगा, प्रत्येक प्रकाश बल्ब में एक एंटीफ्यूज स्थापित होता है। जब बल्ब फूटता है, तो पूरे मुख्य वोल्टेज को एकल उड़ाए गए लैंप पर उपयोजित किया जाता है। यह तेजी से एंटीफ्यूज को उड़ाए गए बल्ब को छोटा करने का कारण बनता है, जिससे श्रृंखला परिपथ को काम करना फिर से प्रारंभ करने की अनुमति मिलती है, हालांकि मुख्य वोल्टेज के बड़े अनुपात के साथ अब अवशिष्ट लैंप में से प्रत्येक पर उपयोजित होता है। एंटीफ्यूज एक उच्च प्रतिरोध विलेपन के साथ तार का उपयोग करके बनाया जाता है और यह तार बल्ब के अंदर दो ऊर्ध्वाधर फिलामेंट आश्रय तारों पर कुंडलित होता है। एंटीफ्यूज तार का विद्युतरोधन एक कार्यशील लैम्प पर लगाए गए साधारण निम्न वोल्टता का सामना करता है, लेकिन पूर्ण मुख्य वोल्टेज के तहत तेजी से टूट जाता है, जिससे एंटीफ्यूज क्रिया होता है। प्रासंगिक, विद्युतरोधन अपने आप टूटने में विफल रहता है, लेकिन जले हुए दीपक को टैप करने से सामान्य रूप से यह एक संबंध बना लेता है। प्रायः एक विशेष बल्ब जिसमें कोई एंटीफ्यूज नहीं होता है और प्रायः थोड़ी अलग निर्धारण होती है (इसलिए यह पहले उड़ता है क्योंकि वोल्टेज बहुत अधिक हो जाता है) जिसे <nowiki>''फ्यूज बल्ब''</nowiki> के रूप में जाना जाता है, अगर बहुत अधिक बल्ब विफल हो जाते हैं तो उग्र अधिधारा की संभावना से बचाने के लिए रोशनी की स्ट्रिंग में सम्मिलित किया जाता है। | ||
एंटीफ्यूज का एक बहुत पहले का अनुप्रयोग पुरानी श्रृंखला से जुड़ी स्ट्रीटलाइट्स में था। प्रत्येक | एंटीफ्यूज का एक बहुत पहले का अनुप्रयोग पुरानी श्रृंखला से जुड़ी स्ट्रीटलाइट्स में था। प्रत्येक प्रकाश स्रोत में एक हटाने योग्य प्रकाश सॉकेट था, जिसमें संपर्क की एक जोड़ी थी जो सॉकेट के ऊपर फैली हुई थी। इन संपर्कों का दोहरा उद्देश्य था - उन्होंने सॉकेट को प्रकाश स्रोत के अंदर बढ़ते सम्मेलन से जोड़ा और इन संपर्कों के ऊपरी भाग में एक बदली, डाइम-साइज़ 'कटआउट' (एंटीफ्यूज का एक प्रारंभिक रूप) था। इस संबंध में, ये स्ट्रीट लाइट लूप उपरोक्त क्रिसमस लाइट स्ट्रिंग्स के समान ही संचालित होते हैं। | ||
== | == एकीकृत परिपथ में एंटीफ्यूज == | ||
एकीकृत | एकीकृत परिपथ (आईसी) को स्थायी रूप से प्रोग्राम करने के लिए एंटीफ्यूज का व्यापक रूप से उपयोग किया जाता है। | ||
कुछ [[प्रोग्रामेबल लॉजिक डिवाइस]] (PLDs), जैसे [[संरचित ASIC]]s, लॉजिक | कुछ [[प्रोग्रामेबल लॉजिक डिवाइस]] (PLDs), जैसे [[संरचित ASIC]]s, लॉजिक परिपथ को कॉन्फ़िगर करने के लिए फ़्यूज़ तकनीक का उपयोग करते हैं और एक मानक IC प्रारूप से एक अनुकूलित प्रारूप बनाते हैं। एंटीफ्यूज पीएलडी अन्य पीएलडी के विपरीत एक बार प्रोग्राम करने योग्य होते हैं जो [[स्थिर रैंडम-एक्सेस मेमोरी]]-आधारित होते हैं और जिन्हें लॉजिक बग्स को ठीक करने या नए कार्यों को जोड़ने के लिए फिर से प्रोग्राम किया जा सकता है। एंटीफ्यूज पीएलडी में एसआरएएम आधारित पीएलडी के मुकाबले फायदे हैं, जैसे कि एप्लिकेशन-विशिष्ट एकीकृत परिपथ, उन्हें हर बार बिजली उपयोजित होने पर कॉन्फ़िगर करने की आवश्यकता नहीं होती है। वे [[अल्फा कण]]ों के प्रति कम संवेदनशील हो सकते हैं जो परिपथ में खराबी का कारण बन सकते हैं। इसके अलावा एंटीफ्यूज के स्थायी प्रवाहकीय पथों के माध्यम से निर्मित परिपथ एसआरएएम प्रौद्योगिकी का उपयोग कर पीएलडी में उपयोजित समान परिपथों की तुलना में तेज़ हो सकते हैं। [[QuickLogic]] अपने एंटीफ्यूज को ViaLinks के रूप में संदर्भित करता है क्योंकि उड़ा हुआ फ़्यूज़ चिप पर तारिंग की दो क्रॉसिंग परतों के बीच उसी तरह एक कनेक्शन बनाता है जैसे [[मुद्रित सर्किट बोर्ड|मुद्रित परिपथ बोर्ड]] पर एक थ्रू (इलेक्ट्रॉनिक्स) तांबे की परतों के बीच एक कनेक्शन बनाता है। | ||
एंटीफ्यूज का उपयोग [[ प्रोग्राम करने योग्य रीड-ओनली मेमोरी ]] (प्रोग्रामेबल रीड-ओनली मेमोरी) में किया जा सकता है। प्रत्येक बिट में फ्यूज और एंटीफ्यूज दोनों होते हैं और दोनों में से किसी एक को ट्रिगर करके प्रोग्राम किया जाता है। निर्माण के बाद की जाने वाली यह | एंटीफ्यूज का उपयोग [[ प्रोग्राम करने योग्य रीड-ओनली मेमोरी ]] (प्रोग्रामेबल रीड-ओनली मेमोरी) में किया जा सकता है। प्रत्येक बिट में फ्यूज और एंटीफ्यूज दोनों होते हैं और दोनों में से किसी एक को ट्रिगर करके प्रोग्राम किया जाता है। निर्माण के बाद की जाने वाली यह क्रमादेशन स्थायी और अपरिवर्तनीय है। | ||
=== ढांकता हुआ एंटीफ्यूज === | === ढांकता हुआ एंटीफ्यूज === | ||
ढांकता हुआ एंटीफ्यूज कंडक्टरों की एक जोड़ी के बीच एक बहुत पतली ऑक्साइड बाधा का उपयोग करता है। प्रवाहकीय चैनल का गठन एक उच्च वोल्टेज नाड़ी द्वारा मजबूर ढांकता हुआ टूटने से किया जाता है। डाइइलेक्ट्रिक एंटीफ्यूज | ढांकता हुआ एंटीफ्यूज कंडक्टरों की एक जोड़ी के बीच एक बहुत पतली ऑक्साइड बाधा का उपयोग करता है। प्रवाहकीय चैनल का गठन एक उच्च वोल्टेज नाड़ी द्वारा मजबूर ढांकता हुआ टूटने से किया जाता है। डाइइलेक्ट्रिक एंटीफ्यूज सामान्य रूप से CMOS और BiCMOS प्रक्रियाओं में नियोजित होते हैं क्योंकि आवश्यक ऑक्साइड परत की मोटाई बाइपोलर प्रक्रियाओं में उपलब्ध की तुलना में कम होती है। | ||
=== [[अनाकार सिलिकॉन]] एंटीफ्यूज === | === [[अनाकार सिलिकॉन]] एंटीफ्यूज === | ||
आईसी के लिए एक दृष्टिकोण जो एंटीफ्यूज तकनीक का उपयोग करता है, दो [[धातु]] कंडक्टरों के बीच गैर-संचालन अनाकार सिलिकॉन की पतली बाधा को नियोजित करता है। जब अनाकार सिलिकॉन पर पर्याप्त रूप से उच्च वोल्टेज | आईसी के लिए एक दृष्टिकोण जो एंटीफ्यूज तकनीक का उपयोग करता है, दो [[धातु]] कंडक्टरों के बीच गैर-संचालन अनाकार सिलिकॉन की पतली बाधा को नियोजित करता है। जब अनाकार सिलिकॉन पर पर्याप्त रूप से उच्च वोल्टेज उपयोजित किया जाता है तो यह कम विद्युत प्रतिरोध के साथ एक [[ polycrystalline ]] सिलिकॉन-धातु [[मिश्र धातु]] में बदल जाता है, जो प्रवाहकीय होता है। | ||
अनाकार सिलिकॉन एक ऐसी सामग्री है जिसका | अनाकार सिलिकॉन एक ऐसी सामग्री है जिसका सामान्य रूप से द्विध्रुवी या सीएमओएस प्रक्रियाओं में उपयोग नहीं किया जाता है और इसके लिए एक अतिरिक्त निर्माण चरण की आवश्यकता होती है। | ||
एंटीफ्यूज को | एंटीफ्यूज को सामान्य रूप से लगभग 5 [[ एम्पेयर ]] करंट का उपयोग करके ट्रिगर किया जाता है। पॉली-डिफ्यूजन एंटीफ्यूज के साथ, उच्च वर्तमान घनत्व [[गर्मी]] पैदा करता है, जो [[पॉलीसिलिकॉन]] और प्रसार इलेक्ट्रोड के बीच एक पतली इन्सुलेटिंग परत को पिघला देता है, जिससे एक स्थायी प्रतिरोधक सिलिकॉन लिंक बन जाता है। | ||
=== जेनर एंटीफ्यूज === | === जेनर एंटीफ्यूज === | ||
[[ ज़ेनर डायोड ]] को एंटीफ्यूज के रूप में इस्तेमाल किया जा सकता है। [[पी-एन जंक्शन]] जो इस तरह के डायोड के रूप में कार्य करता है, वर्तमान स्पाइक के साथ अतिभारित होता है और ज़्यादा गरम होता है। 100 डिग्री सेल्सियस से ऊपर के तापमान और 10 से ऊपर वर्तमान घनत्व पर<sup>5</sup> ए/सेमी<sup>2</sup> धातुकरण [[इलेक्ट्रोमाइग्रेशन]] से गुजरता है और जंक्शन के माध्यम से स्पाइक्स बनाता है, इसे छोटा करता है; इस प्रक्रिया को उद्योग में जेनर जैप के रूप में जाना जाता है। स्पाइक सिलिकॉन की सतह पर और थोड़ा नीचे, निष्क्रियता परत के ठीक नीचे बिना नुकसान पहुंचाए बनता है। प्रवाहकीय शंट इसलिए अर्धचालक उपकरण की अखंडता और विश्वसनीयता से समझौता नहीं करता है। | [[ ज़ेनर डायोड ]] को एंटीफ्यूज के रूप में इस्तेमाल किया जा सकता है। [[पी-एन जंक्शन]] जो इस तरह के डायोड के रूप में कार्य करता है, वर्तमान स्पाइक के साथ अतिभारित होता है और ज़्यादा गरम होता है। 100 डिग्री सेल्सियस से ऊपर के तापमान और 10 से ऊपर वर्तमान घनत्व पर<sup>5</sup> ए/सेमी<sup>2</sup> धातुकरण [[इलेक्ट्रोमाइग्रेशन]] से गुजरता है और जंक्शन के माध्यम से स्पाइक्स बनाता है, इसे छोटा करता है; इस प्रक्रिया को उद्योग में जेनर जैप के रूप में जाना जाता है। स्पाइक सिलिकॉन की सतह पर और थोड़ा नीचे, निष्क्रियता परत के ठीक नीचे बिना नुकसान पहुंचाए बनता है। प्रवाहकीय शंट इसलिए अर्धचालक उपकरण की अखंडता और विश्वसनीयता से समझौता नहीं करता है। सामान्य रूप से 100-200 mA पर कुछ-मिलीसेकंड पल्स सामान्य द्विध्रुवी उपकरणों के लिए, एक गैर-अनुकूलित एंटीफ्यूज संरचना के लिए पर्याप्त है; विशेष संरचनाओं में कम बिजली की मांग होगी। जंक्शन का परिणामी प्रतिरोध 10 ओम की सीमा में है। | ||
अधिकांश CMOS, BiCMOS और बाइपोलर प्रक्रियाओं के साथ जेनर एंटीफ्यूज को अतिरिक्त विनिर्माण चरणों के बिना बनाया जा सकता है; इसलिए एनालॉग और [[मिश्रित-संकेत सर्किट]] में उनकी लोकप्रियता। वे ऐतिहासिक रूप से विशेष रूप से द्विध्रुवीय प्रक्रियाओं के साथ उपयोग किए जाते हैं, जहां ढांकता हुआ एंटीफ्यूज के लिए आवश्यक पतली ऑक्साइड उपलब्ध नहीं होती है। हालांकि, उनका नुकसान अन्य प्रकारों की तुलना में कम क्षेत्र दक्षता है। | अधिकांश CMOS, BiCMOS और बाइपोलर प्रक्रियाओं के साथ जेनर एंटीफ्यूज को अतिरिक्त विनिर्माण चरणों के बिना बनाया जा सकता है; इसलिए एनालॉग और [[मिश्रित-संकेत सर्किट|मिश्रित-संकेत परिपथ]] में उनकी लोकप्रियता। वे ऐतिहासिक रूप से विशेष रूप से द्विध्रुवीय प्रक्रियाओं के साथ उपयोग किए जाते हैं, जहां ढांकता हुआ एंटीफ्यूज के लिए आवश्यक पतली ऑक्साइड उपलब्ध नहीं होती है। हालांकि, उनका नुकसान अन्य प्रकारों की तुलना में कम क्षेत्र दक्षता है। | ||
एक मानक एनपीएन ट्रांजिस्टर संरचना प्रायः सामान्य द्विध्रुवीय प्रक्रियाओं में एंटीफ्यूज के रूप में उपयोग की जाती है। उद्देश्य के लिए अनुकूलित एक विशेष संरचना को नियोजित किया जा सकता है जहां एंटीफ्यूज डिजाइन का एक अभिन्न अंग है। एंटीफ्यूज के टर्मिनल सामान्य रूप से बॉन्डिंग पैड के रूप में सुलभ होते हैं और तार-बॉन्डिंग और चिप को एनकैप्सुलेट करने से पहले ट्रिमिंग प्रक्रिया की जाती है। चूंकि चिप के दिए गए आकार के लिए बॉन्डिंग पैड की संख्या सीमित है, बड़ी संख्या में एंटीफ्यूज के लिए विभिन्न मल्टीप्लेक्सिंग रणनीतियों का उपयोग किया जाता है। कुछ मामलों में जेनर और ट्रांजिस्टर के साथ एक संयुक्त परिपथ का उपयोग ज़ैपिंग मैट्रिक्स बनाने के लिए किया जा सकता है; अतिरिक्त जेनर के साथ, ट्रिमिंग (जो चिप के सामान्य परिचालन वोल्टेज से अधिक वोल्टेज का उपयोग करता है) को चिप की पैकेजिंग के बाद भी किया जा सकता है। | |||
एनालॉग घटकों के मूल्यों को कम करने के लिए जेनर जैप को प्रायः मिश्रित-सिग्नल परिपथ में नियोजित किया जाता है। उदाहरण के लिए समानांतर में जेनर्स (डिवाइस के सामान्य संचालन के दौरान गैर-प्रवाहकीय होने के लिए उन्मुख) के साथ कई श्रृंखला प्रतिरोधों का निर्माण करके एक सटीक अवरोधक का निर्माण किया जा सकता है और फिर अवांछित प्रतिरोधों को शंट करने के लिए चयनित जेनर्स को छोटा किया जा सकता है। इस दृष्टिकोण से, केवल परिणामी प्रतिरोधक के मान को कम करना संभव है। इसलिए मैन्युफैक्चरिंग टॉलरेंस को शिफ्ट करना आवश्यक है ताकि सामान्य रूप से बनाया गया सबसे कम मूल्य वांछित मूल्य के बराबर या उससे बड़ा हो। समानांतर प्रतिरोधों का मान बहुत कम नहीं हो सकता क्योंकि इससे ज़ैपिंग धारा डूब जाएगी; ऐसे मामलों में प्रतिरोधों और एंटीफ्यूज का एक श्रृंखला-समानांतर संयोजन कार्यरत है।<ref>http://downloads.hindawi.com/journals/vlsi/1996/023706.pdf {{Bare URL PDF|date=March 2022}}</ref> | |||
== स्ट्रीट-लाइटिंग (अप्रचलित) == | == स्ट्रीट-लाइटिंग (अप्रचलित) == | ||
उच्च-तीव्रता वाले डिस्चार्ज लैंप के आगमन से पहले, क्रिसमस ट्री की रोशनी के समान, [[गरमागरम प्रकाश बल्ब]]ों का उपयोग करने वाले [[ स्ट्रीट लाईट ]] | उच्च-तीव्रता वाले डिस्चार्ज लैंप के आगमन से पहले, क्रिसमस ट्री की रोशनी के समान, [[गरमागरम प्रकाश बल्ब]]ों का उपयोग करने वाले [[ स्ट्रीट लाईट ]] परिपथ को प्रायः उच्च-वोल्टेज श्रृंखला परिपथ के रूप में संचालित किया जाता था। प्रत्येक व्यक्तिगत स्ट्रीट-लैंप एक फिल्म कटआउट से सुसज्जित था; इंसुलेटिंग फिल्म की एक छोटी डिस्क जो दो तारों से जुड़े दो संपर्कों को अलग करती है जो दीपक तक जाती है। ऊपर वर्णित क्रिसमस रोशनी के समान ही, यदि दीपक विफल हो जाता है, तो स्ट्रीट लाइटिंग परिपथ (हजारों वोल्ट) का पूरा वोल्टेज कटआउट में इन्सुलेटिंग फिल्म पर लगाया गया था, जिससे यह टूट गया। इस तरह, विफल लैंप को बायपास कर दिया गया और सड़क के बाकी हिस्सों में रोशनी बहाल कर दी गई। क्रिसमस की रोशनी के विपरीत, परिपथ में सामान्य रूप से परिपथ में प्रवाहित होने वाले विद्युत प्रवाह को नियंत्रित करने के लिए एक स्वचालित उपकरण होता है, जैसे कि एक निरंतर-वर्तमान ट्रांसफार्मर। जैसे ही प्रत्येक श्रृंखला का दीपक जल गया और छोटा हो गया, एसी करंट रेगुलेटर ने वोल्टेज को कम कर दिया, जिससे प्रत्येक शेष बल्ब अपने सामान्य वोल्टेज, करंट, चमक और जीवन प्रत्याशा पर काम करता रहा। जब विफल लैंप को अंततः बदल दिया गया, तो फिल्म का एक नया टुकड़ा भी स्थापित किया गया, फिर से कटआउट में विद्युत संपर्कों को अलग किया गया। स्ट्रीट लाइटिंग की इस शैली को बड़े चीनी मिट्टी के इंसुलेटर द्वारा पहचाना जा सकता था जो प्रकाश के बढ़ते हाथ से दीपक और परावर्तक को अलग करता था; इन्सुलेटर आवश्यक था क्योंकि दीपक के आधार में दो संपर्क नियमित रूप से जमीन/पृथ्वी के ऊपर कई हजारों वोल्ट की क्षमता से संचालित हो सकते हैं। | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[लोहदंड (सर्किट)]] | * [[लोहदंड (सर्किट)|लोहदंड (परिपथ)]] | ||
*[[शैतान]] | *[[शैतान]] | ||
*[[तड़ित पकड़क]] | *[[तड़ित पकड़क]] |
Revision as of 19:23, 19 June 2023
एंटीफ्यूज एक विद्युत उपकरण है जो फ़्यूज़ के विपरीत कार्य करता है। जबकि एक फ्यूज कम प्रतिरोध के साथ प्रारंभ होता है और एक विद्युत चालकीय पथ को स्थायी रूप से तोड़ने के लिए प्रारूप किया गया है (विशिष्ट रूप से जब पथ के माध्यम से विद्युत प्रवाह एक निर्दिष्ट सीमा से अधिक हो जाता है), एक एंटीफ्यूज एक उच्च प्रतिरोध के साथ प्रारंभ होता है, और क्रमादेशन इसे एक स्थायी विद्युत प्रवाहकीय पथ में परिवर्तित करता है (विशिष्ट रूप से जब एंटीफ्यूज में वोल्टेज एक निश्चित स्तर से अधिक हो जाता है)। इस तकनीक के कई अनुप्रयोग हैं।
क्रिसमस ट्री रोशनी
एंटीफ्यूज मिनी-लाइट (या लघुरूप) शैली निम्न वोल्टता क्रिसमस ट्री रोशनी में उनके उपयोग के लिए जाने जाते हैं। सामान्य रूप से (मुख्य वोल्टेज से संचालन के लिए), लैंप श्रृंखला में तारित होते हैं। (बड़ी, पारंपरिक, C7 और C9 शैली की रोशनी को श्रृंखला और समानांतर में तार दिया जाता है और मुख्य वोल्टेज पर सीधे संचालित करने के लिए निर्धारित किया जाता है।) क्योंकि श्रृंखला स्ट्रिंग को एकल दीपक के विफल होने से निष्क्रिय कर दिया जाएगा, प्रत्येक प्रकाश बल्ब में एक एंटीफ्यूज स्थापित होता है। जब बल्ब फूटता है, तो पूरे मुख्य वोल्टेज को एकल उड़ाए गए लैंप पर उपयोजित किया जाता है। यह तेजी से एंटीफ्यूज को उड़ाए गए बल्ब को छोटा करने का कारण बनता है, जिससे श्रृंखला परिपथ को काम करना फिर से प्रारंभ करने की अनुमति मिलती है, हालांकि मुख्य वोल्टेज के बड़े अनुपात के साथ अब अवशिष्ट लैंप में से प्रत्येक पर उपयोजित होता है। एंटीफ्यूज एक उच्च प्रतिरोध विलेपन के साथ तार का उपयोग करके बनाया जाता है और यह तार बल्ब के अंदर दो ऊर्ध्वाधर फिलामेंट आश्रय तारों पर कुंडलित होता है। एंटीफ्यूज तार का विद्युतरोधन एक कार्यशील लैम्प पर लगाए गए साधारण निम्न वोल्टता का सामना करता है, लेकिन पूर्ण मुख्य वोल्टेज के तहत तेजी से टूट जाता है, जिससे एंटीफ्यूज क्रिया होता है। प्रासंगिक, विद्युतरोधन अपने आप टूटने में विफल रहता है, लेकिन जले हुए दीपक को टैप करने से सामान्य रूप से यह एक संबंध बना लेता है। प्रायः एक विशेष बल्ब जिसमें कोई एंटीफ्यूज नहीं होता है और प्रायः थोड़ी अलग निर्धारण होती है (इसलिए यह पहले उड़ता है क्योंकि वोल्टेज बहुत अधिक हो जाता है) जिसे ''फ्यूज बल्ब'' के रूप में जाना जाता है, अगर बहुत अधिक बल्ब विफल हो जाते हैं तो उग्र अधिधारा की संभावना से बचाने के लिए रोशनी की स्ट्रिंग में सम्मिलित किया जाता है।
एंटीफ्यूज का एक बहुत पहले का अनुप्रयोग पुरानी श्रृंखला से जुड़ी स्ट्रीटलाइट्स में था। प्रत्येक प्रकाश स्रोत में एक हटाने योग्य प्रकाश सॉकेट था, जिसमें संपर्क की एक जोड़ी थी जो सॉकेट के ऊपर फैली हुई थी। इन संपर्कों का दोहरा उद्देश्य था - उन्होंने सॉकेट को प्रकाश स्रोत के अंदर बढ़ते सम्मेलन से जोड़ा और इन संपर्कों के ऊपरी भाग में एक बदली, डाइम-साइज़ 'कटआउट' (एंटीफ्यूज का एक प्रारंभिक रूप) था। इस संबंध में, ये स्ट्रीट लाइट लूप उपरोक्त क्रिसमस लाइट स्ट्रिंग्स के समान ही संचालित होते हैं।
एकीकृत परिपथ में एंटीफ्यूज
एकीकृत परिपथ (आईसी) को स्थायी रूप से प्रोग्राम करने के लिए एंटीफ्यूज का व्यापक रूप से उपयोग किया जाता है।
कुछ प्रोग्रामेबल लॉजिक डिवाइस (PLDs), जैसे संरचित ASICs, लॉजिक परिपथ को कॉन्फ़िगर करने के लिए फ़्यूज़ तकनीक का उपयोग करते हैं और एक मानक IC प्रारूप से एक अनुकूलित प्रारूप बनाते हैं। एंटीफ्यूज पीएलडी अन्य पीएलडी के विपरीत एक बार प्रोग्राम करने योग्य होते हैं जो स्थिर रैंडम-एक्सेस मेमोरी-आधारित होते हैं और जिन्हें लॉजिक बग्स को ठीक करने या नए कार्यों को जोड़ने के लिए फिर से प्रोग्राम किया जा सकता है। एंटीफ्यूज पीएलडी में एसआरएएम आधारित पीएलडी के मुकाबले फायदे हैं, जैसे कि एप्लिकेशन-विशिष्ट एकीकृत परिपथ, उन्हें हर बार बिजली उपयोजित होने पर कॉन्फ़िगर करने की आवश्यकता नहीं होती है। वे अल्फा कणों के प्रति कम संवेदनशील हो सकते हैं जो परिपथ में खराबी का कारण बन सकते हैं। इसके अलावा एंटीफ्यूज के स्थायी प्रवाहकीय पथों के माध्यम से निर्मित परिपथ एसआरएएम प्रौद्योगिकी का उपयोग कर पीएलडी में उपयोजित समान परिपथों की तुलना में तेज़ हो सकते हैं। QuickLogic अपने एंटीफ्यूज को ViaLinks के रूप में संदर्भित करता है क्योंकि उड़ा हुआ फ़्यूज़ चिप पर तारिंग की दो क्रॉसिंग परतों के बीच उसी तरह एक कनेक्शन बनाता है जैसे मुद्रित परिपथ बोर्ड पर एक थ्रू (इलेक्ट्रॉनिक्स) तांबे की परतों के बीच एक कनेक्शन बनाता है।
एंटीफ्यूज का उपयोग प्रोग्राम करने योग्य रीड-ओनली मेमोरी (प्रोग्रामेबल रीड-ओनली मेमोरी) में किया जा सकता है। प्रत्येक बिट में फ्यूज और एंटीफ्यूज दोनों होते हैं और दोनों में से किसी एक को ट्रिगर करके प्रोग्राम किया जाता है। निर्माण के बाद की जाने वाली यह क्रमादेशन स्थायी और अपरिवर्तनीय है।
ढांकता हुआ एंटीफ्यूज
ढांकता हुआ एंटीफ्यूज कंडक्टरों की एक जोड़ी के बीच एक बहुत पतली ऑक्साइड बाधा का उपयोग करता है। प्रवाहकीय चैनल का गठन एक उच्च वोल्टेज नाड़ी द्वारा मजबूर ढांकता हुआ टूटने से किया जाता है। डाइइलेक्ट्रिक एंटीफ्यूज सामान्य रूप से CMOS और BiCMOS प्रक्रियाओं में नियोजित होते हैं क्योंकि आवश्यक ऑक्साइड परत की मोटाई बाइपोलर प्रक्रियाओं में उपलब्ध की तुलना में कम होती है।
अनाकार सिलिकॉन एंटीफ्यूज
आईसी के लिए एक दृष्टिकोण जो एंटीफ्यूज तकनीक का उपयोग करता है, दो धातु कंडक्टरों के बीच गैर-संचालन अनाकार सिलिकॉन की पतली बाधा को नियोजित करता है। जब अनाकार सिलिकॉन पर पर्याप्त रूप से उच्च वोल्टेज उपयोजित किया जाता है तो यह कम विद्युत प्रतिरोध के साथ एक polycrystalline सिलिकॉन-धातु मिश्र धातु में बदल जाता है, जो प्रवाहकीय होता है।
अनाकार सिलिकॉन एक ऐसी सामग्री है जिसका सामान्य रूप से द्विध्रुवी या सीएमओएस प्रक्रियाओं में उपयोग नहीं किया जाता है और इसके लिए एक अतिरिक्त निर्माण चरण की आवश्यकता होती है।
एंटीफ्यूज को सामान्य रूप से लगभग 5 एम्पेयर करंट का उपयोग करके ट्रिगर किया जाता है। पॉली-डिफ्यूजन एंटीफ्यूज के साथ, उच्च वर्तमान घनत्व गर्मी पैदा करता है, जो पॉलीसिलिकॉन और प्रसार इलेक्ट्रोड के बीच एक पतली इन्सुलेटिंग परत को पिघला देता है, जिससे एक स्थायी प्रतिरोधक सिलिकॉन लिंक बन जाता है।
जेनर एंटीफ्यूज
ज़ेनर डायोड को एंटीफ्यूज के रूप में इस्तेमाल किया जा सकता है। पी-एन जंक्शन जो इस तरह के डायोड के रूप में कार्य करता है, वर्तमान स्पाइक के साथ अतिभारित होता है और ज़्यादा गरम होता है। 100 डिग्री सेल्सियस से ऊपर के तापमान और 10 से ऊपर वर्तमान घनत्व पर5 ए/सेमी2 धातुकरण इलेक्ट्रोमाइग्रेशन से गुजरता है और जंक्शन के माध्यम से स्पाइक्स बनाता है, इसे छोटा करता है; इस प्रक्रिया को उद्योग में जेनर जैप के रूप में जाना जाता है। स्पाइक सिलिकॉन की सतह पर और थोड़ा नीचे, निष्क्रियता परत के ठीक नीचे बिना नुकसान पहुंचाए बनता है। प्रवाहकीय शंट इसलिए अर्धचालक उपकरण की अखंडता और विश्वसनीयता से समझौता नहीं करता है। सामान्य रूप से 100-200 mA पर कुछ-मिलीसेकंड पल्स सामान्य द्विध्रुवी उपकरणों के लिए, एक गैर-अनुकूलित एंटीफ्यूज संरचना के लिए पर्याप्त है; विशेष संरचनाओं में कम बिजली की मांग होगी। जंक्शन का परिणामी प्रतिरोध 10 ओम की सीमा में है।
अधिकांश CMOS, BiCMOS और बाइपोलर प्रक्रियाओं के साथ जेनर एंटीफ्यूज को अतिरिक्त विनिर्माण चरणों के बिना बनाया जा सकता है; इसलिए एनालॉग और मिश्रित-संकेत परिपथ में उनकी लोकप्रियता। वे ऐतिहासिक रूप से विशेष रूप से द्विध्रुवीय प्रक्रियाओं के साथ उपयोग किए जाते हैं, जहां ढांकता हुआ एंटीफ्यूज के लिए आवश्यक पतली ऑक्साइड उपलब्ध नहीं होती है। हालांकि, उनका नुकसान अन्य प्रकारों की तुलना में कम क्षेत्र दक्षता है।
एक मानक एनपीएन ट्रांजिस्टर संरचना प्रायः सामान्य द्विध्रुवीय प्रक्रियाओं में एंटीफ्यूज के रूप में उपयोग की जाती है। उद्देश्य के लिए अनुकूलित एक विशेष संरचना को नियोजित किया जा सकता है जहां एंटीफ्यूज डिजाइन का एक अभिन्न अंग है। एंटीफ्यूज के टर्मिनल सामान्य रूप से बॉन्डिंग पैड के रूप में सुलभ होते हैं और तार-बॉन्डिंग और चिप को एनकैप्सुलेट करने से पहले ट्रिमिंग प्रक्रिया की जाती है। चूंकि चिप के दिए गए आकार के लिए बॉन्डिंग पैड की संख्या सीमित है, बड़ी संख्या में एंटीफ्यूज के लिए विभिन्न मल्टीप्लेक्सिंग रणनीतियों का उपयोग किया जाता है। कुछ मामलों में जेनर और ट्रांजिस्टर के साथ एक संयुक्त परिपथ का उपयोग ज़ैपिंग मैट्रिक्स बनाने के लिए किया जा सकता है; अतिरिक्त जेनर के साथ, ट्रिमिंग (जो चिप के सामान्य परिचालन वोल्टेज से अधिक वोल्टेज का उपयोग करता है) को चिप की पैकेजिंग के बाद भी किया जा सकता है।
एनालॉग घटकों के मूल्यों को कम करने के लिए जेनर जैप को प्रायः मिश्रित-सिग्नल परिपथ में नियोजित किया जाता है। उदाहरण के लिए समानांतर में जेनर्स (डिवाइस के सामान्य संचालन के दौरान गैर-प्रवाहकीय होने के लिए उन्मुख) के साथ कई श्रृंखला प्रतिरोधों का निर्माण करके एक सटीक अवरोधक का निर्माण किया जा सकता है और फिर अवांछित प्रतिरोधों को शंट करने के लिए चयनित जेनर्स को छोटा किया जा सकता है। इस दृष्टिकोण से, केवल परिणामी प्रतिरोधक के मान को कम करना संभव है। इसलिए मैन्युफैक्चरिंग टॉलरेंस को शिफ्ट करना आवश्यक है ताकि सामान्य रूप से बनाया गया सबसे कम मूल्य वांछित मूल्य के बराबर या उससे बड़ा हो। समानांतर प्रतिरोधों का मान बहुत कम नहीं हो सकता क्योंकि इससे ज़ैपिंग धारा डूब जाएगी; ऐसे मामलों में प्रतिरोधों और एंटीफ्यूज का एक श्रृंखला-समानांतर संयोजन कार्यरत है।[1]
स्ट्रीट-लाइटिंग (अप्रचलित)
उच्च-तीव्रता वाले डिस्चार्ज लैंप के आगमन से पहले, क्रिसमस ट्री की रोशनी के समान, गरमागरम प्रकाश बल्बों का उपयोग करने वाले स्ट्रीट लाईट परिपथ को प्रायः उच्च-वोल्टेज श्रृंखला परिपथ के रूप में संचालित किया जाता था। प्रत्येक व्यक्तिगत स्ट्रीट-लैंप एक फिल्म कटआउट से सुसज्जित था; इंसुलेटिंग फिल्म की एक छोटी डिस्क जो दो तारों से जुड़े दो संपर्कों को अलग करती है जो दीपक तक जाती है। ऊपर वर्णित क्रिसमस रोशनी के समान ही, यदि दीपक विफल हो जाता है, तो स्ट्रीट लाइटिंग परिपथ (हजारों वोल्ट) का पूरा वोल्टेज कटआउट में इन्सुलेटिंग फिल्म पर लगाया गया था, जिससे यह टूट गया। इस तरह, विफल लैंप को बायपास कर दिया गया और सड़क के बाकी हिस्सों में रोशनी बहाल कर दी गई। क्रिसमस की रोशनी के विपरीत, परिपथ में सामान्य रूप से परिपथ में प्रवाहित होने वाले विद्युत प्रवाह को नियंत्रित करने के लिए एक स्वचालित उपकरण होता है, जैसे कि एक निरंतर-वर्तमान ट्रांसफार्मर। जैसे ही प्रत्येक श्रृंखला का दीपक जल गया और छोटा हो गया, एसी करंट रेगुलेटर ने वोल्टेज को कम कर दिया, जिससे प्रत्येक शेष बल्ब अपने सामान्य वोल्टेज, करंट, चमक और जीवन प्रत्याशा पर काम करता रहा। जब विफल लैंप को अंततः बदल दिया गया, तो फिल्म का एक नया टुकड़ा भी स्थापित किया गया, फिर से कटआउट में विद्युत संपर्कों को अलग किया गया। स्ट्रीट लाइटिंग की इस शैली को बड़े चीनी मिट्टी के इंसुलेटर द्वारा पहचाना जा सकता था जो प्रकाश के बढ़ते हाथ से दीपक और परावर्तक को अलग करता था; इन्सुलेटर आवश्यक था क्योंकि दीपक के आधार में दो संपर्क नियमित रूप से जमीन/पृथ्वी के ऊपर कई हजारों वोल्ट की क्षमता से संचालित हो सकते हैं।
यह भी देखें
संदर्भ
बाहरी संबंध
- Information on use of antifuses in Christmas lights (They avoid use of the term antifuse presumably because of their non-technical audience.)
- More information on the types of Christmas lights