कैथोडिक चाप जमाव: Difference between revisions

From Vigyanwiki
No edit summary
Line 5: Line 5:
1960-1970 के आस-पास [[सोवियत संघ]] में आधुनिक कैथोडिक आर्कनिक्षेपण तकनीक का औद्योगिक उपयोग शुरू हुआ था। 70 के दशक के अंत तक, सोवियत सरकार ने तकनीक को पश्चिम में जारी कर दिया था। उस समय USSR में कई प्रारूपों में से [[एल.पी. सबलेव|एल.पी.सबलेव]], एट अल. द्वारा प्रारूप को USSR के बाहर उपयोग करने की अनुमति दी गई थी।
1960-1970 के आस-पास [[सोवियत संघ]] में आधुनिक कैथोडिक आर्कनिक्षेपण तकनीक का औद्योगिक उपयोग शुरू हुआ था। 70 के दशक के अंत तक, सोवियत सरकार ने तकनीक को पश्चिम में जारी कर दिया था। उस समय USSR में कई प्रारूपों में से [[एल.पी. सबलेव|एल.पी.सबलेव]], एट अल. द्वारा प्रारूप को USSR के बाहर उपयोग करने की अनुमति दी गई थी।


== प्रक्रिया ==
== प्रक्रम ==
आर्कवाष्पीकरण प्रक्रिया एक [[कैथोड]] (जिसे टार्गेट के रूप में जाना जाता है) की सतह पर एक उच्च [[विद्युत प्रवाह|धारा]], निम्न [[वोल्टेज]] आर्कके प्रहार से शुरू होती है जो एक छोटे (आमतौर पर कुछ [[माइक्रोमीटर|सूक्ष्ममापी]] बड़े), अत्यधिक ऊर्जावान उत्सर्जक क्षेत्र को कैथोड बिन्दु के रूप में जाना जाता है। कैथोड बिन्दु पर स्थानीयकृत तापमान बहुत उच्च (लगभग 15000 °C) होता है, जिसके फलस्वरूप वाष्पीकृत कैथोड सामग्री का एक उच्च [[वेग]] (10 km/s) जेट होता है, जिससे कैथोड की सतह पर एक ज्वालामुख (क्रेटर) बन जाता है। कैथोड बिन्दु केवल कुछ समय के लिए सक्रिय होता है, फिर यह पूर्व ज्वालामुखी के पास में एक नए क्षेत्र में स्वयं बुझ जाता है और फिर से प्रज्वलित होता है। यह व्यवहार आर्क की आभासी गति का कारण बनता है।
आर्कवाष्पीकरण प्रक्रम एक [[कैथोड]] (जिसे टार्गेट के रूप में जाना जाता है) की सतह पर एक उच्च [[विद्युत प्रवाह|धारा]], निम्न [[वोल्टेज]] आर्कके प्रहार से शुरू होती है जो एक छोटे (आमतौर पर कुछ [[माइक्रोमीटर|सूक्ष्ममापी]] बड़े), अत्यधिक ऊर्जावान उत्सर्जक क्षेत्र को कैथोड बिन्दु के रूप में जाना जाता है। कैथोड बिन्दु पर स्थानीयकृत तापमान बहुत उच्च (लगभग 15000 °C) होता है, जिसके फलस्वरूप वाष्पीकृत कैथोड सामग्री का एक उच्च [[वेग]] (10 km/s) जेट होता है, जिससे कैथोड की सतह पर एक ज्वालामुख (क्रेटर) बन जाता है। कैथोड बिन्दु केवल कुछ समय के लिए सक्रिय होता है, फिर यह पूर्व ज्वालामुखी के पास में एक नए क्षेत्र में स्वयं बुझ जाता है और फिर से प्रज्वलित होता है। यह व्यवहार आर्क की आभासी गति का कारण बनता है।


चूंकि आर्क मूल रूप से एक धारा ले जाने वाला चालक है, इसे [[विद्युत चुम्बकीय|वैद्युतचुंबकीय]] [[क्षेत्र]] के अनुप्रयोग से प्रभावित किया जा सकता है, जो कार्यप्रणाली में टारगेट की संपूर्ण सतह पर आर्क को तेजी से स्थानांतरित करने के लिए उपयोग किया जाता है, ताकि समय के साथ संपूर्ण सतह अपरदित (एरोडेड) हो।
चूंकि आर्क मूल रूप से एक धारा ले जाने वाला चालक है, इसे [[विद्युत चुम्बकीय|वैद्युतचुंबकीय]] [[क्षेत्र]] के अनुप्रयोग से प्रभावित किया जा सकता है, जो कार्यप्रणाली में टारगेट की संपूर्ण सतह पर आर्क को तेजी से स्थानांतरित करने के लिए उपयोग किया जाता है, ताकि समय के साथ संपूर्ण सतह अपरदित (एरोडेड) हो।


आर्कमें अत्यधिक उच्च [[शक्ति घनत्व]] होता है जिसके परिणामस्वरूप उच्च स्तर का [[आयनीकरण]] (30-100%), कई चार्ज किए गए आयन, तटस्थ कण, क्लस्टर और मैक्रो-कण (बूंदें) होते हैं। यदि वाष्पीकरण प्रक्रिया के दौरान एक प्रतिक्रियाशील गैस पेश की जाती है, तो [[आयन प्रवाह]] के साथ बातचीत के दौरान वियोजन (रसायन विज्ञान), आयनीकरण और उत्तेजित अवस्था हो सकती है और एक यौगिक फिल्म जमा की जाएगी।
आर्क में अत्यधिक उच्च [[शक्ति घनत्व]] होता है जिसके परिणामस्वरूप उच्च स्तर का [[आयनीकरण]] (30-100%), कई चार्ज किए गए [[आयन]], उदासीन कण, गुच्छ और मैक्रो-कण (बिन्दुक) होते हैं। यदि वाष्पीकरण प्रक्रम के दौरान एक प्रतिक्रियाशील गैस प्रस्तुत की जाती है, तो [[आयन प्रवाह|आयन फ्लक्स]] के साथ [[अन्योन्यक्रिया]] के दौरान वियोजन, आयनीकरण और [[उत्तेजन]] हो सकती है और एक यौगिक फिल्म निक्षेपित की जाएगी।


आर्क वाष्पीकरण प्रक्रिया का एक नकारात्मक पक्ष यह है कि यदि कैथोड स्पॉट बहुत लंबे समय तक बाष्पीकरणीय बिंदु पर रहता है तो यह बड़ी मात्रा में स्थूल-कणों या बूंदों को बाहर निकाल सकता है। ये बूंदें कोटिंग के प्रदर्शन के लिए हानिकारक हैं क्योंकि वे खराब तरीके से पालन करती हैं और कोटिंग के माध्यम से फैल सकती हैं। इससे भी बदतर अगर कैथोड लक्ष्य सामग्री में कम गलनांक होता है जैसे कि [[ अल्युमीनियम ]] कैथोड स्पॉट लक्ष्य के माध्यम से वाष्पित हो सकता है जिसके परिणामस्वरूप या तो लक्ष्य बैकिंग प्लेट सामग्री वाष्पित हो जाती है या ठंडा पानी कक्ष में प्रवेश कर जाता है। इसलिए, आर्ककी गति को नियंत्रित करने के लिए पहले बताए गए चुंबकीय क्षेत्र का उपयोग किया जाता है। यदि बेलनाकार कैथोड का उपयोग किया जाता है तो कैथोड को निक्षेपण के दौरान भी घुमाया जा सकता है। कैथोड स्पॉट को एक स्थिति में नहीं रहने देने से बहुत लंबे समय तक एल्यूमीनियम लक्ष्य का उपयोग किया जा सकता है और बूंदों की संख्या कम हो जाती है। कुछ कंपनियां फ़िल्टर्ड आर्क्स का भी उपयोग करती हैं जो कोटिंग फ्लक्स से बूंदों को अलग करने के लिए चुंबकीय क्षेत्र का उपयोग करती हैं।
आर्क वाष्पीकरण प्रक्रम का एक नकारात्मक पक्ष यह है कि यदि कैथोड स्पॉट बहुत लंबे समय तक बाष्पीकरणीय बिंदु पर रहता है तो यह बड़ी मात्रा में स्थूल-कणों या बूंदों को बाहर निकाल सकता है। ये बूंदें कोटिंग के प्रदर्शन के लिए हानिकारक हैं क्योंकि वे खराब तरीके से पालन करती हैं और कोटिंग के माध्यम से फैल सकती हैं। इससे भी बदतर अगर कैथोड लक्ष्य सामग्री में कम गलनांक होता है जैसे कि [[ अल्युमीनियम ]] कैथोड स्पॉट लक्ष्य के माध्यम से वाष्पित हो सकता है जिसके परिणामस्वरूप या तो लक्ष्य बैकिंग प्लेट सामग्री वाष्पित हो जाती है या ठंडा पानी कक्ष में प्रवेश कर जाता है। इसलिए, आर्ककी गति को नियंत्रित करने के लिए पहले बताए गए चुंबकीय क्षेत्र का उपयोग किया जाता है। यदि बेलनाकार कैथोड का उपयोग किया जाता है तो कैथोड को निक्षेपण के दौरान भी घुमाया जा सकता है। कैथोड स्पॉट को एक स्थिति में नहीं रहने देने से बहुत लंबे समय तक एल्यूमीनियम लक्ष्य का उपयोग किया जा सकता है और बूंदों की संख्या कम हो जाती है। कुछ कंपनियां फ़िल्टर्ड आर्क्स का भी उपयोग करती हैं जो कोटिंग फ्लक्स से बूंदों को अलग करने के लिए चुंबकीय क्षेत्र का उपयोग करती हैं।


== उपकरण डिजाइन ==
== उपकरण डिजाइन ==

Revision as of 21:37, 15 June 2023

कैथोडिक आर्क निक्षेपण या Arc-PVD एक भौतिक वाष्प निक्षेपण तकनीक है जिसमें एक विद्युत आर्कका उपयोग कैथोड टार्गेट (क्षेत्र) से सामग्री को वाष्पित करने के लिए किया जाता है। वाष्पीकृत सामग्री तब एक सब्सट्रेट पर संघनित होती है, जिससे एक पतली झिल्ली (फिल्म) बनती है। तकनीक का उपयोग धातु, सिरेमिक और मिश्रित झिल्लियों को एकत्रित करने के लिए किया जा सकता है।

इतिहास

1960-1970 के आस-पास सोवियत संघ में आधुनिक कैथोडिक आर्कनिक्षेपण तकनीक का औद्योगिक उपयोग शुरू हुआ था। 70 के दशक के अंत तक, सोवियत सरकार ने तकनीक को पश्चिम में जारी कर दिया था। उस समय USSR में कई प्रारूपों में से एल.पी.सबलेव, एट अल. द्वारा प्रारूप को USSR के बाहर उपयोग करने की अनुमति दी गई थी।

प्रक्रम

आर्कवाष्पीकरण प्रक्रम एक कैथोड (जिसे टार्गेट के रूप में जाना जाता है) की सतह पर एक उच्च धारा, निम्न वोल्टेज आर्कके प्रहार से शुरू होती है जो एक छोटे (आमतौर पर कुछ सूक्ष्ममापी बड़े), अत्यधिक ऊर्जावान उत्सर्जक क्षेत्र को कैथोड बिन्दु के रूप में जाना जाता है। कैथोड बिन्दु पर स्थानीयकृत तापमान बहुत उच्च (लगभग 15000 °C) होता है, जिसके फलस्वरूप वाष्पीकृत कैथोड सामग्री का एक उच्च वेग (10 km/s) जेट होता है, जिससे कैथोड की सतह पर एक ज्वालामुख (क्रेटर) बन जाता है। कैथोड बिन्दु केवल कुछ समय के लिए सक्रिय होता है, फिर यह पूर्व ज्वालामुखी के पास में एक नए क्षेत्र में स्वयं बुझ जाता है और फिर से प्रज्वलित होता है। यह व्यवहार आर्क की आभासी गति का कारण बनता है।

चूंकि आर्क मूल रूप से एक धारा ले जाने वाला चालक है, इसे वैद्युतचुंबकीय क्षेत्र के अनुप्रयोग से प्रभावित किया जा सकता है, जो कार्यप्रणाली में टारगेट की संपूर्ण सतह पर आर्क को तेजी से स्थानांतरित करने के लिए उपयोग किया जाता है, ताकि समय के साथ संपूर्ण सतह अपरदित (एरोडेड) हो।

आर्क में अत्यधिक उच्च शक्ति घनत्व होता है जिसके परिणामस्वरूप उच्च स्तर का आयनीकरण (30-100%), कई चार्ज किए गए आयन, उदासीन कण, गुच्छ और मैक्रो-कण (बिन्दुक) होते हैं। यदि वाष्पीकरण प्रक्रम के दौरान एक प्रतिक्रियाशील गैस प्रस्तुत की जाती है, तो आयन फ्लक्स के साथ अन्योन्यक्रिया के दौरान वियोजन, आयनीकरण और उत्तेजन हो सकती है और एक यौगिक फिल्म निक्षेपित की जाएगी।

आर्क वाष्पीकरण प्रक्रम का एक नकारात्मक पक्ष यह है कि यदि कैथोड स्पॉट बहुत लंबे समय तक बाष्पीकरणीय बिंदु पर रहता है तो यह बड़ी मात्रा में स्थूल-कणों या बूंदों को बाहर निकाल सकता है। ये बूंदें कोटिंग के प्रदर्शन के लिए हानिकारक हैं क्योंकि वे खराब तरीके से पालन करती हैं और कोटिंग के माध्यम से फैल सकती हैं। इससे भी बदतर अगर कैथोड लक्ष्य सामग्री में कम गलनांक होता है जैसे कि अल्युमीनियम कैथोड स्पॉट लक्ष्य के माध्यम से वाष्पित हो सकता है जिसके परिणामस्वरूप या तो लक्ष्य बैकिंग प्लेट सामग्री वाष्पित हो जाती है या ठंडा पानी कक्ष में प्रवेश कर जाता है। इसलिए, आर्ककी गति को नियंत्रित करने के लिए पहले बताए गए चुंबकीय क्षेत्र का उपयोग किया जाता है। यदि बेलनाकार कैथोड का उपयोग किया जाता है तो कैथोड को निक्षेपण के दौरान भी घुमाया जा सकता है। कैथोड स्पॉट को एक स्थिति में नहीं रहने देने से बहुत लंबे समय तक एल्यूमीनियम लक्ष्य का उपयोग किया जा सकता है और बूंदों की संख्या कम हो जाती है। कुछ कंपनियां फ़िल्टर्ड आर्क्स का भी उपयोग करती हैं जो कोटिंग फ्लक्स से बूंदों को अलग करने के लिए चुंबकीय क्षेत्र का उपयोग करती हैं।

उपकरण डिजाइन

आर्क स्पॉट की गति को नियंत्रित करने के लिए चुम्बक के साथ सेबल टाइप कैथोडिक आर्क स्रोत

एक सब्लेव प्रकार का कैथोडिक आर्कस्रोत, जो पश्चिम में सबसे अधिक व्यापक रूप से उपयोग किया जाता है, में एक खुले सिरे के साथ कैथोड पर एक छोटा बेलनाकार आकार, विद्युत प्रवाहकीय लक्ष्य होता है। इस लक्ष्य के चारों ओर एक विद्युत-चलती धातु की अंगूठी है, जो एक आर्ककारावास की अंगूठी (स्ट्रेल'निटस्कीज शील्ड) के रूप में काम करती है। सिस्टम के लिए एनोड या तो निर्वात कक्ष की दीवार या असतत एनोड हो सकता है। आर्क स्पॉट कैथोड और एनोड के बीच एक अस्थायी शॉर्ट सर्किट बनाने वाले लक्ष्य के खुले सिरे पर एक यांत्रिक ट्रिगर (या इग्नाइटर) द्वारा उत्पन्न होते हैं। आर्कधब्बे उत्पन्न होने के बाद उन्हें चुंबकीय क्षेत्र द्वारा संचालित किया जा सकता है, या चुंबकीय क्षेत्र की अनुपस्थिति में यादृच्छिक रूप से स्थानांतरित किया जा सकता है।

अक्सेनोव क्वार्टर-टोरस डक्ट मैक्रोपार्टिकल फिल्टर प्लाज्मा ऑप्टिकल सिद्धांतों का उपयोग करते हुए जिसे ए.आई. मोरोज़ोव द्वारा विकसित किया गया था

कैथोडिक आर्क स्रोत से प्लाज्मा (भौतिकी) बीम में परमाणुओं या अणुओं (तथाकथित मैक्रो-कण) के कुछ बड़े समूह होते हैं, जो इसे कुछ प्रकार के फ़िल्टरिंग के बिना कुछ अनुप्रयोगों के लिए उपयोगी होने से रोकते हैं।

मैक्रो-कण फिल्टर के लिए कई डिज़ाइन हैं और सबसे अधिक अध्ययन किया गया डिज़ाइन I. I. Aksenov et al के काम पर आधारित है। 70 के दशक में। इसमें आर्क स्रोत से 90 डिग्री पर एक क्वार्टर-टोरस डक्ट मुड़ा हुआ होता है और प्लाज्मा ऑप्टिक्स के सिद्धांत द्वारा प्लाज्मा को डक्ट से बाहर निर्देशित किया जाता है।

1990 के दशक में डी. ए. कारपोव द्वारा रिपोर्ट किए गए अनुसार अन्य दिलचस्प डिज़ाइन भी हैं, जैसे कि एक डिज़ाइन जिसमें एक छोटा शंकु के आकार का कैथोड के साथ निर्मित एक सीधा डक्ट फ़िल्टर शामिल है। यह डिजाइन अब तक रूस और पूर्व यूएसएसआर देशों में पतले हार्ड-फिल्म कोटर और शोधकर्ताओं दोनों के बीच काफी लोकप्रिय हुआ। कैथोडिक आर्कस्रोतों को एक लंबे ट्यूबलर आकार (विस्तारित-चाप) या एक लंबे आयताकार आकार में बनाया जा सकता है, लेकिन दोनों डिज़ाइन कम लोकप्रिय हैं।

अनुप्रयोग

कैथोडिक आर्क डिपोजिशन तकनीक का उपयोग करके टाइटेनियम नाइट्राइड (TiN) कोटेड पंच
कैथोडिक आर्क डिपोजिशन तकनीक का उपयोग कर एल्यूमीनियम टाइटेनियम नाइट्राइड (AlTiN) लेपित एंड मिल ्स
कैथोडिक आर्कनिक्षेपण तकनीक का उपयोग करके एल्यूमीनियम क्रोमियम टाइटेनियम नाइट्राइड (AlCrTiN) लेपित हॉबिंग

काटने के उपकरण की सतह की रक्षा करने और उनके जीवन को महत्वपूर्ण रूप से विस्तारित करने के लिए कैथोडिक आर्कनिक्षेपणका सक्रिय रूप से अत्यधिक कठोर फिल्मों को संश्लेषित करने के लिए उपयोग किया जाता है। TiN, TiAlN, CrN, ZrN, AlCrTiN और TiAlSiN सहित इस तकनीक द्वारा पतली हार्ड-फिल्म, सुपरहार्ड कोटिंग्स और nanocomposite कोटिंग्स की एक विस्तृत विविधता को संश्लेषित किया जा सकता है।

यह विशेष रूप से कार्बन आयन निक्षेपणके लिए हीरे जैसी कार्बन फिल्मों को बनाने के लिए भी काफी व्यापक रूप से उपयोग किया जाता है। क्योंकि आयनों को बोलिस्टीक्स रूप से सतह से विस्फोटित किया जाता है, यह न केवल एकल परमाणुओं के लिए, बल्कि परमाणुओं के बड़े समूहों को बाहर निकालने के लिए सामान्य है। इस प्रकार, इस तरह की प्रणाली को निक्षेपण से पहले बीम से परमाणु समूहों को हटाने के लिए एक फिल्टर की आवश्यकता होती है। फ़िल्टर्ड-आर्क से डीएलसी फिल्म में एसपी का अत्यधिक उच्च प्रतिशत होता है3 हीरा जिसे चतुष्फलकीय अक्रिस्टलीय कार्बन या वह-सी के रूप में जाना जाता है।

फ़िल्टर किए गए कैथोडिक आर्कका उपयोग धातु आयन/प्लाज्मा स्रोत के रूप में आयन आरोपण और प्लाज्मा विसर्जन आयन आरोपण और निक्षेपण(PIII&D) के लिए किया जा सकता है।

यह भी देखें

  • आयन किरण निक्षेपण
  • भौतिक रूप से वाष्प का जमाव

संदर्भ

  • SVC "51st Annual Technical Conference Proceedings" (2008) Society of Vacuum Coaters, ISSN 0737-5921 (previous proceedings available on CD from SVC Publications)
  • A. Anders, "Cathodic Arcs: From Fractal Spots to Energetic Condensation" (2008) Springer, New York.
  • R. L. Boxman, D. M. Sanders, and P. J. Martin (editors) "Handbook of Vacuum Arc Science and Technology"(1995) Noyes Publications, Park Ridge, N.J.
  • Brown, I.G., Annu. Rev. Mat. Sci. 28, 243 (1998).
  • Sablev et al., US Patent #3,783,231, 01 Jan. 1974
  • Sablev et al., US Patent #3,793,179, 19 Feb. 1974
  • D. A. Karpov, "Cathodic arc sources and macroparticle filtering", Surface and Coatings technology 96 (1997) 22-23
  • S. Surinphong, "Basic Knowledge about PVD Systems and Coatings for Tools Coating" (1998), in Thai language
  • A. I. Morozov, Reports of the Academy of Sciences of the USSR, 163 (1965) 1363, in Russian language
  • I. I. Aksenov, V. A. Belous, V. G. Padalka, V. M. Khoroshikh, "Transport of plasma streams in a curvilinear plasma-optics system", Soviet Journal of Plasma Physics, 4 (1978) 425
  • https://www.researchgate.net/publication/273004395_Arc_source_designs
  • https://www.researchgate.net/publication/234202890_Transport_of_plasma_streams_in_a_curvilinear_plasma-optics_system